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Abstract

This study characterizes potential soil lead (Pb) exposure risk at the household scale in 

Greensboro, North Carolina, using an innovative combination of field sampling, statistical 

analysis, and machine-learning techniques. Soil samples were collected at the dripline, yard, 

and street side at 462 households (total sample size = 2310). Samples were analyzed for Pb 

and then combined with publicly available data on potential historic Pb sources, soil properties, 

and household and neighborhood demographic characteristics. This curated data set was then 

analyzed with statistical and machine-learning techniques to identify the drivers of potential soil 

Pb exposure risks and to build predictive models. Among all samples, 43% exceeded current 

guidelines for Pb in residential gardens. There were significant racial disparities in potential 

soil Pb exposure risk; soil Pb at the dripline increased by 19% for every 25% increase in the 

neighborhood population identifying as Black. A machine-learned Bayesian network model was 

able to classify residential parcels by risk of exceeding residential gardening standards with 

excellent reproducibility in cross validation. These findings underscore the need for targeted 

outreach programs to prevent Pb exposure in residential areas and demonstrate an approach for 

prioritizing outreach locations.
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Grapphical Abstract

1. INTRODUCTION

Lead (Pb) poses a critical risk to human health with exposure potentially beginning in 

utero,1 affecting numerous physiological systems within the human body2–8 and harming 

the exposed throughout their life course.9–11 Children are most vulnerable because they 

absorb Pb at a higher rate than adults and because they have higher rates of hand-to-mouth 

behaviors, increasing their risk of consuming Pb-contaminated soil and dust.12 In addition, 

early-life Pb exposure, even at low levels, can cause irreversible cognitive damage, leading 

to decreased performance in school and the workplace.13–16 The Centers for Disease Control 

and Prevention (CDC) has stated that no level of Pb exposure is safe.17 Each year, an 

estimated 40 000 U.S. children are diagnosed with elevated blood Pb.17

Even though Pb exposure risk has substantially decreased due to regulations on Pb in 

industrial and consumer products,18 soil remains an understudied reservoir for Pb.19,20 Soil 

is a dynamic medium where Pb can persist for extended periods as compared to air and 

water.21 The residence time for Pb in the soil at a depth of 20 cm can be centuries, and it is 

decades in the topsoil (5 cm).22–24

In U.S. studies, soil Pb from urbanized residential areas has been, on average, found 

to be about 7 times greater than samples collected from uncontaminated surface soils.25 

The median Pb concentration in uncontaminated surface soils nationwide is 18 ppm;26 

the median in North Carolina (NC), where this study is focused, is 19.4 ppm, with an 

interquartile range of 13.1–26.2 ppm.27 These background concentrations are similar to 

background Pb observed in other studies around the world.28 Urbanized areas have an 

increased soil Pb burden because of their higher density of human activity and of historic, 

anthropogenic Pb sources. These include paint from buildings constructed before the 1978 

ban on Pb in paint, deposition of air emissions from motor vehicles that accumulated before 

the elimination of Pb in gasoline in 1996, and industries (such as smelters) that emitted 

Pb through their smokestacks.29–31 Pb accumulated in urban soil over the years has been 
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found to potentially contribute more to Pb exposures in urban environments than Pb from 

residual lead-based paint in buildings, which are typically the focus for Pb interventions.32 

Very few studies have examined the distribution of soil Pb risk and the factors that best 

predict risk at the household scale across an entire city. The majority of prior U.S. studies 

have been in cities of the Northeast and Midwest that were major centers of steel and other 

manufacturing activities33–36 that left a large historic footprint of Pb. Understanding soil Pb 

in other geographic locations with different development histories is important to prevent 

children’s exposure to Pb because the distinct land-use histories and soil geochemistry of 

cities in regions that have not been extensively studied may influence exposure patterns.

This study provides what is, to our knowledge, the first thorough assessment of soil Pb 

in an NC city. We analyze the distribution of Pb in residential areas across Greensboro, 

NC. Greensboro (with a population of approximately 300 000) developed historically as a 

railroad transportation hub and textile manufacturing center, distinguishing it from the major 

industrial cities that have been the focus of most soil Pb studies. It is the third-most populous 

city in North Carolina, and three major interstate highways pass through it. Understanding 

the pattern of soil Pb exposure risk in Greensboro is important for NC’s programs to 

prevent childhood Pb exposure because surveillance data show that Guilford County, where 

Greensboro is located, has the second most children with elevated blood Pb (defined as >5 

μg/dL) behind Wake County among the state’s 100 counties.37 Overall, 1.1% of Guilford 

County children between ages and 2 years have elevated blood Pb.37

This study has three overall objectives:

1. Characterize the concentrations of Pb in soil in residential areas across 

Greensboro.

2. Identify factors contributing to variation in soil Pb.

3. Build and test machine-learned models for predicting the risks of exposure to 

elevated Pb in soil at the household scale.

The study focused on total soil Pb, not on identifying sources (such as the contribution from 

natural lithologic versus anthropogenic sources). Total exposure is an important factor in 

guiding targeted public health interventions.

2. MATERIALS AND METHODS

2.1. Objective 1: Characterize Soil Pb Across Greensboro.

To characterize soil Pb across residential areas of Greensboro, 462 homes were recruited 

for soil Pb testing (Figure 1). To ensure broad representation of the city, households 

within each of Greensboro’s 16 zip codes were included. Households were recruited 

via a door-to-door campaign in selected census blocks within each zip code. Inclusion 

criteria for block selection included at least five residential properties. Exclusion criteria 

included apartment buildings or building with no soil to sample. The selection was based on 

participant interest. In many neighborhoods, participants recruited their neighbors, while in 

others, there was limited interest. The study protocol was reviewed by the NC A&T State 
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University Institutional Review Board (IRB) and exempted from IRB requirements because 

all participant data were deidentified and risks to participants were judged to be minimal.

At each house agreeing to participate, one soil sample was collected at the dripline (next 

to the foundation of home), three were retrieved from the yard, and one was taken from 

the street side. All samples collected were topsoil within the first 5 cm to understand the 

immediate risk to public health. In total, 2310 samples of bare soil were collected (five 

samples collected at 462 homes). All sampling was conducted between April and August 

2019.

Samples were analyzed using a handheld X-ray fluorescence (XRF) Thermo Niton XL2 

800 Analyzer following U.S. EPA method 6200.38 X-ray fluorescence technology has been 

used by the U.S. EPA and others39–41 in studies similar to this. The samples were dried 

and tested in Ziploc plastic bags and XRF test cups. All plastic Ziploc bags were tested 

to ensure that they contained no Pb-containing ink. National Institute for Standards and 

Technology (NIST) bulk Pb in soil standard, an instrument quality control sample, was 

tested before XRF testing of samples. Analysis proceeded only if the quality control XRF 

concentration result was within ±10% of the NIST Pb concentration. Select samples were 

analyzed via inductively coupled plasma-optical emission spectroscopy (ICP-OES) for those 

with detection limits near the limit of detection of the XRF. In addition, approximately 10% 

of all samples were analyzed via ICP-OES to confirm analysis. Briefly, the soil samples 

were airdried, passed through a 150 micron sieve, and extracted for total Pb concentration 

using concentrated HCl and HNO3.34 This sample analysis plan was chosen for its accuracy, 

cost effectiveness, and practicality.

2.2. Objective 2: Analyze Factors Associated with Soil Pb.

To identify factors associated with soil Pb concentrations, soil analysis results for each 

household were joined to publicly available data on variables hypothesized in advance to be 

potentially associated with soil Pb, and the resulting data set was analyzed using statistical 

methods. Four categories of variables were included in the merged data set: characteristics 

of the individual house, demographic and socioeconomic information about the census block 

in which the house is located, land use and land cover characteristics for the house location, 

and soil properties and soil type at the house location. These variables were chosen based 

on a review of prior literature on factors associated with soil Pb and on public availability of 

data sources. Table S1 summarizes these variables and their sources.

A two-step approach was used to assess associations between soil Pb and the potential 

explanatory variables in Table S1. First, univariate associations between potential 

explanatory variables and soil Pb were assessed using significance tests of correlation 

(for continuous variables) or analysis of variance (for categorical variables). All variables 

significantly associated with soil Pb were considered for inclusion in multivariate regression 

models. Second, multivariate mixed-effect regression models were fit to the data. Separate 

models were fitted to measurements of Pb at the household dripline (the location of 

maximum Pb concentrations, on average) and to measurements from any location (dripline, 

yard, or street side), controlling for location. In both cases, soil Pb was log-transformed 

to improve model fit. Mixed-effect models controlled for clustering of samples within 
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residential properties and of residential properties within census blocks by including random 

effects for each census block and each household within the census block. The model was 

formed as follows

ln Cijk = β0jk + ∑
p = 1

N
βpXijk + Rijk

β0jk = γ00k + U0jk
γ00k = δ000 + V 00k

(1)

where Cijk is the Pb concentration for the ith soil sample from the jth residential property in 

the kth census block; Xijk is a vector of covariates (potential explanatory variables) for that 

sample; βp is the associated coefficient vector; β0jk is the random intercept for soil Pb on 

property j within census block k; γ00k represents the random intercept for census block k; 

δ000 is the overall intercept; and Rijk, U0jk, and V00k are error terms (assumed to be normally 

distributed with means of zero).

To identify factors associated with the presence of Pb above levels that may be of concern 

for urban gardening, mixed-effect logistic regression models were fitted. For the latter 

models, samples were assigned a binary indicator of 1 if the soil Pb exceeded the U.S. EPA 

100 ppm guideline for residential gardening and a value of zero otherwise. The model form 

was similar to that in eq 1, except that a logit function was used on the left side of the 

equation.

Initially, all variables assumed a priori (on the basis of prior research and/or univariate 

analyses) to influence soil Pb were entered into the models. Subsequently, variables not 

significantly associated with soil Pb were dropped in a stepwise fashion. Final models 

included all variables associated with soil Pb at p < 0.1. Median household income at the 

census block level was not significantly associated with soil Pb in any of the models (though 

it was significantly correlated with soil Pb). To control for potential income effects, however, 

two versions of each final model were created: one with income and one without.

All log-linear models were fitted using the “lmer” function in the lme4 package in R. All 

logistic models were fitted using the “glmer” function (with the “binomial” family) in the 

lme4 package in R.

2.3. Objective 3: Train Machine-Learned Models for Predicting Soil Pb Exposure Risks.

Two model types were considered to predict the risk that soil Pb on a residential property 

not included in this study would exceed the U.S. EPA standard for gardens of 100 ppm: 

logistic regression and Bayesian networks. The latter were tested due to their capability 

to overcome the difficulties of representing multicollinearity, complex interactions, and 

nonlinear relationships in logistic regression models.42 To allow for future prediction of 

risks in census blocks that were not sampled in this study, census block was not included as 

a predictor variable.

Logistic regression predictions were based on the modeling approach developed for 

Objective 2. Among the observations, 20% were randomly assigned to a testing set, and 
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a logistic model was fitted to the remaining 80%. The fixed effect coefficients estimated 

from this subset of the data were used to predict soil Pb in the remaining 20% of data.

Bayesian network models were developed using algorithms available in BayesiaLab 
software (Changé, France). Briefly, a Bayesian network consists of two components: (1) a 

graphical structure representing variables as nodes and connections among them as directed 

edges and (2) a set of probabilistic relationships among the variables..43,44 The structure 

and probabilistic relationships were estimated using algorithms available in BayesiaLab. 
The “Structural Expectation Maximization” algorithm was used to replace missing values. 

Continuous variables were discretized (required for Bayesian networks except in limited 

special cases) using the R2-GenOpt* algorithm with three bins. This algorithm uses genetic 

optimization of the R2 between the continuous node and its discrete clone.45 Then, an 

augmented naïve Bayes network model was fitted to the data using an automatic variable 

selection algorithm that searches the space of possible model structures and selects variables 

for inclusion based on model fit as measured by a scoring criterion that balances model 

accuracy with model complexity. The initial set of variables selected excluded soil pH and 

distance to the roadway. Since these were found to be important in regression models (see 

Section 3), they were added to the final model.

The accuracy of the logistic regression and Bayesian network models was tested using 

fivefold cross validation. This process involves repeatedly dividing the data set into five 

random subsets. Four of the subsets are used to estimate model parameters. The model’s 

accuracy is then estimated using it to predict the observations in the fifth subset and then 

comparing predicted and observed values.

The area under the receiving operating characteristic curve (AUC) was used to compare 

the two models. AUC is commonly used to evaluate the performance of “classifiers”—

algorithms that sort observations into two separate classes (in this case, above or below the 

100 ppm EPA standard for Pb in residential garden areas). It measures the area under a 

plot of the true positive rate as a function of the false positive rate for different probability 

thresholds used as a boundary between the two classes. The closer the AUC is to 1, the more 

accurate the model.

3. RESULTS AND DISCUSSION

3.1. Objective 1: Characterize Soil Pb in Soil in Residential Areas Across Greensboro.

Mean and median soil Pb across all samples were 121 and 79.0 ppm, respectively, with a 

maximum of 1200 ppm (Table 1). The 25th percentile concentration, 42 ppm, was more 

than twice as high as the median soil Pb in uncontaminated areas (19 ppm) in recent U.S. 

Geological Survey studies in NC,27 suggesting that in the large majority of samples, the 

measured Pb was from anthropogenic sources.

Soil Pb differed significantly depending on the location on the property from which the 

sample was collected (F(2, 2307) = 45.0, p < 0.0001) (Table 1). The highest concentrations 

were observed at the dripline (mean = 156 ppm), followed by the street side (mean = 135 
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ppm). Mean concentrations of samples collected elsewhere on the properties were lower 

(mean = 105 ppm).

Nearly half of the 2310 samples (49.8%) were above the California EPA 80 ppm standard 

for residential soil. Among all samples, 43.1% exceeded the U.S. EPA 100 ppm guideline 

for Pb in soil used for residential gardening, while 3.12 and 0.0433% exceeded the U.S. EPA 

400 and 1200 ppm standard for play areas and general residential areas, respectively. The 

percentages exceeding these reference values were much higher in samples collected at the 

dripline than at other locations (Figure S1).

The average concentration of Pb in soil in our study was not as high as has been found in 

larger cities such as Indianapolis and New Orleans, where concentrations at the household 

scale were 2–4 times higher in the yard, dripline, and street.34 The difference in soil Pb 

concentrations in Greensboro as compared to larger cities is most likely due to the legacy 

of industrial Pb sources and higher traffic and population densities in the latter cities, 

compared to in Greensboro.46–50 As such, the potential Pb exposure risk from the soil 

is significantly different in Greensboro as compared to more industrialized cities in the 

northern U.S., Midwestern U.S., and more industrialized southern U.S. cities like New 

Orleans. Nonetheless, the legacy of gasoline usage, along with the historical use of Pb paint, 

has left a significant footprint in neighborhood soils, leaving the health of urban Greensboro 

residents at risk as is the case in other urban locations.33,51,52 Our findings for Greensboro 

may be relevant to the vast majority of southern U.S. cities, which as a whole did not 

originate as industrial communities but developed as shipping, railway, and commercial 

centers or as local trading and marketing towns.48

3.2. Objective 2: Identify Factors Contributing to Variation in Soil Pb.

Mixed-effect regression models indicated that soil Pb at the household dripline differed 

significantly by the racial composition of the census block, distance to the nearest major 

road, year of home construction, and soil pH (Table 2).

3.2.1 Racial Disparities in Soil Pb Exposure Risk.—Soil Pb at the dripline was 

1.79 times higher in 100% Black than in 100% White census blocks (p < 0.01) when 

adjusting for median household income (which, on its own, was not a significant predictor of 

soil Pb) (Table 2, model 1). When excluding income, soil Pb at the dripline was 2.03 times 

higher in 100% Black than in 100% White census blocks (p < 0.001)—equivalent to a 19% 

increase in soil Pb per 25% increase in Black population proportion (Table 2, model 2).

The racial composition of the neighborhood was also associated with soil Pb when 

considering all soil samples together (i.e., not just those at the dripline) while controlling 

for clustering of samples within residential properties and of properties within census 

blocks (Table 3). Regardless of the location on the property from where it was collected, 

soil Pb was 1.8 times higher in 100% Black than in 100% White neighborhoods when 

controlling for income (Table 3, model 1) and was 1.9 times higher if income (which was 

not a significant predictor of soil Pb) is not considered (Table 3, model 2). The latter is 

equivalent to a 17% increase per 25% increase in the Black population proportion. Soil 

Pb also increased significantly with pH. When considering all samples together, house age 
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was no longer significantly associated with the Pb concentration. Soil Pb decreased as the 

distance to major roadways increased, but this effect (with p < 0.1) did not reach statistical 

significance at p = 0.05.

Similar to the log-linear models, the logistic regression model of soil Pb indicated that risks 

of exceeding 100 ppm of Pb increased as the percentage of the population identifying as 

Black increased (Table 4). The risk of soil Pb above 100 ppm was 30 times higher in 100% 

Black than in 100% White census blocks when controlling for income and 39 times higher 

when income was excluded from the model.

Our finding of potential significant racial disparities in soil Pb exposure is consistent with 

the findings of previous studies. Other studies have documented that Blacks are more 

exposed to Pb starting in utero53 and persisting throughout the life course, with soil being 

a significant source of exposure.54 Despite the differences in the Pb exposure profile in 

Greensboro compared to that in larger, more industrialized cities, it is clear that a legacy 

of Pb in soil contributes to these persistent racial disparities in potential Pb exposure in 

Greensboro, as in other areas.

When interpreting these results, it is important to note that soil Pb is rarely 100% 

bioaccessible and/or bioavailable. In its Integrated Exposure Uptake Biokeintic Model for 

predicting the effect of soil Pb on blood Pb, the U.S. EPA assumes that 60% of ingested soil 

Pb is bioavailable—that is, 60% crosses the gastrointestinal epithelium and is available for 

distribution to tissues and organs.55 Studies in rats have found that soil Pb bioavailability 

can vary widely, from 15 to 85%.56 Nonetheless, even if less than 100% of the soil Pb is 

bioavailable, prior studies have found that total and bioavailable Pb are highly correlated.57 

Therefore, our finding of significant racial disparities in total soil Pb exposure risk translates 

to comparable disparities in the risk of exposure to bioavailable Pb.

3.2.2. Other Factors Influencing Soil Pb Exposure.—In the log-linear and logistic 

models, soil Pb also increased significantly as the distance to the nearest major road 

decreased (Tables 2–4). For example, soil Pb at the dripline increased by about 28% for 

every 1 km decrease in distance from a major road. This finding is consistent with a large 

body of prior work showing that proximity to freeways and major roadways is a major 

source of soil Pb contamination.58,59

Soil Pb at the dripline (but not in other yard locations or at the street side) was significantly 

higher (p < 0.001) in older houses, increasing by about 6% for every decade of house 

age (Tables 2 and 3). This finding is also consistent with prior studies finding higher Pb 

levels at the dripline compared to other locations.34,60,61 Dripline soil Pb largely reflects 

Pb concentrations from paint, with older homes having a larger likelihood of having been 

painted with Pb paint; nearly 90% of homes built before 1940 are likely to have used 

Pb-based paints.62

Soil Pb also increased significantly with pH in all of the regression models (Tables 2–4). For 

example, the odds of soil Pb above 100 ppm increased by more than 4 for each unit increase 

in pH (Table 4). This finding matches the finding of previous studies that Pb retention in soil 

Obeng-Gyasi et al. Page 8

Environ Sci Technol. Author manuscript; available in PMC 2022 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was dependent upon pH of the soil sample, with retention dramatically increasing above pH 

7.0–7.5.63,64 Generally speaking, at acidic soil pH conditions, Pb is bound less tightly and is 

more soluble. At neutral to basic conditions, soil Pb is held more strongly, and its solubility 

is very low. This indicates that when assessing exposure risk, it is critical to consider soil 

pH.

3.3. Objective 3: Assess Accuracy of Machine-Learned Models for Risk Prediction.

The Bayesian network model (Figure 2) was a significantly more accurate classifier for 

predicting the risk of elevated soil Pb in unsampled census blocks than the logistic 

regression model. As shown in Figure 3, under cross validation, the mean AUC was 

0.83 (95% CI: 0.82–0.83), compared to AUC = 0.74 (95% CI: 0.69–0.77) for the logistic 

regression model. It is thus more useful than the logistic regression model for targeting areas 

for future soil testing that are in census blocks not included in this study.

Due to the capability to handle collinear variables, the Bayesian network model (Figure 

2) was able to include more predictors than the logistic regression. All variables shown 

in Figure 2 share significant mutual information with the risk of elevated Pb, meaning 

that knowing the state of any one of these variables significantly decreases uncertainty in 

whether soil Pb will exceed 100 ppm. Figure S2 illustrates how the risk of elevated soil Pb 

varies as values of each of these variables change. The variables with the strongest influence 

on risk were the house value and the percentage Black population in the census block. As 

in the regression models, risk increases with the percentage Black population and house age. 

The model is also able to represent dependencies among these predictor variables. This latter 

feature facilitates prediction when information about a given house is incomplete because 

changing the state of any one variable in the network updates the probability distributions for 

the states of all of the other variables.

To our knowledge, no prior studies have compared Bayesian network and logistic regression 

models for predicting soil Pb exposure risk. However, multiple studies have compared these 

two modeling approaches for other classification tasks, ranging from predicting the risk of 

credit defaults65 to the probability of cancer recurrence.66 These studies have found that 

Bayesian network predictive capability can range from comparable to logistic regression to 

better than logistic regression.67 The variation in results is likely due to the wide range and 

insufficient reporting of algorithms used for training network models (including algorithms 

for discretizing continuous variables and building network structures).67 A study using 

algorithms similar to the ones in this study to predict credit default risk found that Bayesian 

networks had the superior predictive capability, compared to logistic regression.65

The Bayesian network model can be used to create risk maps for all census blocks in the 

City of Greensboro (not just those included in this study). Figure 4 shows such maps for 

three categories of house ages: those built before June 1978, those built between June 1940 

and June 1978, and those built before June 1940. As expected based on the results of this 

analysis, risks are highest in census blocks abutting major road corridors, likely due to 

atmospheric deposition of motor vehicle exhaust that occurred before Pb was banned from 

fuel. Such maps can be useful in identifying parcels at risk of elevated soil Pb, which would 

assist with programs to decrease childhood Pb exposure.
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3.4. Limitations.

An important limitation of this study is its focus on total Pb exposure, without considering 

what fraction of the Pb is bioavailable. Bioavailability can be influenced by characteristics of 

the soil, Pb mineralogy, and the diet of exposed humans.68

Health-based soil guidelines, such as the EPA reference levels described in this study, 

account for the fact that only a fraction of total Pb is bioavailable.69 As a result, the fact 

that so many of the samples (43.1%) in this study exceeded guideline values for urban 

gardening and that there were racial disparities in the risk of exceeding this guideline 

is concerning, despite the lack of information about what fraction of the total Pb is 

bioavailable. Another study limitation is that composite samples were not collected, leaving 

the results for any one house potentially vulnerable to outliers. However, the large number 

of houses included diminishes the potential for an outlier sample at any one household to 

bias the results. In addition, a sensitivity analysis in which extreme values were removed 

from the data set did not affect the significance or magnitude of the coefficients in the 

regression models, suggesting that any outliers had minimal influence on our interpretation 

of factors influencing the spatial distribution of Pb. Finally, it is important to note that 

naturally metalliferous areas, regardless of location (urban or rural), will have higher soil Pb 

concentrations.

3.5. Public Health Implications.

Efforts to remediate soil Pb levels in a city such as Greensboro are complicated. In 

the United States, soil remediation efforts have primarily focused on mining towns or 

neighborhoods affected by emissions from Pb smelters.70 This has left towns with a legacy 

of Pb exposure in soil from paint and legacy gasoline with few mechanisms, short of alerting 

residents to the potential risks so that they can alter their behavior, to decrease the exposure 

risk.

The results of this study open the avenue for public health agencies to target their messaging 

about behavioral interventions—such as handwashing, covering bare soil where children 

might play, and planting vegetables in raised beds—that can decrease soil Pb exposure 

risk. Even though the exposure is not directly tied the total concentration of Pb present 

in the soil as soil mineralogy, metal oxides, and other soil biogeochemical factors greatly 

impact bioaccessibility and bioavailability of the total Pb present, caution must still be 

practiced as no level of Pb exposure is safe, according to the Centers for Disease Control 

and Prevention.71 The study results suggested that Bayesian network models are more useful 

than logistic regression models for targeting areas for risk messaging and future soil Pb 

testing. Targeted interventions using methods in our study could save costs by focusing 

communication and other interventions on areas where risks are highest.

The models created in this study examining risk at unsampled locations open a new 

avenue into public health risk characterization and management. These methods, when fully 

established for a city, will significantly alter how public health departments are able to 

identify risks quickly and efficiently. Notably, assessing lead-contaminated soil risk at the 

household scale using our methods will provide advanced and low-cost soil Pb exposure risk 
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management for medium-sized cities, which often lack soil Pb data and the economic means 

to pursue wide-scale soil Pb remediation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Locations of soil sampling in this study (Greensboro, NC).
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Figure 2. 
Bayesian network model predicting the probability that a soil sample will contain >100 ppm 

of lead. Nodes represent variables, and edges represent probabilistic relationships among 

the variables. All variables included share significant mutual information with the soil lead 

content.
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Figure 3. 
Bayesian network model was significantly more accurate in predicting houses at risk of Pb 

>100 ppm in soil, compared to the logistic regression model, as indicated by its higher area 

under the receiver-operating characteristic curve (AUC). AUC measures the probability that 

the model will rank a randomly chosen house with high soil Pb as having a greater risk than 

a randomly chosen house with low soil Pb.
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Figure 4. 
Risk of soil Pb >100 ppm across the City of Greensboro as predicted by the Bayesian 

network model in Figure 2. Risks are shown for three house ages: (A) built after June 1978; 

(B) built between June 1940 and June 1978; and (C) built before June 1940.
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