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Medicine, University of Tübingen, University Hospital Tübingen, 72074, Germany and 3Department of Computer Science, University of
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Abstract

Motivation: Improvements in single-cell RNA-seq technologies mean that studies measuring multiple experimental
conditions, such as time series, have become more common. At present, few computational methods exist to infer
time series-specific transcriptome changes, and such studies have therefore typically used unsupervised pseudo-
time methods. While these methods identify cell subpopulations and the transitions between them, they are not ap-
propriate for identifying the genes that vary coherently along the time series. In addition, the orderings they estimate
are based only on the major sources of variation in the data, which may not correspond to the processes related to
the time labels.

Results: We introduce psupertime, a supervised pseudotime approach based on a regression model, which explicit-
ly uses time-series labels as input. It identifies genes that vary coherently along a time series, in addition to pseudo-
time values for individual cells, and a classifier that can be used to estimate labels for new data with unknown or dif-
fering labels. We show that psupertime outperforms benchmark classifiers in terms of identifying time-varying
genes and provides better individual cell orderings than popular unsupervised pseudotime techniques. psupertime
is applicable to any single-cell RNA-seq dataset with sequential labels (e.g. principally time series but also drug dos-
age and disease progression), derived from either experimental design and provides a fast, interpretable tool for tar-
geted identification of genes varying along with specific biological processes.

Availability and implementation: R package available at github.com/wmacnair/psupertime and code for results re-
production at github.com/wmacnair/psupplementary.

Contact: manfred.claassen@med.uni-tuebingen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-sequencing studies have been used to define the
transcriptional changes in biological time series, including embryon-
ic development (Petropoulos et al., 2016), response to stimulus
(Treutlein et al., 2016), differentiation (Bendall et al., 2014) and
ageing (Enge et al., 2017). Such studies are based on single-cell
RNA-seq measurements over a sequence of experimental labels of
the successive timepoints. These data are typically analysed using
unsupervised pseudotime techniques to extract the corresponding
temporal sequence of transcriptomic states. These approaches use
similarities between cells to computationally order them along tra-
jectories, allowing researchers to identify high-level cell subpopula-
tions and the transitions between them. However, unsupervised
methods are not designed to identify genes associated with a process
unfolding over time. In addition, they assume that the major driver
of variation in the data is most indicative of the time series-induced
cell orderings. This means that where the changes along the time

series are subtle, or where there are strong additional sources of vari-
ation, the orderings they identify may not be those associated with
the time series (Saelens et al., 2019). Only recently, approaches have
been published to derive or refine pseudotime with time-series infor-
mation (Shao et al., 2021; Tran and Bader, 2020). To further ad-
dress this methodological gap, we introduce a supervised
pseudotime technique, psupertime, which explicitly uses time-series
labels as input (Fig. 1A). psupertime is based on penalized ordinal
regression (Fig. 1B), a statistical technique used where data have cat-
egorical labels that follow a sequence. psupertime produces three
outputs. Firstly, it learns a small, interpretable set of genes that vary
coherently over the time series. Secondly, a linear combination of
these genes assigns a pseudotime value to each cell, which approxi-
mately recapitulates the ordering specified by the sequence of labels.
Thirdly, it can be used to classify new data according to the process
labelled in the data used for training. These outputs allow for

VC The Author(s) 2022. Published by Oxford University Press. i290

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38, 2022, i290–i298

https://doi.org/10.1093/bioinformatics/btac227

ISCB/ISMB 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac227#supplementary-data
https://academic.oup.com/


targeted characterization of processes for any single-cell RNA-seq
data where sequential labels are available (such as time, disease pro-
gression or unidimensional spatial measurements), despite substan-
tial variation not associated with the process of interest. Full details
of the method are given in Section 2.

We demonstrate psupertime on a dataset comprising 411 acinar
cells from the pancreas, from eight human donors with ages from 1

to 54 years (Enge et al., 2017). Acinar cells perform the exocrine
function of the pancreas, producing enzymes for the digestive sys-
tem. This dataset was selected because each set of cells was obtained
from different donors, resulting in significant variation in the dataset
unrelated to donor age (Fig. 1C). Despite this variation, psupertime
finds a cell-level ordering which respects the age progression, while
separating the labels from each other (Fig. 1D). We show that the

Fig. 1. (A) Inputs to psupertime are single-cell RNA-seq data, where the cells have sequential labels associated with them. psupertime then identifies a sparse set of ordering

coefficients for the genes. Multiplying the gene expression values by this vector of coefficients gives pseudotime values for each cell, which place the labels approximately in se-

quence. (B) Cartoon of statistical model used by psupertime, including thresholds between labels. Where there is a sequence of K condition labels, psupertime learns K�1 sim-

ultaneous (i.e. sharing coefficients) logistic regressions, each seeking to separate labels 1 . . . k� 1 (out) from k . . . K (in). (C) Dimensionality reduction of 411 human acinar cell

data with ages ranging from 1 to 54 (Enge et al., 2017). Representations in two dimensions via non-linear dimensionality reduction technique UMAP. Colours indicate donor

age. (D) Distributions of donor ages for acinar cells over the pseudotime learned psupertime. Vertical lines indicate thresholds learned by psupertime distinguishing between

earlier and later sets of labels; colour corresponds to the next later label. (E) Expression values of selected genes (five with largest absolute coefficients; see Supplementary Fig.

S2 for 20 largest). The x-axis is psupertime value learned for each cell; y-axis is z-scored log 2 gene expression values. Gene labels also show the Kendall’s s correlation between

sequential labels (treated as a sequence of integers 1; . . . ;K) and gene expression
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performance of psupertime is robust, including perturbations in
labels (see Supplementary Results S1).

2 Materials and methods

2.1 Overview of psupertime methodology
psupertime requires two inputs: (i) a matrix of log read counts from
single-cell RNA-seq, where columns correspond to genes and rows

correspond to cells; and (ii) a set of labels for the cells, with a
defined sequence for the labels (e.g. a set of cells could have labels
day1, day3, day1, day2, day3). (Note that not all cells need to be

labelled: psupertime can also be run on a labelled subset.) psuper-
time then identifies a set of ordering coefficients, bi, one for each

gene (Fig. 1A). Multiplication by this vector of coefficients converts
the matrix of log gene expression values into pseudotime values for
each individual cell. The set of pseudotime values recapitulates the

known label sequence (so the cells with labels day1 will on average
have lower pseudotime values than those labelled day2 and so on).

The vector of coefficients is sparse, in the sense that many of the val-
ues are zero; these therefore have no influence on the ordering of the
cells. Genes with non-zero coefficients are therefore identified by

psupertime as relevant to the process which generated the sequential
labels.

Suppose the sequence of condition labels we have is 1; . . . ;K.
Intuitively, psupertime learns a weighted average of gene expression
values that separates the cells with label 1 from the cells with labels

2; . . . ;K, at the same time as separating 1, 2 from 3; . . . ;K, and 1, 2,
3 from 4; . . . ;K and so on (Fig. 1B). This can be thought of as solv-

ing K—1 simultaneous logistic regression problems and is termed or-
dinal logistic regression (McCullagh, 1980).

As described so far, psupertime can be thought of as minimizing
a cost, where the cost is the error in the resulting ordering. To make
the results more interpretable, we would like psupertime to use a

small set of genes for prediction. To do this, we add a cost for each
coefficient bi used, so that psupertime is minimizing

errorþ k
P

i jbij; approaches like this are termed regularization, and
in this case L1 regularization. The parameter k controls the balance
between minimizing error, and minimizing the ‘coefficient cost’. The

method for implementing this approach is based on the R package
glmnetcr, which we have extended with an additional statistical
model.

The results of this procedure are: (i) a small and therefore inter-
pretable set of genes with non-zero coefficients; (ii) a pseudotime

value for each individual cell, obtained by multiplying the log gene
expression values by the vector of coefficients; and (iii) a set of val-

ues along the pseudotime axis indicating the thresholds between suc-
cessive sequential labels (these can then be used for classification of
new samples). Where the data do not have condition labels, psuper-

time can be combined with unsupervised clustering to identify rele-
vant processes (see Supplementary Results S3).

2.2 Pre-processing of data
To restrict the analysis to relevant genes and denoise the data, psu-
pertime first applies pre-processing to the log transcripts per million

values. Specifically, psupertime first restricts to highly variable
genes, as defined in the scran package in R, i.e. genes that show
above the expected variance relative to genes with similar mean ex-

pression (Lun et al., 2016). Genes that are only expressed in a small
number of cells (the default is 1%) are excluded. psupertime imple-

ment data denoising and dropout correction by calculating correla-
tions between the log expression values across all selected genes for
each pair of cells, using the correlations to identify the 10 nearest

neighbours for each cell and replacing the value for a given cell by
the mean value over these neighbours. Finally, the resulting log-

count values for each gene are scaled to have mean zero and stand-
ard deviation one.

2.3 Penalized ordinal logistic regression
psupertime applies cross-validated regularized ordinal logistic re-
gression to the processed data, using the labels as the sequence.
Ordinal logistic regression is an extension of binary logistic regres-
sion to an outcome variable with more than two labels, where the
labels have a known or hypothesized sequence. The likelihood for
ordinal logistic regression is defined by multiple simultaneous logis-
tic regressions, where each one models the probability of a given ob-
servation having an earlier or later label, with the definition of
‘early’/‘late’ differing across the simultaneous regressions (Fig. 1B).
The same linear combination of input variables is used across all in-
dividual logistic regressions. This specific model of ordinal logistic
regression, in which the simultaneous logistic regressions each seek
to separate labels 1 . . . k from labels kþ 1 . . . K, is termed propor-
tional odds. (A commonly used alternative is the continuation ratio
model, where the regressions seek to separate labels 1 . . . k from
label kþ1 alone. This is also implemented as an option in
psupertime.)

In the case where the number of input variables is high relative
to number of observations and may include many uninformative
variables, as is common in single-cell RNA-seq, it can be helpful to
introduce sparsity (i.e. to increase the number of zero coefficients).
psupertime uses L1 regularization to do this. Our approach is based
on that in the R package glmnetcr (Archer and Williams, 2012),
which reformulates the data and associated likelihood functions into
one single regression model, to take advantage of the fast perform-
ance of the glmnet package (Friedman et al., 2010). The model ori-
ginally implemented in glmnetcr is the continuation ratio likelihood;
we have extended this approach to implement the proportional odds
likelihood, as this model is more appropriate for assessing an entire
biological process. Under the proportional odds assumption, the
two categories are: categories j and higher, and categories lower
than j; the regression therefore estimates logðPðY >¼ jÞ=PðY < jÞÞ.
Under the continuation ratio assumption, the two categories are: j,
and categories lower than j; here, the regression estimates
logðPðY ¼ jÞ=PðY < jÞÞ. Intuitively, the proportional odds frame-
work models an observation’s global progression along the ordinal
values, while the continuation ratio framework models the probabil-
ity of proceeding to the next ordinal value. For most of the examples
that we have seen, such as studying development or ageing, the pro-
portional odds framework is appropriate. However, the continu-
ation ratio framework may be appropriate in some cases, for
example in disease progression, or evolutionary processes. Given in-
put data X 2 R

n�p and y 2 N
n condition labels (which for simplicity

we assume are integers), this results in the following cumulative dis-
tribution function for ordinal logistic regression:

Pðyi � jjXiÞ ¼ /ðhj � bTXiÞ ¼
1

1þ expðbTXi � hjÞ
:

Here, Xi and yi are the vector and integer corresponding to the
ith observation and label respectively, j indicates one of the possible
condition labels, b is the vector of coefficients and fhjg are the
thresholds between labels. / is the logit link function, which trans-
forms the linear combination of predictors into a probability. Note
that the probability given here is cumulative and that to calculate
the probability of an individual label, we have to calculate the differ-
ence between successive labels. This results in the following unpen-
alized likelihood:

Lðb; hjy;XÞ ¼
YN

i¼1

ð/ðhyi
� bTXiÞ � /ðhyi�1 � bTXiÞÞ;

where yi is the label of observation i. Including the L1 penalty, for a
given value of k, we obtain the optimal values of b and h by maxi-
mizing the following penalized objective function:

argmax
b;h

ðlog Lðb; hjy;XÞ � k
Xp

i¼1

jbijÞ:

psupertime uses cross-validation (with 5 folds as default) to identify

i292 W.Macnair et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac227#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac227#supplementary-data


the optimal level of L1 regularization: the optimal k is the value
with the highest mean score over all held-out folds (either accuracy
or cross-entropy may be selected as the score; the default is cross-
entropy). To increase sparsity, we use the highest value of k with
mean training score within one standard error of the optimal k, ra-
ther than take the optimal k itself [following Friedman et al.
(2010)]. The model is then retrained using all training data, with
this value of k, to obtain the best-fitting model.

Where psupertime is used to classify completely new data (e.g.
from a different experiment), to make the predictions more robust,
the cross-validation should take data structure into account (e.g.
selecting entire samples to be left out, rather than cells selected at
random).

2.4 Psupertime outputs
The psupertime procedure results in a set of coefficients for all input
genes (many of which will be zero) that can be used to project each
cell onto a pseudotime axis, and a set of cut-offs indicating the
thresholds between successive sequential labels (Fig. 1D). These can
be analysed in various useful ways.

The small, interpretable set of genes reported to have non-zero
coefficients permits both validation that the procedure has been suc-
cessful (by observation of genes known to be relevant to the process)
and discovery of new relevant genes. The magnitude of a coefficient
is a measure of the contribution of this gene to the cell ordering.
More precisely, for a gene i with coefficient bi, each unit increase in
log transcript abundance multiplies the odds ratio between earlier
and later labels by ebi . Where bi is small, a Taylor expansion indi-
cates this is approximately equal to a linear increase by a factor of
bi.

The thresholds indicate the points along the psupertime axis at
which the probability of label membership is equal for labels before
the cut-off, and after the cut-off. The distances between thresholds,
namely the size of transcriptional difference between successive
labels, are not assumed to be constant and are learned by psuper-
time. Distances between thresholds therefore indicate dissimilarity
between adjacent labels, and thresholds which are close together
suggest labels which are transcriptionally difficult to distinguish.

The learned geneset can also be used as input to dimensionality
reduction algorithms such as t-SNE or UMAP; this is discussed in
more detail in Supplementary Results S4.

Rather than learning a pseudotime for one fixed set of input
points, psupertime learns a function from transcript abundances to
the pseudotime. It can therefore be trained on one set of labels and
applied to new data with unknown or different labels: any data with
overlapping gene measurements can be assessed with regard to the
learned process. Furthermore, psupertime can be learned on two dif-
ferent datasets, with different labels, and then each applied to the
other dataset: the sequential labels from one dataset allow coeffi-
cients relevant to that sequence to be learned, which can then be
used to predict these labels for the second dataset. See
Supplementary Figure S23 for more discussion.

2.5 Simulations of single-cell RNA-seq data
psupertime is principally useful because it can identify genes which
vary over the course of time-series labels. To test this capability, we
simulated single-cell RNA-seq data to include three types of gene
profiles, defined in terms of their mean expression: mean varying as
a time series; sample-specific variation in the mean; and constant
mean expression. All genes have biological and technical noise
around this mean. This mimics the likely experimental setup, in
which the expression at each timepoint is composed of both proc-
esses related to the time series, and unrelated variability particular
to that sample, e.g. where the samples are derived from different
mice.

Our simulation procedure was as follows: (i) calculate relevant
statistics from a selected reference dataset, composed of multiple
labels, (ii) randomly sample latent time values for each cell, around
a common mean for the cell’s label, (iii) randomly assign one of the
three gene profile types to each gene and randomly sample some

parameters for each gene and (iv) sample counts for each cell and
gene based on the combination of cell- and gene-level parameters.
We discuss each of these steps in turn.

As a reference dataset, we used 575 mouse embryonic beta cells
(Qiu et al., 2017a), restricted to 2666 highly variable genes by the
procedure described in Lun et al., where the cells were labelled with
seven distinct time labels. The statistics used were library size for
each cell (i.e. the total number of reads observed) and the mean lg

and dispersion qg for each gene g (calculated using edgeR; Robinson
et al., 2010), assuming a negative binomial distribution. In each
simulation, the library sizes of cells were randomly permuted, and
the number of cells allocated to each label was randomly permuted.

To sample the latent time values for label i, li, we assumed an ex-
ponential distribution of time until the next timepoint. The first time
point label has mean value 0, then the time to each subsequent time-
point is drawn from an exponential distribution with rate 0.5 (i.e.
mean time difference of 2): lijli�1 � Expð0:5Þ þ li�1. To allow for
cell-to-cell variability, we then add Gaussian noise to the values for
each cell c, with mean 0 and standard deviation 1: tcjli � Nðli; 1Þ.
This results in a latent time value for each cell. We then scale these
values to have minimum 0 and maximum 1.

The three possible types of gene expression profile that we
defined were: time series; label-specific; and non-specific. Each gene
follows one of these profiles. Each gene has dispersion and base
mean expression defined by the reference dataset. The gene expres-
sion profiles were simulated as follows:

• Time-series genes have expression which changes with respect to

the latent time values for each cell, where the log fold change

relative to the mean follows a logistic curve. This curve is defined

by three values: t0, the curve’s midpoint; k, half the derivative of

the curve at that midpoint; and L, the asymptotic maximum

value of the curve. The log mean expression of this gene in a cell

with latent time value tc is therefore

logðlgÞ þ L � logisticððtc � t0Þ � kÞ. For each gene, we sampled t0
from a uniform distribution over ½0; 1�; k from a log10-normal

distribution with mean 1 and standard deviation 1; and L from a

gamma distribution with shape 4 and rate 2.
• Label-specific gene profiles are defined by two parameters: the

sample in which they show differential expression, and the log

fold change in that sample relative to the mean. For each gene,

we uniformly at random select a label, and sample the log fold

change from a gamma distribution with shape 4 and rate 2.
• Genes with non-specific expression are defined by the dispersion

and base mean identified from the reference dataset, and have no

difference in distribution across labels.

Each simulation has a defined set of proportions for each type of
gene profile, ðpts;plabel;pnonÞ. Each gene is randomly assigned one of
the types according to these probabilities.

We now have all the parameters required to sample counts for
each combination of cell and gene. The gene-level parameters define,
via the combination of base mean expression and possibly also a log
fold change relative to the base mean, the mean expression for a
given gene, plus its dispersion. The cell-level parameters define the
library size for each cell, which is used to scale the base mean. For
each cell and gene combination, we sample from the defined nega-
tive binomial distribution.

2.6 Simulations of single-cell RNA-seq data with cell

types
To simulate time-series data comprising multiple cell types, we used
fluorescence-activated cell-sorted stem cells at different stages of dif-
ferentiation (Koh et al., 2016), which had previously been used for
benchmarking (Duò et al., 2018). We assumed that genes had the
following four profile types: global time-series, cell-type time series,
batch effect and non-specific genes. Global time-series genes have
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the same timing and effect size on gene expression for all cell types;
cell-type time-series genes vary over time in all cell types, but the
timing and strength of effect are variable between cell types.
Specifically, we sampled the parameters defining the response to
time series in exactly the same way as for our previous simulations
(see Section 2.5); however, for globally varying genes, these parame-
ters were constant across cell types, while for cell-type varying
genes, these parameters were sampled independently for each cell
type. After simulating count data, we applied psupertime to each
cell type individually, and to all cell types grouped together.

2.7 Benchmarking of time-series gene identification

against classifiers
psupertime is a classifier that identifies a small subset of relevant fea-
tures. We therefore compared it to alternative classification meth-
ods, which also produce variable importance measures.

Multinomial regression is a simple baseline approach to classifi-
cation (Venables and Ripley, 2002). For each label, a linear logistic
regression is performed to distinguish label from non-label, resulting
in k coefficients for each gene. To identify relevant features, for each
gene, we calculate the sum of squares of the k coefficients; where a
gene is relevant for classifying many labels, or strongly relevant for
one label, it will have a large combined weight.

Random forest is a widely used classification algorithm that is
known to have good performance in many circumstances (Caruana
et al., 2008). One of the outputs produced by the algorithm is ‘im-
portance’, which is the (relative) mean increase in error when a given
variable is permuted. This can be used to identify which genes are
most critical to classification performance.

To assess performance, we simulated single-cell RNA-seq data
(as described in Section 2.5), assuming that mean gene expression
followed one of three possible profiles: time-series, label-specific or
a constant mean across labels. We varied the proportions of these
types of gene, so that the proportion of genes following time-series
profiles, pts, was 0.1, 0.3, 0.5, 0.7 or 0.9. The proportion of genes
following label-specific profiles, plabel, was between 0.1 and 1� pts.
The proportion of non-specific genes, pnon, accounted for the re-
mainder of genes.

For each triplet of distinct ðpts;plabel;pnonÞ values, we did 20 sim-
ulations starting from 20 different random seeds. For a given simula-
tion, applying psupertime and the benchmark methods resulted in
an ‘importance’ value for each gene. We used this variable to predict
time-series-specific genes, and calculated precision-recall curves for
each classifier on the basis of how successfully these values identified
the true time-series genes.

We note that due to different combinations of randomly selected
parameters, some time-series genes in the simulations will be easier
to detect and some more difficult. For example, a gene with low ab-
solute log fold change value L, and high dispersion q, will have a
poor signal-to-noise ratio for the detection of time-series trends.
This puts biologically realistic limits on the best performance pos-
sible for any algorithm, as for some genes any time-series trends will
be obscured by transcriptional variability. For this reason, and also

because psupertime is intended to identify a small set of genes, we
have restricted our analysis to values of recall between 0% and
10%.

2.8 Benchmarking of cell orderings against pseudotime

methods
Both psupertime and unsupervised pseudotime techniques produce a
cell ordering, which may or may not correlate with the label order-
ing. We compared psupertime against unsupervised pseudotime
methods, on five datasets with time-series labels (Table 1). We first
performed common pre-processing and identification of relevant
genes for each dataset, to identify either highly variable genes, or
genes showing high correlation with the label sequence. See
Supplementary Results S2 for further discussion.

To identify highly variable genes, we followed the procedure
described by Lun et al., using an false discovery rate (FDR) cut-off
of 10% and biological variability cut-off of 0.5 [see Lun et al.
(2016) for details of these parameters]. To identify genes showing
high correlation with the labels, we calculated the Spearman’s cor-
relation coefficient between sequential labels converted into inte-
gers, and log gene expression value. Genes with absolute correlation
>0.2 were selected.

For principle component analysis (PCA), we calculated the first
principal component of the log counts and used this as the pseudo-
time. Calculation of Monocle2 uses the following default settings:
genes with mean expression < 0:1 or expressed in <10 cells filtered
out; negbinomial expression family used; dimensionality reduction
method DDRTree; root state selected as the state with the highest
number of cells from the first label; function orderCells used to ex-
tract the ordering.

Calculation of slingshot uses the following default settings: first
10 PCA components used as dimensionality reduction; clustering via
Gaussian mixture model clustering using the R package mclust,
number of clusters selected by Bayesian information criterion; root
and leaf clusters selected as the clusters with highest number of cells
from the earliest and latest labels, respectively; lineage selected for
pseudotime is path from root to leaf cluster. Note: For cells very dis-
tant from the selected path, slingshot does not give a pseudotime
value. For these cells, we assigned the mean pseudotime value over
those that slingshot did calculate. Calculation of psupertime used
default settings, as described in Section 2.

We tested the extent to which each pseudotime method could
correctly order the cells by calculating measures of correlation be-
tween the learned pseudotime, and the sequential labels. Kendall’s s
considers pairs of points and calculates the proportion of pairs in
which the rank ordering within the pair is the same across both pos-
sible rankings.

To identify genes with high correlation with the sequential con-
dition labels (Supplementary Table S1), we treated the sequential
labels as the set of integers 1; . . . ;K, calculated the Spearman correl-
ation coefficient with the gene expression. Genes were selected that
showed absolute correlation of >0.2 with the sequential labels (few
genes showed high correlation with the sequential labels; this low

Table 1. Details of datasets used in benchmarking of pseudotime cell orderings

Dataset name Source Accession Labels used No. of labels No. of cells No. of highly varying genes

Acinar cells Enge et al. (2017) GSE81547 Donor age 8 411 827

Human germline, F Li et al. (2017) GSE86146 Age (weeks) 12 992 1081

Embryonic beta cells Qiu et al. (2017a) GSE87375 Developmental

stage

7 575 2666

Human ESCs Petropoulos et al. (2016) E-MTAB-3929 Embryonic day 5 1529 2876

MEF to neurons Treutlein et al. (2016) GSE67310 Days since

induction

5 315 1698

Colon cells Herring et al. (2017) GSE102698 User-selected

clusters

4, 5 1894 1515

iPSCs Schiebinger et al. (2019) GSE106340 Days during

reprogramming

11 3600 731
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cut-off was used to ensure that a sufficient number of genes was
selected).

2.9 Identification of relevant biological processes
To identify biological processes associated with the condition labels,
psupertime first clusters all genes selected for training (e.g. the de-
fault highly variable genes), using the R package fastcluster, using
five clusters by default. These are ordered by correlation of the
mean expression values with the learned pseudotime, i.e. approxi-
mately into genes that are up- or down-regulated along the course of
the labelled process. psupertime then uses topGO to identify bio-
logical processes enriched in each cluster, relative to the remaining
clusters; enriched GO terms are calculated using algorithm ¼
‘weight’ and statistic ¼ ‘fisher’ (Alexa and Rahnenführer, 2009).

3 Results

psupertime produces as output a set of ordering coefficients, one for
each gene, most of which are zero (i.e. the coefficient vector is
‘sparse’). A non-zero ordering coefficient indicates that a gene was
relevant to the label sequence. This balances the requirement for
predictive accuracy against that for a small and therefore interpret-
able set of genes. For example, applied to the acinar cells, psuper-
time used 82 of the 827 highly variable genes to attain a test
accuracy of 83% over the eight possible labels (Supplementary Fig.
S1). Many of the genes identified via their absolute coefficient values
are already known to be relevant to the ageing of pancreatic cells
(see expression profiles shown in Fig. 1E, Supplementary Figs. S2
and S3). For example, clusterin (CLU) plays an essential role in pan-
creas regeneration and is expressed in chronic pancreatitis (Lee
et al., 2011; Xie et al., 2002); a-amylase (AMY2B) is a characteristic
gene for mature acinar cells, encoding a digestive enzyme (Omichi
and Hase, 1993). In addition, psupertime suggests candidates for
further study: ITM2A has the highest absolute gene coefficient and
is highly differentially regulated in a model of chronic pancreatitis,
but has not been investigated in acinar cells (Ulmasov et al., 2013).
The genes identified by psupertime were not discussed in the source
manuscript, and, importantly, would not be found by naively calcu-
lating correlations between the sequential labels and gene expression
(see Supplementary Results S2).

GO term enrichment analysis provides further support for the
validity of the cell ordering identified by psupertime. We clustered
the expression profiles of the highly variable genes and identified
GO terms characteristic of each cluster (see Section 2). This proced-
ure identified genes related to digestion as being up-regulated in
early ages (‘proteolysis’ and ‘digestion’ enriched in cluster 1), and
terms related to ageing later in the process (‘negative regulation of
cell proliferation’ and ‘positive regulation of apoptotic process’
enriched in cluster 5; see Supplementary Figs. S4 and S5). This ana-
lysis confirms that the cell ordering learned by psupertime is
plausible.

To compare psupertime to other classifiers, we simulated single-
cell RNA-seq data to contain genes that vary over time, and also
genes with other profiles (see Section 2.5). We compared psuper-
time’s performance against two benchmark classification methods,
which also identify relevant features: multinomial regression, as a
simple baseline approach to classification (Venables and Ripley,
2002) and a popular classification algorithm that performs well
under many circumstances (Caruana et al., 2008). Both classifiers
give measures of importance for each variable (see Section 2); we
used these to determine how well the classifiers identified time-series
genes. We found that the coefficients identified by psupertime iden-
tify time-series genes more precisely than the benchmark classifiers
(Fig. 2D, Supplementary Fig. S6). In addition, psupertime is able to
recapitulate the true latent time values of the cells (Supplementary
Fig. S7). The other classifiers assume no structure across the labels
and identify any gene which is helpful for distinguishing one label
from another; this results in them also identifying genes with
sample-specific rather than time-varying variation. The model for

psupertime assumes and therefore identifies genes that vary coher-
ently over the timepoint labels.

Unsupervised projection techniques are commonly applied to
analyse time-series single-cell RNA-seq data. We therefore com-
pared the cell-level orderings identified by psupertime with those
from three alternative, unsupervised pseudotime techniques: projec-
tion onto the first PCA component, as a simple, interpretable base-
line; Monocle 2 (Qiu et al., 2017b), which is widely used, shown to
perform well in a benchmark study (Saelens et al., 2019) and per-
mits the selection of a starting point; and slingshot (Street et al.,
2018), which was also shown to perform well (Saelens et al., 2019)
and allows both the start and end point of a trajectory to be selected
(it is therefore semi-supervised). Applied to the acinar cells, low-
dimensional embeddings of the data (including PCA) indicate that
while donor-specific factors account for much of the variation, very
little transcriptional variation is related to age (Fig. 2A and B;
Supplementary Fig. S8). Acinar cell orderings identified by the
benchmark methods are not consistent with the known label se-
quence (Fig. 2C and E). In contrast, the one-dimensional projection
learned by psupertime (Fig. 2C) successfully orders the cells by
donor age (Kendall’s s correlation coefficient 0.86, which quantifies
the concordance between two orderings), while providing a sparse
interpretable gene signature related to age.

In addition to the acinar cells, we compared psupertime to the
three alternative methods on four further datasets, as specified in
Table 1. The correlation of the orderings from the benchmark meth-
ods with the labels varies considerably depending on the dataset
(Supplementary Table S2), and in particular, depending on the ex-
tent of variation unrelated to the labels (Supplementary Fig. S8):
both Monocle 2 and PCA show Kendall’s s values of 0.12 or below
for the human germline dataset (Li et al., 2017; Supplementary Fig.
S9), in comparison to values of at least 0.71 for the human embryon-
ic stem cells (ESCs) dataset (Petropoulos et al., 2016; Supplementary
Fig. S10). In all datasets considered, the cell ordering given by psu-
pertime has a higher correlation with the known label sequence than
the other pseudotime methods (Fig. 2E). The pseudotime methods
used for comparison do not use the timepoint label as input, so it is
not surprising that psupertime is better able to recapitulate the label
orderings. However, considering that unsupervised methods are fre-
quently used to analyse time series and other ordered data, this com-
parison is relevant for users. Where genes and processes associated
with time labels are the primary interest, our analysis shows that un-
supervised techniques alone are not appropriate (see also
Supplementary Results S6).

Many datasets comprise samples composed of multiple distinct
cell types. In a time-series experiment, this could in principle make it
more difficult for psupertime to identify relevant genes: time-related
signal for one cell type could be diluted when cell types are analysed
together. To test this, we generated synthetic time-series data from
multiple cell types, modelling genes that varied over time both glo-
bally, and individually within cell types (see Section 2.6). We found
that psupertime is best able to identify globally varying genes when
applied to all cell types together, and best able to identify cell-type-
specific genes via application to each cell type individually (see
Supplementary Results S5). In addition, we applied psupertime to a
biological dataset comprising multiple distinct trajectories leading to
different cell fates, specifically reprogramming mouse embryonic
fibroblast cells (MEFs) to induced pluripotent stem cells (iPSCs;
Schiebinger et al., 2019). We identified two clear branches
(Supplementary Fig. S20): one branch corresponding to reprogram-
ming from MEFs to iPSCs, and one to reprogramming from MEFs
to stromal cells. We then applied psupertime three times: to the en-
tire dataset; to the iPSC branch; and to the stromal branch. In each
case, we trained psupertime using the experimental days as labels.
psupertime identified relevant genes for the global process (e.g.
Dppa5a; Lee et al., 2014), for reprogramming to iPSCs (e.g. Cd24a;
Shakiba et al., 2015) and for reprogramming to non-pluripotent
cells (e.g. Xist; Minkovsky et al., 2012; Supplementary Fig. S21).
Taken together, these results show that sensible use of psupertime
can identify both globally varying and cell-type-specific time-
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Fig. 2. Performance of psupertime against benchmark methods. See Section 2.8 for details of data processing and use of benchmark methods. All results for (A–C) based on

411 aging human acinar cell data with ages ranging from 1 to 54 (Enge et al., 2017), using 827 highly variable genes. Colours indicate donor age. (A) Projection of acinar cells

into first two principal components (% of variance explained shown). Curves learned by slingshot shown (note that here we show the projection of these curves into the first

two principal components). (B) Projection of acinar cells into dimensionality reduction calculated by Monocle 2, annotated with pseudotime learned by Monocle 2 (Qiu et al.,

2017b). (C) Results of benchmark pseudotime methods applied to acinar data. For each method, the x-axis is a one-dimensional representation for each cell (see Section 2.8),

scaled to ½0; 1� and given the direction with the highest positive correlation with the label sequence. The y-axis is density of the distributions for each label used as input, as cal-

culated by the function geom_density in the R package ggplot2. (D) Performance of psupertime and benchmark classifiers in identifying simulated time-series genes. Precision-

recall curves based on identification of time-series genes via variable importance measures for each method (see Section 2.7). Line and area show mean and 62 standard error,

respectively, over 20 simulations. Recall is limited to range 0–10%. Panels correspond to simulations with different proportions of time-series (TS) genes; all panels include

10% batch effect genes which are sample-specific. (E) Absolute Kendall’s s correlation coefficient between label sequences (treated as sets of integers 1; . . . K) and calculated

pseudotimes. Error bars show 95% confidence interval over 1000 bootstraps, calculated with boot package in R. For Tempora, this calculation was performed using scipy

package in python. Datasets are specified in Table 1
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varying genes. (Details of both analyses are given in Supplementary
Results S5.)

Typical workflows for single-cell RNA-seq data first restrict to
highly variable genes. If the data are instead first restricted to genes
that correlate strongly with the sequential labels, the relative per-
formance of the benchmark methods might improve. Despite the se-
lection of genes that correlate with the labels, psupertime
consistently outperforms unsupervised methods in terms of identify-
ing individual cell orderings (Supplementary Results S2). This illus-
trates that the genes identified by psupertime as most relevant to the
process are not necessarily those with highest correlation; for ex-
ample, genes with expression profiles like AMY2B in Figure 1E
show a non-linear, step-like expression profile, which results in a
correlation of 0.11 with the condition labels. Despite low correl-
ation, such genes were nonetheless found to be useful for cell order-
ing and suggest that psupertime discovers meaningful non-linear
structure in the data.

The time taken for psupertime to run varies over the five test
datasets from 4 s for a dataset with �300 cells, to 32 s for one with
�1500 cells (Table 2). We empirically observe a linear runtime de-
pendency for the dataset size in terms of number of cells (�5 min/
10k cells). While maintaining classification accuracies of between
43% and 98%, psupertime uses a small set of genes: for example,
for a classification accuracy of 76% on 10% of the acinar cells held
out for testing, psupertime uses 10% of the input genes (Table 2).
psupertime is based on a form of penalized linear regression. We
show that the ordinal logistic model, rather than a linear model
based on regarding the sequential labels as integers, is both the nat-
ural and the best-performing model for this problem (see
Supplementary Results S2).

4 Discussion

The number of studies using single-cell RNA-seq is increasing expo-
nentially (Saelens et al., 2019), and many of these include time-series
labels. psupertime is explicitly designed to take advantage of such a
setting, complementing unsupervised pseudotime techniques. The
presence of time-series labels allows a simple, regression-based
model to identify relevant cell orderings; here, the more sophisti-
cated pseudotime approaches required for unlabelled data identify
the principal variation in the data, rather than that associated with
the labels. The potential asynchrony of dynamic processes is
expected to affect classification performance. Specifically, we expect
the misclassification rate to increase with stronger asynchrony.
While poor classification performance can have other causes than
asynchrony, we recommend to consider asynchrony as a possible
cause for poor psupertime classification performance and to resort
to other dedicated tools/experiments to investigate possible asyn-
chrony. psupertime uses L1 regularization to obtain a small set of
reported genes. However, this may result in exclusion of other rele-
vant genes: where there are multiple highly correlated genes that are
predictive of the sequential labels, L1 regularization will tend to re-
sult in only one of these genes being reported, and produce zero
coefficients for other correlated genes. This issue can be addressed
by calculating the psupertime ordering, and reviewing all genes that
have high correlations with the genes identified by psupertime.
Alternatively, a simple extension to psupertime would allow training

with a combination of L1 and L2 penalties (the elastic net), resulting
in a compromise between sparsity and prediction performance. psu-
pertime could possibly benefit from alternative normalization tech-
niques, such as regularized negative binomial regression resulting in
Pearson residuals (Butler et al., 2018), as well as combination with
RNA velocity-based pseudotime (Bergen et al., 2020). psupertime is
applicable to any experimental design with sequential labels, most
obviously time series but also to biological questions regarding drug
dose–response, and disease progression. psupertime could further be
used in situations without experimental labels by combining with
unsupervised techniques (see Supplementary Results S3) or to align
new data to orderings learned from alternative processes or separate
lineage branches (see Supplementary Results S5 and Figs. S19–S22).
More broadly, we have used it to improve dimensionality reduction
(see Supplementary Results S4) and are developing extensions
including to additional single-cell technologies such as mass cytome-
try (see Supplementary Results S6). This demonstrates the potential
of ordinal regression models for further methodological develop-
ments. psupertime has wide applicability and will enable quick and
effective identification of the genes and profiles relevant to state
sequences of biological processes in single-cell RNA-sequencing
data. We have developed an R package available for download at
github.com/wmacnair/psupertime.
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