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Abstract

Uterine leiomyoma is the most common tumor of the female reproductive system and originates 

from a single transformed myometrial smooth muscle cell. Despite the immense medical, 

psychosocial, and financial impact, the exact underlying mechanisms of leiomyoma pathobiology 

are poorly understood. Alterations of signaling pathways are thought to be instrumental in 

leiomyoma biology. Wnt/β-catenin pathway appears to be involved in several aspects of the 

genesis of leiomyomas. For example, Wnt5b is overexpressed in leiomyoma, and the Wnt/β-

catenin pathway appears to mediate the role of MED12 mutations, the most common mutations 

in leiomyoma, in tumorigenesis. Moreover, Wnt/β-catenin pathway plays a paracrine role where 

estrogen/progesterone treatment of mature myometrial or leiomyoma cells leads to increased 

expression of Wnt11 and Wnt16, which induces proliferation of leiomyoma stem cells and tumor 

growth. Constitutive activation of β-catenin leads to myometrial hyperplasia and leiomyoma-like 

lesions in animal models. Wnt/β-catenin signaling is also closely involved in mechanotransduction 

and extracellular matrix regulation and relevant alterations in leiomyoma, and crosstalk is 

noted between Wnt/β-catenin signaling and other pathways are known to regulate leiomyoma 

development and growth such as estrogen, progesterone, TGFβ, PI3K/Akt/mTOR, Ras/Raf/MEK/

ERK, IGF, Hippo, and Notch signaling. Finally, evidence suggests that inhibition of the canonical 

Wnt pathway using β-catenin inhibitors inhibits leiomyoma cell proliferation. Understanding the 

molecular mechanisms of leiomyoma development is essential for effective treatment. The specific 

Wnt/β-catenin pathway molecules discussed in this review constitute compelling candidates for 

therapeutic targeting.
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Introduction

Uterine leiomyoma/fibroid (UL) is the most common benign tumor of the female 

reproductive system with a global incidence of up to 77% [1]. UL is characterized by 

myometrium smooth muscle cell proliferation and accumulation of extracellular matrix. UL 

occur throughout women’s reproductive life, and the most commonly reported symptom 

is excessive menstrual bleeding resulting in anemia due to iron deficiency. Other possible 

symptoms also occur including pelvic pain, subfertility, miscarriages, and preterm labor, all 

of which ultimately affect women’s quality of life [1, 2]. UL is a global burden as its annual 

estimated total cost is up to $34 billion in the US alone [3]. Despite this immense societal 

impact, the pathobiology of UL and their exact underlying mechanisms are still unclear. 

While new and emerging treatments are currently available [4], most only offer short term 

benefit, and satisfactory medical treatment is still urgently needed to mitigate the economic, 

social, and psychological burden. Targeting UL signaling pathways represents a compelling 

opportunity to develop an effective precise treatment.

UL is made of dysregulated smooth muscle cells and fibroblasts. An increasing body of 

evidence has supported the hypothesis that UL originates from myometrial stem cells that 

transform into tumor-initiating cells. Myometrial and leiomyoma stem cells have previously 

been isolated, and several differences between these two cells have been established, giving 

insight into the genetic and epigenetic changes that are necessary for UL development 

[5–11]. UL stem cells interact with mature myometrial cells through paracrine pathways 

resulting in proliferation and extracellular matrix accumulation (ECM) [7]. Resident uterine 

fibroblasts produce large amounts of ECM proteins such as fibronectin, collagen type I and 

III, vimentin, and versican, resulting in the stiff nature of UL [12, 13]. This dysregulation 

is reported to be induced by environmental stimuli and intracellular signaling pathways. 

Several intracellular pathways are involved including Wnt/β-catenin, TGF-β (transforming 

growth factor-β)/SMAD, MAPK (mitogen-activated protein kinase)/p38, Hippo/YAP (yes-

associated protein)/TAZ (transcriptional coactivator with PDZ-binding motif), Notch, 

PI3K (phosphotidyl-inositol 3-kinase/protein kinase B)/AKT/mTOR (mammalian target of 

rapamycin), and JAK (Janus kinase)/STAT (signal transducer and activator of transcription) 

pathways [14–20]. Previous studies suggest that targeting Wnt/β-catenin signaling can be 

a promising therapeutic approach for UL due to their aberrant activation compared to 

the myometrial cells [21, 22]. Thus, understanding the complicated relationship between 

Wnt/β-catenin signaling and UL development is crucial for precise therapeutic targeting.

In this review, we discuss the critical role of Wnt/β-catenin signaling in UL pathobiology 

and their possible association with other intracellular signaling pathways. We also review 

the clinical relevance of Wnt/β-catenin and the drugs targeting this pathway as potential UL 

treatments.
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Search strategy and selection criteria

We performed a PubMed and Scopus literature search until September 2020 using 

keywords: uterine fibroid, leiomyoma, Wnt/β-catenin signaling, signaling crosstalk, 

treatment and therapeutics. In this review, we included English language articles focused 

on Wnt/β-catenin signaling-related leiomyoma pathobiology, its interconnections to other 

pathways, its therapeutic potential, and anticipated clinical applications.

Overview of the Wnt signaling pathway

The Wingless-type MMTV integration site family (Wnt) signaling pathway is one of the 

evolutionarily conserved signal pathways that regulate several cellular functions, including 

cell proliferation, apoptosis, cell fate determination, polarity, migration during development, 

and stem cell maintenance in adults [23–26]. Dysregulation of the Wnt pathway traditionally 

represents a critical factor for developing human tumors [27, 28].

There are several Wnt genes, with the number differing in different species, and 

humans encode a total of nineteen [29]. The Wnt proteins are secreted as lipid-modified 

glycoproteins, typically 350–400 amino acids in length [30]. On the cell surface, Wnt 

proteins function as ligands and bind to specific receptors, including Frizzled 1–10 (FZD1–

10), seven-pass transmembrane proteins, and their co-receptors, low-density lipoprotein 

receptor-related protein 5/6 (LRP5/6) before activating intracellular signaling pathways 

[26]. When Wnt binds to its receptor, disheveled (Dsh or Dvl) is activated and modulates 

the multiple intracellular downstream Wnt signaling pathways [31, 32]. These pathways 

are broadly classified into canonical (β-catenin dependent) and non-canonical (β-catenin 

independent) Wnt pathways [29] (figure 1). In the canonical Wnt pathway, a stable β-catenin 

detaches from a multimeric destruction complex that contains adenomatous polyposis coli 

(APC), scaffolding proteins (Axin), casein kinase 1 (CK1), and glycogen synthase kinase 

3 (GSK-3) [33–36]. β-catenin then is free to translocate to the nucleus to alter gene 

transcription by acting as a transcriptional co-activator. Several β-catenin targets have 

been identified, the most important of which is the LEF (lymphoid enhancer factor)/TCF 

(T-cell factor) binding transcription factors. The β-catenin-LEF/TCF complex binds to the 

promoter of various target genes resulting in their activation. However, in the absence of 

Wnt activation, the unstable β-catenin (phospho-β-catenin), phosphorylated by CK1 and 

GSK-3, binds to the destruction protein complex and is consequently degraded through 

ubiquitination [37–39].

There are several non-canonical Wnt pathways (figure 1). The non-canonical planar 

cell polarity (PCP) pathway has been shown to be implicated in tissue organization 

in embryogenesis and in adult tissue homeostasis. It does not involve β-catenin or the 

coreceptor LRP5. This pathway is activated with Wnt binding to FZD and co-receptors 

such as Ryk, ROR2, or NRH and results in the recruitment of Dvl which activates Rho 

family GTPases and or c-Jun-N-terminal kinase (JNK) [40, 41]. Another pathway is the 

non-canonical Wnt/Ca2+ pathway, which also does not involve β-catenin. The binding 

of Wnt receptor to FZD results in a temporary increase in the concentration of Ca2+ 

through the activation of phospholipase C (PLC) which results in the formation of inositol 
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1,4,5-triphosphate (IP3). IP3 interacts with calcium channels on the endoplasmic reticulum, 

resulting in the increase of Ca2+ and the activation of calcium-calmodulin-dependent protein 

kinase II (CaMKII) [42]. Ca2+ and PLC pathway activate several regulatory proteins, 

including NFxB, CREB, and NFAT [42]. YAP-TAZ and FYN-STAT have been reported to 

be associated with the non-canonical Wnt pathway [43–45], but more studies are needed 

to confirm their involvement. Moreover, there are several proteins, including the Wnt 

inhibitory factors (WIFs), Dkk family, and secreted Fzd-related proteins (sFRP), that play 

an antagonistic role in the Wnt pathway and ultimately alter the Wnt pathway-mediated 

development and tumorigenesis [46]. For instance, a study showed that the expression of 

WIF1, dikkopf WNT signaling pathway inhibitor 1 (DKK1), and secreted frizzled-related 

protein 4 (SFRP4) was altered in UL compared to the myometrium [47], while their exact 

involvement in UL development and tumorigenesis remains elusive. The common canonical 

and non-canonical Wnt/β-catenin pathways are summarized in Figure 1.

Wnt/β-catenin pathway has been shown to be highly activated in human cancers. One 

of the most studied cancers implicated in this pathway is colorectal cancer (CRC), with 

up to 70% of the tumors displaying an APC mutation [48]. APC mutation is also the 

cause of hereditary colon cancer syndrome (familial adenomatous polyposis) [49]. This 

mutation is considered an early step in CRC adenoma development, and additional genetic 

alterations are required for malignant transformation to CRC [50]. APC not only plays 

a role in β-catenin degradation, but it also controls interactions between E-cadherin and 

β-catenin, which influences migration and chromosomal stability [51–53]. AXIN1 has also 

been implicated in several cancers, and mutations have been found throughout the whole 

coding sequence of the AXIN1 gene [54]. The CTNNB1 gene that encodes β-catenin was 

shown to be mutated in several cancers such as hepatocellular carcinoma and endometrial 

cancer [55, 56]. Moreover, the phosphorylation sites necessary for β-catenin degradation are 

mutational hotspots; these mutations allows β-catenin to accumulate and translocate to the 

nucleus, allowing it to alter gene expression [57].

Role of Wnt signaling in leiomyoma biology: what is currently known?

As described above, Wnt signaling is one of the complex and multi-regulatory pathways that 

mediate several cellular processes. It has been reported to be upregulated in leiomyoma cells 

and involved in leiomyomatogenesis.

UL are hypothesized to be monoclonal tumors, meaning that each tumor arises from a single 

adult myometrial stem cell [58, 59]. The involvement of the Wnt/β-catenin pathway in UL 

has been increasingly described in recent years [47, 60, 21, 61]. However, the expression of 

β-catenin in UL varies among different studies. β-catenin overexpression in UL compared 

with myometrium was shown using human primary UL cells [62, 63], while a report 

showed no notable difference when comparing human UL tissue to myometrial tissue [64]. 

Several Wnt ligands are overexpressed in UL and consequently activate the Wnt/β-catenin 

pathway to promote UL formation and growth. For example, Wnt4 and Wnt5A were found 

to be overexpressed in human primary UL, and Wnt11 and Wnt16 were overexpressed 

in leiomyoma stem cells [65, 66, 21]. Interestingly, besides Wnt-responsive genes, Wnt 

inhibitory genes, such as WIF1, FBXW11 (F-box and WD repeat domain containing 11), 
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NKD1 (NKD inhibitor of WNT signaling pathway 1), SFRP1, and SFRP4, were shown to 

be significantly upregulated in human UL tissue relative to normal adjacent myometrium 

while other Wnt inhibitors such as APC, DKK1, and DKK3, were significantly decreased 

[47]. Fukuhara et al. also showed an increase in sFRP1 mRNA and protein in UL tissue 

compared to adjacent myometrium, and the inhibition of sFRP1 in a leiomyosarcoma cell 

line resulted in induction of apoptosis [67], suggesting a dual role of Wnt pathway in UL 

that necessitates further investigation.

Wnt signaling and leiomyoma stem cell biology

An increasing body of evidence has shown that UL originates from stem cells in the 

myometrium [68]. Several groups have identified side population (SP) stem cells from 

UL that express stemness markers such as octamer-binding transcription factor 4 (OCT4), 

Nanog homeobox (NANOG), DNA (cystosine-5-)-methyltransferase 3 beta (DNMT3B), and 

growth differentiation factor-3 (GDF-3) [8]. UL stem cells express genetic and epigenetic 

aberrations compared to myometrial stem and differentiated cells and have altered signaling 

pathways [10, 69, 70, 7], and this includes the Wnt/β-catenin pathway [71].

The involvement of the Wnt/β-catenin pathway in UL development is supported by 

embryologic studies. Constitutive overexpression of active β-catenin during embryonic 

development of mice resulted in myometrial hyperplasia that developed into tumors that 

histologically resembled UL [72]. Moreover, a marked reduction in uterine size was 

observed in uterine mesenchyme during embryonic development of female mice containing 

a selectively deleted form of β-catenin with the cells being replaced by adipocytes [73], 

suggesting a possible role of Wnt/β-catenin pathway in UL development.

Leiomyoma SP cells are considered tumor initiating cells, and despite their dependence 

on estrogen and progesterone for growth, these cells have a remarkably low expression of 

estrogen and progesterone receptors. Ono et al. showed that leiomyoma SP cells interact 

with mature myometrial or leiomyoma cells through the Wnt/β-catenin which enables the 

growth of these cells [21]. In leiomyoma SP cells cocultured with mature myometrial 

cells, estrogen and progesterone promoted nuclear translocation of β-catenin, modifying the 

transcriptional activity of its heterodimeric partner TCF and its target gene, axis inhibition 

protein 2 (AXIN2), and ultimately resulting in the proliferation of these SP cells [21]. This 

effect was not seen in the absence of myometrial mature cells, supporting the necessary role 

of paracrine signaling between mature myometrial cells and leiomyoma SP cells. Moreover, 

ectopic expression of β-catenin inhibitor in these cells blocked the hormone dependent 

growth of human tumors in vivo, highlighting the importance of the β-catenin pathway 

in UL development [21]. A recent study on UL stem cells showed that UL stem cells 

primarily expressed Wnt receptor FZD6 compared to the more differentiated cells, and 

WNT4 was overexpressed in intermediately less differentiated cells [71]. The same group 

used primary UL cells to show that WNT4 induced proliferation through Akt-dependent 

β-catenin activation and the resulting activation of pro-proliferative genes such as c-Myc and 

cyclin D1 [71]. TGFβ3 also seems to contribute to the Wnt/β-catenin pathway in UL stem 

cells since fucoidan, an anti-fibrotic polysaccharide, was shown to inhibit TGFβ3-induced 
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cell growth and reduced β-catenin translocation into the nucleus in the Eker rat-derived 

uterine leiomyoma cells (ELT-3 cells) [74].

Wnt signaling in cell differentiation and proliferation

The Wnt/β-catenin pathway has several transcriptional outputs that influence cell 

proliferation and differentiation. Due to their tight association with cancer, one of the 

most studied targets of the Wnt/β-catenin pathway are c-MYC, a protooncogene, and cyclin-

D1, a regulatory subunit necessary for cell cycle progression [75, 76], and an aberrant 

Wnt/β-catenin pathway has been linked to desregulation of these pro-proliferation genes in 

several cancers [77, 78]. Wnt/β-catenin pathway has also been implicated in the PI3K/Akt/

mTOR pathway, which is a key signaling pathway in cell differentiation and proliferation. 

This pathway will be discussed in more detail in subsection 5.4 [79]. Moreover, the 

Wnt/β-catenin pathway was shown to be involved in promoting self-renewal of human 

embryonic stem cells, and the inhibition of either Wnt or β-catenin resulted in reduced cell 

proliferation of the naïve cells [80]. In uterine leiomyoma, the addition of three different 

Wnt/β-catenin inhibitors (ICAT, niclosamide, and XAV939) resulted in suppressed growth 

and proliferation in human primary leiomyoma cells, highlighting the role of this pathway 

in leiomyoma cell proliferation [63]. Ono et al. also showed that the inhibition of β-catenin 

and TCF4, through the tranfection with adenoviral vectors expressing inhibitors, reduced 

the growth of leiomyoma-like tumors in immunodeficient mice [21]. They also showed 

that secreted frizzled-related protein 1, sFRP, a natural Wnt inhibitor, disrupted growth of 

leiomyoma SP cells in co-culture with mature myometrial cells [21]. These studies highlight 

the involvement of this pathway in UL cell proliferation.

Wnt signaling and Med12 mutations

Genetic mutations play a prominent role in UL development, and approximately 70% 

of patients with UL present specific mutations in the mediator complex subunit 12, 

MED12, gene [81]. MED12 encodes a subunit of Mediator complex, which regulates 

transcription initiation and elongation by joining regulatory elements in promotors to the 

RNA polymerase initiation complex. The mutations of the MED12 in UL predominantly 

occur in exons 1 and 2 of the MED12 gene, and most of them are deletion, insertion, and 

missense mutations [82]. The role of these mutations is not fully understood, but evidence 

suggests that MED12 mutations are implicated in the regulation of the Wnt/β-catenin 

pathway. It was shown that β-catenin targeted the MED12 subunit in Mediator to activate 

transcription, and, mediator was recruited to Wnt-responsive genes in a β-catenin dependent 

manner in HeLa cells and 293Top cells [83]. The same group showed that the inhibition 

of the β-catenin/MED12 interaction suppressed β-catenin activation in response to Wnt 

signaling [83]. Since MED12 was shown to be essential for canonical Wnt signaling and 

MED12 limits β-catenin-dependent growth during mouse embryonic development [84], it 

could be postulated that MED12 mutations resulting in absent or defective MED12 can 

lead to a β-catenin pathway dependent growth. Indeed, fibroids with MED12 mutations 

are associated with increased the expression of the Wnt ligand, Wnt4, in UL cells when 

compared fibroids without the MED12 mutation [65]. Similarly, using an immortalized 

human uterine myometrial smooth muscle cell line, El Andaloussi et al. showed that the 

overexpression of mutant MED12 resulted in increased protein expression of Wnt4 and β-

Sabeh et al. Page 6

Mol Cell Biochem. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



catenin when compared to the cells with the overexpression of wild type MED12 [85]. Cells 

with mutant MED12 also expressed higher levels of mTOR protein and cyclin D, which 

are implicated in proliferation as will be discussed in subsection 4.5. A more recent study 

also showed that the expression of Wnt/β-catenin genes was significantly higher in primary 

fibroid cells with MED12 mutations, and vitamin D treatment significantly reduced the 

expression of WNT4 expression in MED12 mutated samples [86]. Interestingly, Mehine and 

colleagues demonstrated that Wnt antagonists, such as WIFI1 and SFRP1, were significantly 

upregulated in leiomyomas with MED12 mutations [87], demonstrating the dysregulation of 

both Wnt agonists and antagonists in leiomyoma development.

Wnt signaling and mechanotransduction

Mechanotransduction is reported to have a significant role in both the normal development 

and tumorigenesis by regulating signaling pathways and gene expression [88–93]. Several 

mechanical factors, including osmotic pressure, shear stress, spring forces, surface 

tension, and tensional forces, are eventually converted to cellular biochemical signals 

[94, 95]. Several studies reported that the Wnt/β-catenin pathway directly interacts with 

mechanotransduction in Drosophila, zebrafish, and vertebrates [95–97]. It was also proposed 

that mechanical forces can induce the Wnt target genes in stem cells, chondrocytes, 

epithelium, osteoblasts, as well as vascular and lymphatic endothelium [97].

Several studies suggested that mechanosignalling is present in the quiescent epithelium 

and within the tumor microenvironment through the regulation of β-catenin. For instance, 

in epithelial cells, increased β-catenin stabilization is observed with augmented matrix 

stiffness or tension [98, 99]. The mechanical strain can stimulate the β-catenin stabilization 

in the dormant epithelium, affecting cell cycle re-entry through an E-cadherin-dependent 

mechanism (Figure 2) [100]. Tissue strain results in the unbinding of β-catenin from 

E-cadherin through an increase of accessibility of phosphorylation site, resulting in the 

release of β-catenin [101]. In tumor-adjacent cells in a mouse colon tumor model, the 

expression of β-catenin and its target genes was increased due to the mechanical stress 

that consequently drives proliferation, resulting in augmented tumor growth and fibrosis 

[102]. In UL, Ko and colleagues showed that primary fibroid cells expressed higher 

levels of β-catenin when cultured on stiffer surfaces, highlighting the biomechanical 

cues influencing β-catenin expression [47]. Similar results were reported in bone marrow 

mesenchymal cells and primary chondrocytes, with stiff ECM increasing the expression of 

several members of the Wnt/β-catenin pathway, and the increased expression was linked 

to activation of the integrin/focal adhesion kinase (FAK)/Akt pathway (Figure 2) which 

regulates GSK3β [103]. This integrin-FAK pathway is known to be hyperactive in stiffer UL 

[104]. While mechanootransduction has been suggested as an important signaling pathway 

in uterine fibroids [13], more studies are needed to understand the interaction between 

mechanotransduction and Wnt/β-catenin signaling pathways in UL.

Wnt signaling and extracellular matrix

Excessive ECM accumulation is considered critical for UL development and appears to 

play a crucial role in the formation of the bulk structure of these tumors and their 

associated symptoms [12]. There is evidence that ECM accumulation is due to an imbalance 
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between synthesis and dissolution, similar to disordered wound healing observed in keloid 

formation [105]. Other factors that might be involved in this complicated process include 

growth factors such as TGFβ, activin-A, and PDGF, steroid hormones such as estrogen 

and progesterone, and cytokines such as TNF-α [12]. Several intermediate mediators 

such as caveolae, cytoskeleton, integrins, ion channels, and surface receptors can receive 

communication from ECM and transmit mechanical signals to intracellular signaling 

pathways and subsequently produce more ECM through a feedback loop [91]. It was 

reported that the Wnt/β-catenin pathway could play an essential role in TGFβ1-mediated 

ECM production in airway smooth muscle cells [106]. The involvement of Wnt/β-catenin 

in this complex process in UL development and its interaction with the mediators of 

ECM formation in UL are not clearly elucidated. It was reported that mutant mice with 

constitutive activation of β-catenin developed dysplastic lesions in the myometrium and 

an extracellular matrix that resembled the one found in human uterine leiomyoma [72]. 

Analysis of the uteri of the mutant mice showed an augmented expression of TGFβ3, 

compared to the surrounding myometrium [72]. TGFB is known to be over-expressed in 

UL and is a key modulator of ECM formation [107, 108]. These findings suggest that 

mechanotransduction and ECM formation are critical factors for UL growth that might be 

partially mediated via the intracellular Wnt/β-catenin pathway.

Wnt crosstalks with other signaling pathways in ULs

As shown above, the selective activation of the Wnt pathway plays an essential role in UL 

development. There are several other pathways also involved in UL formation. Intracellular 

pathways could interact with the Wnt pathway, although our understanding of the direct 

crosstalk between Wnt and other pathways in UL is less clear. The proposed crosstalks 

between Wnt and other pathways are summarized in Figure 3.

Crosstalk with estrogen signaling

Estrogen receptor (ER) signaling is activated by binding its ligand, estrogen, triggering both 

genomic and non-genomic downstream signaling [109]. Estrogen and its receptors, ERα 
and ERβ, are overexpressed in UL and play a crucial role in its development and growth 

[110]. Estrogen signaling is also altered due to the epigenetic modification of ERα by 

histone deacetylases (HDACs) in UL [111]. Experiments on UL suggest that ERα could 

regulate the canonical Wnt pathway, both directly and indirectly, via HDACs modification 

[112, 22]. It was shown that UL tissue expressed higher protein levels of class I HDAC 

enzymes compared to myometrium tissue. The addition of an HDAC inhibitor resulted in 

a time and dose dependent growth inhibitory effect which was linked to the Wnt/β-catenin 

pathway since there was a decrease in nuclear translocation of β-catenin and the decreased 

expression of β-catenin responsive markers such as cyclin D1 and C-Myc, quantified by 

immunofluorescence staining, in immortalized human UF (HuLM) cells [22]. In the same 

study, Ali et al. also reported that 17β-estradiol (E2) increased the RNA expression of 

CCND1 and MYC in immortalized human uterine smooth muscle (UTSM) cells, and 

using an ER antagonist abrogated this stimulatory effect of estrogen [22]. The interaction 

between E2 and Wnt/β-catenin is reciprocal since the addition of a β-catenin inhibitor 

resulted in a reduction in ER mRNA expression by almost 5-fold in HuLM cells [22]. 
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Zhang et al. confirmed that the induction of β-catenin expression with E2 treatment in 

primary endometrial stromal cells might result from the selective activation of the β-catenin 

promoter [113]. They found that E2 can stimulate ER binding to the β-catenin promoter 

at the estrogen response element (ERE) site [113]. As mentioned earlier, the paracrine 

activation of the Wnt/β-catenin pathway could induce UL growth in response to estrogen 

and progesterone by transferring mitogenic signals from mature myometrium or UL cells 

to neighboring stem cells [21]. The above findings can explain, at least partially, how 

estrogen signaling cross-talks with the Wnt/β-catenin pathway in UL cells since estrogen 

can regulate Wnt/β-catenin in other ways. However, substantial molecular research is 

essential to adequately explore the exact mechanism underlying estrogen and Wnt/β-catenin 

signaling regulation.

Crosstalk with progesterone signaling

Progesterone is essential for the development and growth of UL [114]. Like estrogen, 

progesterone binds to progesterone receptors (PRs), followed by activation of genomic and 

non-genomic intracellular signaling. Genomic signaling involves activating progesterone 

response elements (PRE) while nongenomic signaling activates several protein kinases, 

including MEK and MAPK [115]. The proline-rich motif of PRs could directly bind and 

activate c-Src tyrosine kinases and subsequently induce ERK signaling [116]. Wnt/β-catenin 

has been linked to progesterone in several studies. One study showed that PR could 

co-localize with Wnt4 in the luminal compartment of the ductal epithelium [117]. Wnt4 

expression was also upregulated in mammary epithelial cells upon progesterone treatment 

during pregnancy [117]. Rider et al. showed that progesterone increases Wnt5A mRNA 

expression through increasing Wnt5A mRNA stability in uterine stromal cells isolated from 

rat uteri, and they showed that Wnt6A induced stromal cell proliferation [118]. Progesterone 

was also shown to regulate Dkk-1, Wnt inhibitor, through increasing its mRNA and protein 

expression in endometrial stromal cells isolate from human tissue [119]. This effect was 

not seen with the addition of estrogen. Wnt signaling has been shown to mediate a 

regulatory function in uterine development associated with progesterone signaling as the 

ablation of Wnt4 resulted in defects in responsiveness to progesterone signaling in female 

mice [120]. As previously mentioned under section 4.1 on Wnt signaling and leiomyoma 

stem cell biology, estrogen and progesterone-induced nuclear translocation of β-catenin 

and the transcriptional activity of its target gene, and the ectopic expression of β-catenin 

inhibitor blocked estrogen and progesterone dependent growth in leiomyoma stem cells 

[21]. This study highlighted the interplay of both estrogen and progesterone with the Wnt 

pathway, reasserting the need for further investigation to properly understand the underlying 

mechanisms.

Crosstalk with TGFβ signaling

TGF-β is a family of ubiquitously expressed, pleiotropic small polypeptides responsible for 

modulating several autocrine and paracrine factors of various cellular processes, including 

differentiation, proliferation, survival, cytoskeletal reorganization, and ECM production 

[121]. Besides these roles in the development and tissue homeostasis, TGF-β is reported 

to represent a vital regulator of fibrosis, an essential process in UL growth [121]. The human 

genome has 33 functional genes encoding TGF-β family polypeptides. The three isoforms 
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TGF-β1, -β2, and -β3, are translated from distinct genes but bind to the same receptors. 

The binding of TGF-β results in heterotetrameric complex formation and phosphorylation, 

resulting in the activation of the Smad family of intracellular mediators and non-SMAD 

pathways [122]. Lee et al. demonstrated that the expression of TGF-β is higher in UL 

compared with the normal myometrium, and the UL cells are refractory to its usual 

antiproliferative effects [123]. Moreover, the addition of exogenous TGF-β3 induced a 

similar molecular phenotype in immortalized myometrial cells, compared to leiomyoma 

cells, with increased expression of collagen1A1, fibronectin 1, and connective tissue growth 

factor [124]. While TGF-β and Wnt ligands have distinct intracellular pathways, several 

differentiation and patterning events require the involvement of both [125]. It was shown 

that constitutive activation of β-catenin in mice uteri resulted in higher levels of TGF-β3 

expression in the endothelium, endometrial stroma, and in central areas of leiomyoma-like 

lesions when compared to the myometrium [72]. Moreover, as discussed previously in 

section 4.1 on Wnt signaling and leiomyoma stem cell biology, fucoidan, an anti-fibrotic 

polysaccharide, inhibited TGFβ3-induced cell growth and reduced β-catenin translocation 

into the nucleus, establishing a link between TGFβ3’s influence on growth and the Wnt/ 

β-catenin pathway [74].

Crosstalk with PI3K/Akt/mTOR Pathway

PI3K/Akt/mTOR signaling is involved in several cellular processes governing nutrient 

uptake, anabolic reactions, cell growth, tumorigenesis and survival [126]. Activation of PI3K 

results in phosphorylation of Akt, localizing it in the plasma membrane and allowing it to 

activate several downstreams signals, including the mTOR. There is compelling evidence of 

its involvement in the development of UL. Hoekstra et al. showed that AKT is activated in 

primary leiomyoma cells, which is increased in response to the addition of a progesterone 

receptor agonist (R5020), and the inhibition of AKT was associated with reduced cellular 

proliferation [127]. Protein expression of phosphorylated GSK3 and cyclin D2, downstream 

signaling components in the Akt pathway, was higher in primary leiomyoma cells compared 

with the paired primary myometrial tissue [128]. The involvement of the Akt pathway 

in UL development was further confirmed using MK-2206, an allosteric Akt inhibitor, 

was shown to induce caspase-independent cell death of cultured primary leiomyoma tissue 

and reduce the growth of primary UL cell grafts in a mouse xenograft model [129]. The 

same inhibitor increased levels of reactive oxygen species in primary UL cells, which was 

linked to stress-induced premature senescence and an increase in the expression of miR-182 

and miR-200a/c, which are implicated in DNA damage response, cellular senescence and 

proliferation [130]. Silencing of AKT using siRNA against AKT1, AKT2, and AKT3 in 

primary UL cells resulted in reduced the anti-apoptotic Bcl-2 protein expression, which 

could be one of the mechanisms in which AKT promotes UL survival and proliferation 

[131]. Moreover, HMGA2 overexpression, which is seen in 10–15% of UL, is associated 

with higher levels of Akt signaling, demonstrated by strong immunoreactivity of pAKT 

compared to without this mutation [132]. Another study reported an augmented mTOR 

pathway in UL in humans and in the Eker rat animal model [133]. Inhibition of the mTOR 

pathway in female Eker rate with rapamycin analogue WAY-129327 resulted in decreased 

cell proliferation after 2 weeks and decreased tumor incidence and size after 4 months. 

[133]. Previous studies have reported the interaction of Akt and the Wnt/β-catenin pathway. 
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In an epidermoid carcinoma cell line, Akt was shown to phosphorylate β-catenin at Ser552, 

which stabilized β-catenin, increased its translocation to the nucleus and its transcriptional 

activity, and induced tumor invasion [134]. Moreover, WNT1 was shown to induce Akt 

phosphorylation and activation in PC12 cell line, and this phorphorylation was inhibited 

with the addition of the sFRP, a natural Wnt antagonist [135]. The same group showed 

that, in the presence of Dvl, Akt modulates β-catenin levels and its target gene expression 

through increasing phosphorylated GSK3β in the the Axin complex [135]. Focusing on 

UL, Liu et al. showed that WNT4 treatment increased Akt phosphorylation in primary UL 

cells, and the addition of an Akt activator (SC79) resulted in β-catenin phosphorylation (at 

Ser552) and increased levels of active β-catenin (non-phosphorylated at Ser45) [71]. The 

addition of the Akt inhibitor MK-2206 inhibited WNT4-induced β-catenin phosphorylation 

at Ser552 and inhibited the WNT4-induced primary UL cell proliferation [71]. The same 

inhibitor inhibited WNT4-induced mRNA expression of pro-proliferative genes, c-Myc and 

cyclin D1, in leiomyoma stem cells [71]. Al-Hendy et al. reported an interaction between 

Wnt/β-catenin and mTOR pathways in response to vitamin D3 in immortalized HuLM and 

human primary UL cells. In their study, the administration of vitamin D3 reduced the levels 

of Wnt4, β-catenin as well as mTOR signaling, and the silencing of vitamin D receptor 

induced increased expression of Wnt/β-catenin, with a subsequent increase in cell division 

and ECM deposition [136]. The mTOR and Wnt/β-catenin signaling have been previously 

reported to converge and regulate the progression of cell cycle and cancer metabolism 

[79], which prompts further research on the crosstalk between Wnt/β-catenin and PI3K/Akt/

mTOR signaling in leiomyoma pathobiology.

Crosstalk with Ras/Raf/MEK/ERK Pathway

Ras/Raf/MEK/ERK pathway is another vital signaling pathway regulating various cellular 

properties, including proliferation, survival, and differentiation [137–139]. MAPK cascades 

dysfunction have been described in cancer and pathologic disorders [140]. Studies suggest 

that the Ras/Ref/MEK/ERK pathway is also involved in UL development as some of the 

proteins involved in this pathway, including Grb2, Shc, and ERK, as well as 15 distinct 

RTKs are overexpressed compared to healthy myometrium [141]. A study showed that 

the expression of phospho-ERK appeared to be upregulated upon estrogen treatment in 

immortalized UL cells, but not in immortalized myometrial cells [142]. Ras/Raf/MEK/ERK 

and Wnt/β-catenin were shown to interact in several cancers, particularly in colon cancer. 

ERK pathway was shown to be activated by Wnt/β-catenin through multiple mechanisms 

in an immortalized mouse cell line (NIH3T3), including a β-catenin-independent Wnt3a 

activation as well as a β-catenin/Tcf-4-dependent post gene transcriptional activation [143]. 

Moreover, similar to β-catenin, Ras phosphorylation by GSK3β kinase results in its 

degradation, and using an immortalized cell line (HEK 293), an aberrant Wnt/β-catenin 

pathway was reported to stabilize RAS through inhibition of the GSK3β kinase [144]. As 

expected, phosphorylation mediated Ras degradation inhibits ERK pathway and decreases 

proliferation [144]. The crosstalk between Wnt/β-catenin and the Ras/Raf/MEK/ERK 

pathway has not been extensively studied in UL. Silencing of the MED12 gene decreased 

both ERK and Wnt/β-catenin signaling in UL cells, suggesting interconnectedness of both 

pathways in UL [60]. More studied are needed to elucidate the interaction of these two 

pathways in UL.
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Crosstalk with IGFs signaling

Insulin-like growth factor (IGF) ligand binding to its receptor results in activation of receptor 

tyrosine kinase activity which phosphorylates various downstream targets including insulin 

receptor substrates (IRSs) and Src homology collagen (SHC). IGF signaling is implicated 

in cell differentiation and survival, and IGFs play a permissive role that is implicated in 

several signaling factors discussed in this review. IGF signaling appears to be dysregulated 

in one-third of the UL cells [145]. One study suggested increased IGFs (IGF1 and IGF2) 

protein expression levels, increased IGF2 mRNA transcript levels, with no significant 

changes in IGF1 mRNA level in 33 randomly selected fibroids in 33 premenopausal women 

when compared to its matched myometrium [145]. The same study found that IGF1 levels 

correlate with AKT activation and with increased tumor size [145]. The addition of IGF1 to 

primary UL cells resulted in a dose dependent increase in proliferating cell nuclear antigen 

(PCNA) labeling index and protein expression and an increase in apoptosis-inhibiting 

protein Bcl-2 compared with control cultures, allowing authors to conclude that IGF-1 plays 

a role in UL growth by promoting proliferation and imhibiting apoptosis [146]. It was also 

shown that IGF2 mutation is commonly present in UL of the mutation HMGA2 subtype 

[87]. Other studies demonstrated that IGF1 interacts with several other pathways including 

the PI3K and the Ras/Raf/MAPK cascades [147]. IGF2 treatment in primary UL cells 

resulted in the activation of the MAPK/ERK pathway with increased ERK phosphorylation, 

and blocking the ERK pathway resulted in inhibition of IGF2-induced proliferation [148]. 

There is also evidence suggesting IGF and Wnt signaling interplay. Axin2, a Wnt signaling 

responsive gene, was shown to represent a target of IGF signaling, providing negative 

feedback to the Wnt/β-catenin pathway in extra-embryonic endoderm with IGF increasing 

the stability and transcription of Axin 1 [149]. Desbois-Mouthon et al. showed that 

IGF-1 induced the transcription of Lef/Tcf reporter gene through activating PI3K/Akt and 

Ras pathways and inhibiting GSK3β in hepatoma cells [150]. The convergence of these 

pathways suggests an interplay between IGF and Wnt signaling. Further studies are needed 

to clarify the crosstalk of IGF and Wnt signaling in leiomyoma pathobiology.

Crosstalk with Hippo signaling

Hippo signaling, a highly conserved pathway composed of kinases, plays a significant 

role in organ development, tissue regeneration, self-renewal, and cancer [151, 152]. The 

Hippo signaling transcriptional co-activator, YAP/TAZ, is reported to be upregulated in UL, 

and its inhibition could decrease the fibroid growth by decreasing ECM production [17, 

153]. Purdy and coworkers showed that this pathway is regulated by mechanotransduction 

since decreasing substrate stiffness resulted in reduced YAP/TAZ nuclear localization in 

both primary UL and matched myometrial cells [17]. Inhibiting YAP/TAZ through siRNA 

targeting resulted in reduced mRNA expression of connective tissue growth factor, and 

the treatment with verteporfin, a YAP inhibitor, resulted in decreased cell survival and 

fibronectin deposition [17]. YAP/TAZ transcriptional co-activator was shown to interact 

with other signaling pathways and processes involving cell proliferation, survival, and 

tumorigenesis [154, 155, 43, 156], and this includes Wnt signaling pathway [157]. 

In a human breast cell line, Varelas et al. demonstrated that TAZ could inhibit the 

phosphorylation of Dvl which results in the inhibition of the Wnt/β-catenin pathway, and 

the inhibition of Hippo signaling resulted in increased nuclear translocation of β-catenin and 
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the expression of its target genes [157]. Moreover, the level and nuclear translocation of 

YAP/TAZ seem to be regulated by Wnt signaling, as TAZ was shown to be sequestered in 

the β-catenin destruction complex in the absence of Wnt in HEK293 cells [158, 159]. In the 

presence of Wnt, however, the stable β-catenin escapes the destruction complex and protects 

TAZ from degradation allowing its accumulation and the expression of Hippo pathway 

target genes [159, 158]. These findings suggest there might be an interaction between Hippo 

and Wnt signaling in UL pathobiology, which is yet to be elucidated.

Crosstalk with Notch Signaling

Notch proteins are single-pass transmembrane receptors that function as a membrane-bound 

transcription factors. Upon ligand binding and activation, Notch undergoes cleavage, 

releasing the intracellular domain of Notch (NICD), which translocates to the nucleus, 

binds to RBPj transcription factor, and induces the expression of its target genes in the 

Hes and Hey family [160]. Notch signaling pathway is involved in organ development, 

tissue regeneration, self-renewal, and cancer [161–163]. It was also shown to regulate 

fibrosis by inducing the proliferation of fibroblasts [164]. Gonzalez-Foruria et al. reported 

hyperactivation of Notch signaling in stromal cells isolated from ectopic endometriosis 

lesions, and this was associated with oxidative stress and fibrosis [165]. There are many 

studies suggesting that Notch and Wnt signaling pathways interact with each other and 

affect the output of both pathways. It was reported that Dvl inhibits Notch through physical 

interaction with the receptors in vivo and in yeast studies [166]. Dvl also directly binds 

and inhibits the transcription factor downstream of Notch receptors, regulating cell-fate 

specification in vivo during Xenopus development [167]. In stem and colon cancer cells, 

Notch was shown to reduce expression of active β-catenin, and this regulation did not 

depend on Notch ligand binding [168]. Liu et al. showed that Wnt3a increases the mRNA 

and protein expression of Numb, an inhibitor of the Notch pathway, through β-catenin being 

recruited to the proximal promotor of the Numb gene in C2C12 myoblasts [169]. Uterine 

leiomyomas were shown to have reduced expression of the Notch signal transduction 

pathway inhibitor Numb and increased expression of the Notch 2 receptor when compared 

to the surrounding myometrium [170]. An interaction between Wnt and Notch pathways has 

not yet been elucidated in UL, which deserves further studies.

Therapeutic targeting of the Wnt/β-catenin pathway in UL

Available drugs for the management of UL are limited, and these have several side effects, 

with a majority of symptomatic women undergoing surgery to alleviate symptoms. This 

requires the need for alternative oral agents to prevent and treat UL [171]. Given that the 

Wnt/β-catenin pathway is involved in UL pathobiology and interacts with various signaling 

pathways, inhibiting the Wnt/β-catenin pathway directly or indirectly via inhibiting other 

signaling pathways represent a compelling strategy to inhibit UL development and growth. 

However, caution needs to be considered when inhibiting Wnt/β-catenin pathway since its 

signaling is an essential pathway for several cellular processes, which can be hampered 

with its inhibition. Since this pathway regulates organ development, its inhibition can affect 

pregnant women, a situation that can be clinically relevant as some patients seeking UL 

treatment can be attempting to conceive.
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Preclinical relevance

Several FDA-approved nonspecific Wnt/β-catenin inhibitors exert a potential preclinical 

inhibitory effect on Wnt/β-catenin pathway. Table 1 includes drugs which can potentially be 

used as inhibitors for this pathway. For example, non-steroidal anti-inflammatory drugs 

(NSAID), including celecoxib and 2,5‐dimethylcelecoxib, well-known COX inhibitors, 

were shown to inhibit the Wnt pathway by augmenting β-catenin degradation through 

phosphorylation in colon cancer and by targeting TCF/LEF in intestinal cancer [172, 173]. 

Another NSAID drug, diclofenac, was shown to inhibit Wnt/β-catenin/TCF pathway in 

glioblastoma cells [174]. Also, studies reported that vitamin D could target the Wnt/β-

catenin/TCF pathway and consequently decrease the proliferation and increase apoptosis 

in colon cancer [175] and UL cells [136]. Pendás-Franco et al. also reported that vitamin 

D treatment could induce DKK1 expression, which results in the inhibition of the Wnt/β-

catenin pathway [175]. A natural flavonoid compound called isoquercitrin had a suppressing 

effect on colon cancer development by inhibiting Wnt/ β-catenin pathway [176]. As these 

drugs are FDA-approved, their pharmacokinetics and safety profile are well-known, which 

makes them compelling options for prevention or treatment of UL.

Other drugs can target Wnt/β-catenin pathway-dependent tumor progression. For instance, 

XAV-939, a selective inhibitor of tankyrase1/2, can significantly inhibit the Wnt/β-catenin 

pathway by regulating Axin levels in cancer cells [177, 178]. Other tankyrase inhibitors 

(JW55 and WIKI4) can also negatively affect the Wnt/β-catenin pathway [179, 180]. 

Another study showed that XAV939 and niclosamide could specifically inhibit the canonical 

Wnt/β-catenin pathway and thereby decrease the expression of Wnt-responsive downstream 

genes in human primary leiomyoma cells, resulting in inhibition of cell growth and 

proliferation [63]. Chen et al. demonstrated that a natural compound, fucoidan, inhibits 

UL cell proliferation and growth by inhibiting TGF-β3-induced β-catenin expression [74].

Another possible target is the porcupine (PORCN), a membrane-bound O-acyltransferase, 

which is necessary for Wnt palmitoylation, secretion, and biologic activity. PORCN is 

required for proper activation of all human Wnt pathways, suggesting that blocking PORCN 

could be an alternative treatment option for Wnt/β-catenin pathway-dependent tumors. 

ETC-159, Wnt-C59 (C59), LGK-974, IWP-2, IWP4, IWP-O1, and GNF-6231 are potent 

PORCN inhibitors which can also inhibit the Wnt/β-catenin pathway and thereby prevent 

tumorigenesis with moderate IC50 dose [181–189].

Targeting the cAMP response element-binding protein (CBP)/β-catenin interaction or 

multimeric destruction protein complex (GSK-3β/AXIN/APC/CK1) could represent another 

potential approach to inhibit the Wnt/β-catenin pathway in tumor cells. For example, 

ICG-001, a CBP/β-catenin binding antagonist, is reported to inhibit cancer cells by 

regulating the expression of Wnt target genes, including Survivin and cyclin D1 [190]. 

On the other hand, small molecules, such as JW67, JW74, and KYA1797K were reported 

to reduce active β-catenin and downregulate its target genes by enhancing the β-catenin 

destruction complex, resulting in β-catenin degradation in colorectal cells [191, 192]. 

The structure of the small molecules mentioned in the review are shown in figure 4. 

These studies suggest a possibility to redeploy Wnt-dependent cancer therapy to target UL 

pathogenesis.
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ULs are extensively associated with cholesterol, as cholesterol is the substrate for sex steroid 

hormones, such as progesterone and estrogens [193]. Evidence indicates that cholesterol 

accumulation in the cell plasma membrane activates the interaction between FZD receptors 

and LRP5/6 by recruiting Dvl resulting in Wnt binding to the FZDs/LRP5/6 complex and 

the activation of the canonical Wnt/β-catenin pathway [194–196]. Another study reported 

that the expression of Wnts, particularly Wnt4, could be regulated by estrogen through the 

ERα-dependent pathway [197]. Therefore, it can be hypothesized that targeting cholesterol 

biosynthesis and accumulation in plasma membrane could represent a potential approach 

for targeting Wnt/β-catenin mediated ULs pathogenesis. Our previous study demonstrated 

that simvastatin, an FDA-approved anti-hypercholesterolemia drug, has a potential inhibitory 

effect on UL cell proliferation and growth and ECM production in vitro and in vivo via 

various signaling pathways [198–202]. More studies are needed to see if simvastatin can 

alter the Wnt/β-catenin pathway.

Clinical relevance

Besides preclinical studies, several drugs have been tested or are currently in clinical trials 

for Wnt/β-catenin pathway-directed therapy, which are summarized in table 2. Their site of 

action is elucidated in figure 5. It is important to note that most of these trials are in the early 

phases to test toxicity and response rate of these inhibitors. These drugs primarily target 

specific Wnt pathway molecules, including Wnt ligand, FZDs, CBP/β-catenin, β-catenin 

targets, and Wnt/β-catenin pathway responsive enzymes such as tankyrases and PORCN 

[57, 178, 203, 204]. Several PORCN inhibitors are currently used in clinical trials. For 

example, WNT974 (LGK974; clinicaltrials.gov trials: NCT02278133, NCT01351103, and 

NCT02649530), CGX1321 (NCT02675946 and NCT03507998), RXC004 (NCT03447470), 

and ETC-1922159 (ETC-159; NCT02521844) are selective PORCN inhibitors which 

commonly interact with PORCN in the endoplasmic reticulum, inhibiting the secretion 

of Wnt ligand by altering its post-translational modification and consequently blocking 

the Wnt/β-catenin pathway [205, 181, 206, 207]. On the other hand, there are several 

FZD antagonists/antibodies currently approved for clinical trials. For instance, vantictumab 

(OMP-18R5; NIH clinical trial numbers: NCT01345201, NCT01973309, NCT02005315, 

and NCT01957007), ipafricept (OMP-54F28; NIH clinical trial numbers: NCT01608867, 

NCT02050178, NCT02069145, and NCT02092363), and OTSA101-DTPA-90Y (NIH 

clinical trial number NCT01469975) are specific antibodies which target several FZDs 

(FZD1, 2, 5, 7, 8, and 10) and consequently inhibit the binding of Wnt ligand to FZD and 

LRP receptors by disrupting FZD and LRP receptors interaction [208–211].

PRI-724 is a β-catenin/CBP antagonist which inhibits the binding of β-catenin/CBP to WRE 

(Wnt-responsive element; 5′-CTTTGA/TA/T-3′). This antagonist is currently in clinical 

trials (NCT01302405, NCT01606579, NCT01764477, and NCT02413853) for Wnt/β-

catenin pathway-dependent cancer therapy [212]. Inhibiting target genes of the Wnt/β-

catenin pathway could remain another possible option to inhibit Wnt pathway-mediated 

pathogenesis, and there are several small molecules approved for use in clinical trials. 

For example, SM08502 (NCT03355066) and CWP232291 (NCT03055286, NCT01564797, 

and NCT01398462) can potentially inhibit the Wnt pathway target genes and subsequently 

inhibit the Wnt pathway-dependent myeloma development [213–215].
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Several natural compounds such as vitamin D, curcumin, genistein, and resveratrol are 

potential inhibitors of the Wnt/β-catenin pathway. Vitamin D has been shown to inhibit 

this pathway by several mechanisms in human cancers, and there are ongoing clinical 

on Vitamin D (NCT02603757 and NCT02172651) to test its effect [216, 217]. Curcumin 

(NCT02724202, NCT01859858, and NCT00295035) is a potent inhibitor of TCF/β-catenin 

[218, 219]. Genistein (NCT01985763) and resveratrol (NCT00920803 and NCT00578396) 

can also inhibit the Wnt/β-catenin pathway-dependent tumorigenesis [220, 221].

Concluding remarks

Fibrotic progression remains a dynamic pathobiological phenomenon in UL (hence given 

the common name, fibroids). Exploring molecular mechanisms of this progression could 

offer solutions to this common condition. Mechanisms of uterine fibrosis are complex 

and involve multiple signaling mediators imposing therapeutic challenges. The pieces of 

evidence in this review show that the Wnt/β-catenin pathway plays a critical role in 

the pathogenesis of UL including mechanotransduction and ECM production. Extensive 

research has been performed to develop therapeutic drugs for targeting Wnt/β-catenin 

signaling in tumor development; however, the blockade of Wnt signaling requires further 

investigation due to the complexity of the involved cellular signaling pathways. Several Wnt 

signaling regulators are expressed in tumors, which might be targetable with improvised 

drugs. These drugs can be potentially deployed in leiomyoma treatment and can open new 

horizons in reproductive medicine.
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Figure 1. Schematic diagram of canonical and noncanonical Wnt signaling pathways.
In the absence of Wnt ligand, β-catenin binds to the destruction complex formed by APC, 

axin, CK1 and GSK3β, resulting in the phosphorylation of β-catenin, its ubiquitination 

and proteosomal degradation, thus inhibiting its entry to the nucleus. In the presence of 

Wnt ligand, its receptor gets activated, resulting in the phosphorylation of GSK3β. This 

inhibits the formation of the degradation complex, freeing the β-catenin to accumulate in the 

cytoplasm and translocate to the nucleus, where it associates with the TCF/LEF complex, 

altering gene transcription related to proliferation, differentiation and survival. Wnt can also 

alter other cellular processes, including cell adhesion, tissue polarity and tumorigenesis, 

through the non-canonical pathways shown here. The two most studied non-canonical 

pathways are the planar cell polarity (PCP) and Wnt/Ca2+ pathways. PCP pathway is 
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activated with Wnt binding to FZD and co-receptors such as Ryk, ROR2, or NRH which 

recruits Dvl. This activates Rho family GTPases and or c-Jun-N-terminal kinase (JNK). In 

the Wnt/Ca2+ pathway, the binding of Wnt receptor to FZD results in a temporary increase 

in the concentration of Ca2+ through the activation of phospholipase C (PLC) which results 

in the formation of inositol 1,4,5-triphosphate (IP3). IP3 increase results in the release of 

Ca2+ and the activation of calcium-calmodulin-dependent protein kinase II (CaMKII). Ca2+ 

and PLC pathway activate several regulatory proteins, including NFxB, CREB, and NFAT.

Abbreviation: Wnt- Wingless-Type MMTV Integration Site Family; FZD- frizzled; LRP- 

low-density lipoprotein receptor-related protein; Dvl- disheveled; GSK3- glycogen synthase 

kinase 3; CK1- casein kinase 1; TCF/LEF- T-cell factor/lymphoid enhancer factor; RYK- 

Receptor Like Tyrosine Kinase; ROR- receptor tyrosine kinase-like orphan receptor; RAC- 

Rho family of GTPases; JNK- c-Jun N-terminal kinases; AP1- Activator protein 1; ATF2- 

Activating Transcription Factor 2; ROCK- Rho-associated protein kinase; RhoA- Ras 

homolog family member A; CaMKII- Calcium/calmodulin-dependent protein kinase type 

II alpha chain; PLC- Phospholipase C; PIP2- Phosphatidylinositol 4,5-bisphosphate; IP3- 

inositol 1,4,5-trisphosphate; NFAT- nuclear factor of activated T-cells; NF-κB- nuclear 

factor-κB, DAG- diacylglycerol; PKC- Protein kinase C; CDC42- Cell division control 

protein 42.
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Figure 2. Role of Wnt signaling in mechanotransduction and extracellular matrix (ECM) 
alterations in uterine fibrosis.
Mechanical strain alters E-cadherin and integrinαvβ3, resulting in the release of β-catenin, 

and the activation of transcription of genes related to proliferation and ECM formation.

Abbreviation: FAK- Focal adhesion kinase; ECM- extracellular matrix; TGFβ3- 

Transforming growth factor beta-3.
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Figure 3. Schematic representation of the crosstalk between Wnt and other major signaling 
pathways in uterine fibrosis.
Several signaling pathways have been implicated in Wnt/β-catenin signaling. Estrogen 

and progesterone induce Wnt expression in mature myometrial cells, which exerts a pro-

proliferative effect on stem cells. Wnt, progesterone, and IGF were shown to activate Akt 

which has phosphorylated β-catenin at Ser552, activating it and allowing it to induce the 

expression of its target genes. Akt activation also increases expression of downstream 

signaling targets of Wnt/β-catenin pathway including c-MYC and cyclin D1. Progesterone 

and IGF were shown to induce the expression of ERK, and Ras, an upstream activator 

of ERK, was shown to be degraded by the degradation complex in a similar manner to 

β-catenin. Hippo pathway exerts its effect through YAP/TAZ, which is activated with Wnt. 

Notch pathway is both activated and inhibited by Wnt/β-catenin pathway, as Wnt induces 

the expression of its inhibitor, NUMB, while β-catenin allows for the expression of its 

downstream signaling targets.

Abbreviation: Wnt- Wingless-Type MMTV Integration Site Family; FZD- frizzled; LRP- 

low-density lipoprotein receptor-related protein; Dvl- disheveled; GSK3- glycogen synthase 

kinase 3; CK1- casein kinase 1; TCF/LEF- T-cell factor/lymphoid enhancer factor; Ras- 

ERK- extracellular signal-regulated kinases; ERα- estrogen receptor α; IGF- Insulin-like 

growth factor; NICD-notch intracellular domain; PI3K- phosphatidylinositol 3-kinase; AKT- 

protein kinase B; mTOR-mammalian target of rapamycin.
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Figure 4. The structure of the small molecule inhibitors.
The structures of SM08502 and CWP232291 are not publicly available.
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Figure 5. Schematic diagram of the site of action of the Wnt signaling pathway inhibitors that 
are in current or were in past clinical trials.
Abbreviation: Wnt- Wingless-Type MMTV Integration Site Family; FZD- frizzled; LRP- 

low-density lipoprotein receptor-related protein; Dvl- disheveled; GSK3- glycogen synthase 

kinase 3; CK1- casein kinase 1; TCF/LEF- T-cell factor/lymphoid enhancer factor; PORCN-

Porcupine O-acyltransferase.
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Table 1.

Available drugs which can potentially inhibits Wnt/β-catenin pathway.

Name of drug Direct target Indirect target
IC50 
conc. 
(nM)

Cancer type Reference

Niclosamide STAT3 Axin, Wnt/β-catenin-mediated 
transcription - UF [63]

XAV-939 tankyrase1/2 Axin, Wnt/β-catenin-mediated 
transcription 11/4 UF, lymphoma [63, 177, 182]

Fucoidan - canonical Wnt pathway - UF [74]

Vitamin D - canonical Wnt pathway - CC, UF [136, 175]

Isoquercitrin Wnt/β-catenin canonical Wnt pathway - CC [176]

Celecoxib COX canonical Wnt pathway - CC [172]

2,5‐dimethylcelecoxib COX canonical Wnt pathway - CC [172, 173]

Diclofenac - canonical Wnt pathway - GBM [174]

WIKI4 tankyrase1/2 Wnt/beta-catenin signaling 15 CC, OTS [179]

JW55 PARP domain of 
tankyrase1/2 canonical Wnt pathway - CC [180]

GNF-6231 PORCN canonical Wnt pathway 0.8 CAC [182]

Wnt-C59 (C59) PORCN Wnt3A, TCF-mediated 
transcription 0.074 Any cancer [183]

ETC-159 PORCN β-catenin 2.9 CC [183]

IWP-2 PORCN Wnt palmitoylation 27 PC [185]

LGK-974 PORCN Wnt signaling 0.4 HNC, solid 
tumor [187]

IWP-O1 PORCN Wnt, Dvl2/3 0.08 CRC [188]

IWP4 PORCN Wnt/β-catenin 25 CC [189]

ICG-001 CREB-binding protein 
(CBP)

Wnt/β-catenin/TCF-mediated 
transcription 3000 CC [190]

NLS-StAx-h - Wnt/β-catenin 1400 CC [222]

iCRT14 β-catenin/Tcf canonical Wnt pathway 54000 CC [223]

iCRT3 - Wnt/β-catenin 8.2 CC [223]

PNU-75654 disrupts β-catenin and TCF 
interaction canonical Wnt pathway 450 ACT [224]

LF3 disrupts β-catenin and TCF 
interaction canonical Wnt pathway 2000 CC, HNC [225]

FH535 PPARγ and PPARδ Wnt/β-catenin - LC [226]

NCB-0846 TNIK (TRAF2 and NCK-
Interacting Kinase) Wnt signaling 21 CC [227]

JW67 GSK-3β/AXIN/APC Wnt/β-catenin 1170 CC [191]

JW74 GSK-3β/AXIN/APC Wnt/β-catenin 1170 CC [191]

KYA1797K GSK-4β/AXIN/APC Wnt/β-catenin 750 CC [192]

IWR-1-endo - Wnt3A, Axin2, β-catenin 180 LC [228]

CCT 031374 
hydrobromide GSK-4β/AXIN/APC β-catenin/TCF-dependent 

transcription - CC, LC [228]
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Table 2:

Wnt/β-catenin signaling inhibitors in current and past clinical trials.

Therapeutics Mechanism 
of action Interventions Cancer type Development 

phase

Number 
of 
patients

Trial 
identifier

Vitamin D β-catenin Cholecalciferol Stage III Colorectal 
Cancer N/A 70 NCT02603757

β-catenin XELOX/mFOLFOX

Stage I-III Colon 
Cancer or 
Resectable Colon 
Cancer Liver 
Metastases

I

80

NCT02172651

Curcumin Tcf/β-catenin 5-fluorouracil Colon Cancer I 13 NCT02724202

Tcf/β-catenin Irinotecan Solid Tumors I 23 NCT01859858

Tcf/β-catenin Celecoxib Metastatic Colon 
Cancer III 100 NCT00295035

Tcf/β-catenin preoperative 
neoadjuvant Rectal Cancer II 45 NCT00745134

Tcf/β-catenin Placebo/Mirtoselect Colorectal 
Adenoma N/A 100 NCT01948661

Genistein GSK3β mFOLFOX/ 
mFOLFOX+Avastin

Metastatic 
Colorectal Cancer I/II 13 NCT01985763

Resveratrol PDE4 SRT501
Colorectal Cancer 
and Hepatic 
Metastases

I
9

NCT00920803

PDE4 grapes Colon Cancer I 30 NCT01564797

Aspirin β-catenin Placebo Colorectal Cancer III 3000 NCT02607072

LGK974 / WNT974 PORCN PDR001

Pancreatic cancer, 
BRAF mutant 
CRC, Melanoma, 
TNBC, H&N, 
Squamous cell 
cancer (cervical, 
esophageal, lung)

I

184

NCT01351103

BBI608 β-catenin/
Stat3 Placebo

Advanced 
Colorectal 
Carcinoma

III
282

NCT01830621

β-catenin/
Stat3 Panitumumab+Cet

Advanced 
Colorectal 
Carcinoma

II
203

NCT01776307

β-catenin/
Stat3 Pembrolizumab Metastatic 

Colorectal Cancer II 94 NCT02851004

β-catenin/
Stat3 Nivolumab Refractory 

Colorectal Cancer II 90 NCT03647839

PRI-724 CBP/β-
catenin -

Advanced 
pancreatic cancer, 
Metastatic 
pancreatic cancer, 
Pancreatic 
adenocarcinoma

I

20

NCT01764477

PRI-724 CBP/β-
catenin mFOLFOX6 Advanced solid 

tumors I 23 NCT01302405

PRI-724 CBP/β-
catenin -

Acute myeloid 
leukemia, Chronic 
myeloid leukemia

II
49

NCT01606579
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Therapeutics Mechanism 
of action Interventions Cancer type Development 

phase

Number 
of 
patients

Trial 
identifier

WNT974 (with LGX818 
and Cetuximab) PORCN LGX818 and 

Cetuximab

BRAF-mutant 
Metastatic 
Colorectal Cancer

I
20

NCT02278133

ETC-1922159, WNT974 PORCN, 
PORCN Pembrolizumab-

Solid tumor, 
Metastatic Head 
and Neck 
Squamous Cell 
Carcinoma

III

83

NCT02521844

RXC004, ETC-1922159 PORCN, 
PORCN -Pembrolizumab Solid tumor, Solid 

tumor II 59 NCT03447470

CGX1321, RXC004 PORCN, 
PORCN --

Advanced 
Gastrointestinal 
Tumors, Solid 
tumor

II

39

NCT03507998

CGX1321 (with 
Pembrolizumab)CGX1321

PORCN, 
PORCN Pembrolizumab-

Solid tumors, GI 
cancer, Advanced 
Gastrointestinal 
Tumors

II

72

NCT02675946

OTSA101-DTPA-90Y, 
CGX1321 (with 
Pembrolizumab)

FZD10, 
PORCN -Pembrolizumab

Sarcoma, Synovial, 
Solid tumors, GI 
cancer

II
20

NCT01469975

OMP-18R5 (with 
Docetaxel), OTSA101-
DTPA-90Y

FZD10, FZD Docetaxel- Solid tumors, 
Sarcoma, Synovial II

34
NCT01957007

OMP-18R5, OMP-18R5 
(with Docetaxel) FZDs paclitaxelDocetaxel

Metastatic breast 
cancer, Solid 
tumors

II
37

NCT01973309

OMP-18R5 FZDs -paclitaxel
Solid tumors, 
Metastatic breast 
cancer

II
35

NCT01345201

OMP-18R5 (with 
Nab-Paclitaxel and 
Gemcitabine), OMP-18R5

FZDs Nab-Paclitaxel and 
Gemcitabine-

Pancreatic cancer, 
Stage IV pancreatic 
cancer, Solid 
tumors

II

30

NCT02005315

OMP-54F28 (with 
Sorafenib), OMP-18R5 
(with Nab-Paclitaxel and 
Gemcitabine)

FZD8
SorafenibNab-
Paclitaxel and 
Gemcitabine

Hepatocellular 
cancer, Pancreatic 
cancer, Stage IV 
pancreatic cancer

II

10

NCT02069145

OMP-54F28 (with 
Paclitaxel & Carboplatin), 
OMP-54F28 (with 
Sorafenib)

FZD8 Paclitaxel and 
CarboplatinSorafenib

Ovarian cancer, 
Hepatocellular 
cancer

II

37

NCT02092363

OMP-54F28 (with 
Nab-Paclitaxel and 
Gemcitabine), OMP-54F28 
(with Paclitaxel & 
Carboplatin)

FZD8
Nab-Paclitaxel and 
GemcitabinePaclitaxel 
and Carboplatin

Pancreatic cancer, 
Stage IV pancreatic 
cancer, Ovarian 
cancer

II

26

NCT02050178

OMP-54F28, OMP-54F28 
(with Nab-Paclitaxel and 
Gemcitabine)

FZD8 -Nab-Paclitaxel and 
Gemcitabine

Solid tumors, 
Pancreatic cancer, 
Stage IV pancreatic 
cancer

II

26

NCT01608867

SM08502, Niclosamide

β-catenin-
controlled 
gene 
expression 
inhibitor, 
FZDs

-- Solid tumors, 
Colon Cancer II

42

NCT03355066

CWP232291, SM08502
β-catenin-
controlled 
gene 

ara-C -
Acute myeloid 
leukemia, Solid 
tumors

I/III
45

NCT03055286
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Therapeutics Mechanism 
of action Interventions Cancer type Development 

phase

Number 
of 
patients

Trial 
identifier

expression 
inhibitor

CWP232291

β-catenin-
controlled 
gene 
expression 
inhibitor

Lenalidomide, 
Dexamethasoneara-C 

Refractory 
Myeloma, Acute 
myeloid leukemia

Ia/IbI/II

25

NCT02426723

CWP232291

β-catenin-
controlled 
gene 
expression 
inhibitor

-Lenalidomide, 
Dexamethasone

Acute Myeloid 
Leukemia, Chronic 
Myelomonocytic 
Leukemia, 
Myelodysplastic 
Syndrome, 
Myelofibrosis, 
Refractory 
Myeloma

IIa/Ib

69

NCT01398462

DKN-01, CWP232291

β-catenin-
controlled 
gene 
expression 
inhibitor

Paclitaxel-

Epithelial 
Endometrial 
Cancer, Epithelial 
Ovarian Cancer, or 
Carcinosarcoma, 
Acute Myeloid 
Leukemia, Chronic 
Myelomonocytic 
Leukemia, 
Myelodysplastic 
Syndrome, 
Myelofibrosis

III

124

NCT03395080

DKN-01

β-catenin-
controlled 
gene 
expression 
inhibitor

SorafenibPaclitaxel

Advanced Liver 
Cancer, Epithelial 
Endometrial 
Cancer, Epithelial 
Ovarian Cancer, or 
Carcinosarcoma

I/IIII

70

NCT03645980

Daunorubicin, DKN-01

β-catenin-
controlled 
gene 
expression 
inhibitor

-Sorafenib
Acute Leukemia, 
Advanced Liver 
Cancer

II/II

18

NCT02914977

Foxy-5, Daunorubicin

Wnt5aβ-
catenin-
controlled 
gene 
expression 
inhibitor

FOLFOX regimen- Colon Cancer, 
Acute Leukemia III

100

NCT03883802
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