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Abstract

Motivation: Breast cancer is a type of cancer that develops in breast tissues, and, after skin cancer, it is the most
commonly diagnosed cancer in women in the United States. Given that an early diagnosis is imperative to prevent
breast cancer progression, many machine learning models have been developed in recent years to automate the
histopathological classification of the different types of carcinomas. However, many of them are not scalable to
large-scale datasets.

Results: In this study, we propose the novel Primal-Dual Multi-Instance Support Vector Machine to determine which
tissue segments in an image exhibit an indication of an abnormality. We derive an efficient optimization algorithm
for the proposed objective by bypassing the quadratic programming and least-squares problems, which are com-
monly employed to optimize Support Vector Machine models. The proposed method is computationally efficient,
thereby it is scalable to large-scale datasets. We applied our method to the public BreaKHis dataset and achieved
promising prediction performance and scalability for histopathological classification.

Availability and implementation: Software is publicly available at: https://1drv.ms/u/s!AiFpD21bgf2wgRLbQq08ix
D0SgRD?e=OpqEmY.

Contact: huawangcs@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Every year, approximately 250 000 women in the United States are
diagnosed with breast cancer (CDC, 2020). Differentiating between
the different types of carcinomas (ductal, lobular, mucinous and
papillary) is essential for making an accurate diagnosis.
Histopathology allows for this close examination that leads to
patients receiving a personalized treatment and can increase their
likelihood of survival. Histopathology is the examination of tissue
sections with a microscope to aid in the diagnosis of illnesses such as
cancer and inflammatory diseases and increase the likelihood of sur-
vival. These tissue sections can also be called whole-slide images
(WSIs) or histopathological images when they are digitized.
Traditionally, clinical disciplines such as radiology and pathology
have relied heavily on specialized training to detect the presence of
these diseases in histopathological images. A diagnosis is based on
features exhibited by tissue samples on a cellular level. An anomaly
in the cell architecture and the presence or absence of certain bio-
logical attributes can be strong indicators of a particular disease. For
example, abnormal cells that divide uncontrollably, also known as
carcinomas, lead to a cancer diagnosis when detected. A pathologist
can detect this abnormal growth/tumor from a histopathological
image and assess which regimen should be prescribed to halt the
progression of the disease. This pattern analysis is an essential com-
ponent of precision medicine, since it makes a diagnosis based on
patient-specific histopathological images.

Modern medical procedures and technologies have increased the
number of biopsies performed, and consequently, the number of

histopathological images collected has increased far beyond the rea-
sonable workload of pathologists (van der Laak et al., 2021). This
poses an impediment to precision medicine, since it requires the ana-
lysis of vast amounts of medical data. However, recent advancements
in the field of artificial intelligence have shown promise in automating
the analysis of histopathological images and improving the accuracy
and speed of a diagnosis. Just as a pathologist finds patterns that help
detect cellular abnormalities, algorithms can be used to extract fea-
tures from an image such as pixel intensity (Hamilton et al., 2007),
texture (Haralick, 1979) and Zernike moments (Khotanzad and
Hong, 1990). The application of computational algorithms to diag-
nostic fields can aid pathologists in drawing accurate and precise con-
clusions in an efficient and reproducible manner (Gurcan et al., 2009).

In our research, we focused our analysis efforts on developing a
classification model for the public BreaKHis dataset (Spanhol et al.,
2015), which is composed of 7909 histopathological images of dif-
ferent types of benign and malignant breast cancer tumors. This
dataset has been instrumental in our work, since its structure allows
for extensive and precise classification of histopathological images.
The dataset is split into benign and malignant categories, and these
are further subdivided into different types of carcinomas. The WSIs
in each tumor type group are then amplified to four different magni-
fication factors, and they are usually segmented into the patches be-
cause of their large size. As a result, the classification problem is
naturally formulated as a multi-instance learning (MIL) problem
(Brand et al., 2021a,b; Wang et al., 2011) to determine which seg-
ments of tissue in an image exhibit an indication of an abnormality.
MIL is an area of machine learning in which training and testing
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data are organized into sets of instances known as bags. MIL is a
weakly supervised learning algorithm, which means that the data
are frequently provided at the bag level instead of the instance level,
therefore clinicians do not need to spend a lot of resources into char-
acterizing each image in the training dataset obtained from a biopsy.
Doctors only need to label/diagnose the bag or patient as malignant
and benign, and the rest of the instances or histopathological images
follow suit. Despite being a very powerful approach, MIL remains a
challenging problem as many standard machine learning approaches
rely on fixed-length vector input which are not applicable to the
dataset with a varying number of instances per bag. At the same
time, MIL models should be translation invariant against the instan-
ces of each set input; the prediction of model should not be affected
by the order of instances. In our work, breast cancer histopatho-
logical images are represented by a bag (set) of patches, as illustrated
in Figure 1. The bags, or images, are labeled as either malignant or
benign while the instances, or patches, remain unlabeled (Brand
et al., 2021a,b; Wang et al., 2011). Taking these facts into account,
we propose the Primal-Dual Multi-Instance SVM (pdMISVM)
method (Brand et al., 2021a), which improves the efficiency of opti-
mization compared to the previously mentioned MIL approaches.

1.1 Related works
To ease the heavy workloads of pathologists, Computer Aided
Diagnostics (CAD) has emerged to determine whether an image shows
any indication of carcinoma and, if so, where the abnormality is
located within the histopathological image. One of the widely used
approaches is to use Convolutional Neural Networks (CNNs) trained
by the patches extracted from WSIs. CNN is the combination of con-
volutional layers and consecutive fully connected layers and their con-
cept comes from the working principle of receptive fields and neurons
of the human eye and brain. Krizhevsky et al. (2012) has shown that
the deep structure of the CNN can achieve state-of-the-art performance
in image recognition tasks. Their model, AlexNet, has been successfully
applied to BreakHis by Titoriya and Sachdeva (2019). However, CAD
based on the CNNs still faces obstacles, because training a CNN
requires a large amount of training data with the big computational

burdens. These requirements make it difficult for predictive models to
be combined with the CAD systems. The SVM applications as a prac-
tical alternative to deep learning models has also been studied (Zheng
et al., 2014). For example, SVM with sparsity inducing regularization
(Kahya et al., 2017) can achieve the promising accuracy higher than
90% in image classification. Although SVM models have fewer train-
able parameters than deep learning models, and therefore require less
time and computational cost to train, their training time and computa-
tional complexity increases rapidly as the number of input features
increases (Kumar and Rath, 2015; Peng et al., 2016). Another problem
of the traditional SVM models is that they are single-instance learning
(SIL) models, i.e. they are not able to handle the varying number of in-
put instances, while the WSIs are usually segmented into the multiple
patches (instances) because of the large size of WSIs.

In light of the above issue, multiple instance learning would be the
better choice for the disease detection applications, and these types of
algorithms have also been evaluated on the BreaKHis dataset previous-
ly. This is because, in a SIL model, classification becomes difficult
when a single patch of insignificant region on the image is given.
Meanwhile, MIL models enable the correct classification from some
important patches, even if most patches do not include indication of
carcinoma. To deal with the multi-instance dataset, several MIL meth-
ods have achieved satisfactory results in the past when performing simi-
lar tasks especially on the BreaKHis dataset (Sudharshan et al., 2019).
For example, Multiple Instance Learning Convolutional Neural
Networks (MILCNN) (Sudharshan et al., 2019) take a deep learning
approach while others opt for an SVM-based multiple instance learning
alternative. Some examples are Multi-Instance Support Vector
Machine (MISVM) (Andrews et al., 2002), sparse Multi-Instance
Learning (sMIL) and sparse balanced MIL (sbMIL) (Bunescu and
Mooney, 2007), and Normalized Set Kernel (NSK) and Statistics
Kernel (STK) (Gärtner et al., 2002). These are all methods that have
been deemed successful at correctly labeling the bags in the testing
dataset as either malignant or benign. However, despite the promising
performance of MIL models, we point out that there is a lack of discus-
sions on the scalability of MIL models or they do not scale to the large
dataset. In addition, it is difficult to efficiently learn the hypothesis
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Fig. 1. A visualization of our processing pipeline for our MIL algorithm applied to the BreaKHis dataset. We sample the patches (instances) from the histopathological images

(bags) of four different magnification levels, and process the patches with PFTAS method which results in d-features vectors of ni instances for each image. Finally, our multi-

instance SVM classify the bags as malignant or benign

Scaling multi-instance SVM to breast cancer detection i93



space of MIL models which involves with the multiple instances (Wei
et al., 2014). Unlike the previous existing algorithms, our approach
scales well to larger datasets, which adds to its value for practical use.

1.2 The paper organization
In the remainder of this manuscript, we present an objective and asso-
ciated solution of the novel pdMISVM that extends to large-scale
data. We derive the optimization algorithm based on the multi-block
alternating direction method of multipliers (ADMM) (Hong and Luo,
2017) to bypass the quadratic programming problem that comes
from the typical SVM and MISVM models. We further improve the
ADMM derivation to decrease the complexity with respect to the
large number of features. Lastly, we provide an application of the
proposed method to classify the bag of patches and identify disease
relevant patches, which can reduce the workload of pathologists.

2 Materials and data sources

We perform classifications on the publicly available BreaKHis dataset
(https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-
database-breakhis/). The BreaKHis dataset was built in collaboration
with the P&D Laboratory in Parana, Brazil. BreaKHis was first intro-
duced in ‘A Dataset for Breast Cancer Histopathological Image
Classification’ by Spanhol et al. (2015). The dataset comprises 7909
microscopic biopsy images of breast tumor tissue images collected in
a clinical study from January 2014 to December 2014. The dataset
contains 2480 benign and 5429 malignant tissue samples. The images
were collected using different magnifying factors (40�, 100�, 200�
and 400�), and they were organized into these categories in the data-
set. The samples were acquired from 82 patients whose data were
anonymized. Samples were generated from breast tissue biopsy slides,
stained with hematoxylin and eosin (HE) and collected by surgical
open biopsy (SOB). They were labeled in the P&D Laboratory, and
the diagnosis of each slide was determined by experienced patholo-
gists (Spanhol et al., 2016).

We segment the histopathological images into patches. In our
experiments, each patch contains a 64�64 section of pixels and we
extracted a random number (sampled from f1, 5, 10g) of patches for
each of the images. However, in the raw tissue segments, the elements
of interest such as nuclei may not be clearly visible. In light of this issue,
we extract the feature vector through Parameter Free Threshold
Statistics (PFTAS) (Hamilton et al., 2007) for each patch. Based on ex-
perimental results of previous study (Spanhol et al., 2015), PFTAS out-
performs the other features such as Local Binary Patterns (LBP) (Ojala
et al., 2002), Completed LBP (CLBP) (Guo et al., 2010), Local Phase
Quantization (LPQ) (Ojansivu and Heikkilä, 2008) and Grey-Level
Co-occurrence Matrix (GLCM) (Haralick et al., 1973) in BreaKHis
dataset. PFTAS is a method that extracts texture features by counting
the number of black pixels in the neighborhood of a pixel. The total
count for all the pixels in a given image is stored in a nine-bin histo-
gram (Hamilton et al., 2007). The thresholding is done by Otsu’s algo-
rithm (Otsu, 1979) and the extractor returns a 162-dimensional feature
vector. The 162 features consist of 3 channels (RGB) � 9 pixels � 3
thresholding ranges concatenated with its bitwise negated version. The
Otsu’s algorithm iteratively finds the optimal threshold value by maxi-
mizing the inter-class intensity variance. As a result, PFTAS features
are robust against the varying mean of intensity distribution for each
RGB channel across images. To control the number of features, we
concatenate several patches, and the final number of features is a mul-
tiple of 162. In our experiments, 7909 bags (images) are involved, of
which 5429 are malignant and 2480 are benign.

3 Methods

In this section, we develop an objective for the scalable pdMISVM
algorithm designed to handle multi-instance data. Our formulation
for pdMISVM provides an efficient solution to avoid dependency on
a quadratic programming or least-squares approach.

3.1 Notation
In this article, we denote matrices as M, vectors as m and scalars as
m. The ith row and jth column of M are mi and mj, respectively.
Similarly, mi

j is the scalar value indexed by the ith row and jth col-

umn of M. The matrix Mp corresponds to the pth column-block of
M. Each bag Xi ¼ fx1

i ; . . . ; xni

i g contains ni patches and its associ-

ated label of mth class is represented by ym
i 2 f�1; 1g.

3.2 A primal-dual multi-instance support vector machine
The K class multi-instance support vector machine was proposed by
Andrews et al. (2002), which solve the following objective:

min
W;b

1

2

XK

m¼1

jjwmjj22

þ C
XN
i¼1

XK

m¼1

ð1� ½maxðwT
mXi þ 1bmÞ �maxðwT

y Xi þ 1byÞ�ym
i Þþ;

(1)

where ð�Þþ ¼ maxð�; 0Þ and its decision function is given by:

~yi ¼ argmax
m0

ðmaxðWTXi þ b1iÞm
0
Þ; (2)

as illustrated in Figure 2.
The MISVM objective in Equation (1) is generally difficult to

solve because of the coupled primal variables wk, bm by the maxð�Þ
operations. Inspired by Nie et al. (2014) and Wang and Zhao
(2017), we split the primal variables in Equation (1) via the ADMM

approach by introducing the following constraints:

minW;b;E;Q;R;T;U

1

2

XK

m¼1

jjwmjj22 þ C
XN
i¼1

XK

m¼1

ðym
i em

i Þþ
subject to em

i ¼ ym
i � qm

i þ rm
i ; qm

i ¼ maxðtm
i Þ;

rm
i ¼ maxðum

i Þ; tm
i ¼ wT

mXi þ 1bm;
um

i ¼ wT
y Xi þ 1by:

(3)

From Equation (3) we derive the following augmented

Lagrangian function:

Ll ¼
1

2

XK

m¼1

jjwmjj22 þ
XN
i¼1

XK

m¼1

Cðym
i em

i Þþ

þl
2

XN
i¼1

XK

m¼1

h�
em

i � ðym
i � qm

i þ rm
i � km

i =lÞ
�2

þ
�

qm
i �maxðtm

i Þ þ rm
i =l

�2

þjjtm
i � ðwT

mXi þ 1bmÞ þ hm
i =ljj

2
2

þ
�

rm
i �maxðum

i Þ þ xm
i =l

�2

þjjum
i � ðwT

y Xi þ 1byÞ þ nm
i =ljj

2
2

i
;

(4)

where W; b;E;Q;T;R;U are the primal variables, K;R;H;X;N are

the dual variables, and l > 0 is a hyperparameter.

3.3 The solution algorithm
In this section, we derive the efficient solution algorithm to minimize
the proposed objective in Equation (4). In Algorithm 1, we repeat

the primal-dual updates until the gap in constraints from the aug-
mented Lagrangian terms in Equation (4) becomes smaller than a
predefined tolerance. In order not to distract reading attention and

due to space limit, we only provide the derivation details for the
class-hyperplane in wm and bm for each mth class in the main article,

and leave the derivations for the other variables in the online
Supplementary Appendix of this article.

b update. By differentiating Equation (7) element-wise with respect
to bm and setting the result equal to zero, we have the following update:
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bm ¼ argmin
bm

XN
i¼1

h
jjtm

i � ðwT
mXi þ 1bmÞ þ hm

i =ljj
2
2

i

þ
XN0

i0¼1

XK

m0¼1

h
jjum0

i0 � ðwT
mXi0 þ 1bmÞ þ nm

i0 =ljj
2
2

i
;

(5)

where i0 indicates the column blocks that belong to the mth class are
chosen from X. Taking the derivative of Equation (5) with respect
to bm, setting the derivative equal to zero, and solving for bm gives:

bm ¼

XN
i¼1

½tm
i �wT

mXi þ hm
i =l� þ

XN0

i0¼1

XK

m¼1

½um
i0 �wT

mXi0 þ nm
i0 =l�

N þ KN0
;

(6)

where N0 is the total number of patients belonging to the mth
class.

W update (without kernel). We discard all terms in Equation (4)
which do not include W and optimize the columns of W separately
by solving the following K problems for m ¼ 1; . . . ;K:

w�m ¼ argmin
wm

1

2
jjwmjj22 þ

l
2

XN
i¼1

h
jjtm

i � ðwT
mXi þ 1bmÞ þ hm

i =ljj
2
2

i

þ
XN0

i0¼1

XK

m0¼1

hl
2
jjum0

i0 � ðwT
mXi0 þ 1bmÞ þ nm0

i0 =ljj
2
2

i
;

(7)

where N0 is the number of bags which belongs to mth class, and i0

denotes the indices of column blocks of X and the corresponding
columns of U and N. Finally tm

i ; hm
i ; um0

i0 and nm0

i0 are row vectors cor-
responding to the ith bag and mth class in T, H, U and N. By letting
the derivative of Equation (7) with respect to wm equal zero, we at-
tain the following closed form solution:

ðw�mÞ
T ¼

�XN
i¼1

h
ðtm

i � 1bm þ hm
i =lÞXT

i

i

þ
XN0

i0¼1

XK

m0¼1

h
ðum0

i0 � 1bm þ nm0

i0 =lÞXT
i0

i�

�
�

I=lþ
XN
i¼1

XiX
T
i þK

XN0

i0¼1

Xi0X
T
i0

��1

:

(8)

In the calculation of Equation (8) we can avoid an inverse calcu-
lation through a least-squares solver.

W update (with kernel). The kernel method (Shawe-Taylor et al.,
2004) is widely used in classification tasks to deal with non-linearity
of the data. We provide the kernel extension of our method to
learn the non-linear relationship between bag and target label.
For the arbitrary (possibly non-linear) kernel function /, we map
all the columns (instances) of Xi 2 R

d�ni to feature vectors
/ðXiÞ ¼ Ui 2 R

dz�ni , and Equation (7) can be rewritten into:

w�m ¼ argmin
wm

1

2
jjwmjj22 þ

l
2

XN
i¼1

h
jjtm

i � ðwT
mUi þ 1bmÞ þ hm

i =ljj
2
2

i

þ
XN0

i0¼1

XK

m0¼1

hl
2
jjum0

i0 � ðwT
mUi0 þ 1bmÞ þ nm0

i0 =ljj
2
2

i
:

(9)

We take the derivative with respect to wm and set it equal to zero
to solve for wm:

ðw�mÞ
T ¼

�
½ðtm � 1bm þ hm=lÞUT � þ

XK

m0¼1

½ðum0

0

�1bm þ nm0

0 =lÞUT
0 �
�
� ðI=lþUUT þ KU0UT

0 Þ
�1;

(10)

where U ¼ ½U1; . . . ;UN � 2 R
dz�Nt and U0 ¼ ½U10 ; . . . ;UN0 � 2 R

dz�N0t .

Here Nt ¼
PN
i¼1

ni and N0t ¼
PN0
i0¼1

ni denote the total number of instances

which belongs to all classes and mth class respectively, and U0 contains
the N0 column blocks of U corresponding to the mth class.

However, the dimensionality dz of feature vectors U of kernel func-
tion can be very large (possibly infinitely large), thus calculating
ðI=lþUUT þ KU0UT

0 Þ
�1 in Equation (10) may not be computational-

ly feasible. In order to derive the scalable solution against arbitrary ker-
nel function, we rewrite Equation (10) into the following matrix form:

ðw�mÞ
T ¼ smDÛ

T � ðI=lþ ÛDÛ
TÞ�1; (11)

where sm ¼ ½tm � 1bm þ hm=l; 1=K
PK

m0¼1

ðum0
0 � 1bm þ nm0

0 =lÞ�;

D ¼ ½I; 0; 0; KI� and Û ¼ ½U; U0 �. Then we can apply the following
kernel trick (Welling, 2013) to Equation (11):

ðP�1 þmTR�1mÞ�1mTR�1 ¼ PmTðmPmT þ RÞ�1;

which gives:

Fig. 2. An illustration for the objective in Equation (1). In our model, each patch corresponds to each instance in a bag. We first calculate the distance from the hyperplane of

each mth class to the farthest instance, which is the key instance triggering the bag label. By minimizing Equation (1), we optimize W and b of the hyperplanes so that the dis-

tance to the hyperplane of the correct class (m¼ y) is greater than the distance to the hyperplane of the incorrect (m 6¼ y) class
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ðw�mÞ
T ¼ smðÛ

T
ÛþD�1=lÞ�1Û

T
: (12)

In Equation (12), we avoid to compute the feature vectors U in the
possibly large dimensionality dz. Instead we need to compute the

inner product of feature vectors Û
T
Û 2 R

ðNtþN0tÞ�ðNtþN0tÞ which is

usually more efficient than directly computing UUT 2 R
dz�dz .

The algorithm to solve the proposed objective in Equation (4) is
summarized in Algorithm 1.

3.4 Avoiding calculations of the least-squares problems
As can be seen in Equation (8), the update for wm is reliant on solv-
ing a least squares problem in every iteration. However, the least
squares solver has complexity OðNd2Þ and will have to be solved
every iteration which may not be computationally feasible if the
number of features d is very large. To avoid this problem we can in-
stead utilize an optimal line search method (Nie et al., 2014) and up-
date wm via gradient descent:

wm ¼ wm � smrwm
; (13)

where rwm
is the analytical gradient of Equation (4) with respect to

wm:

rwm
¼ wm � lXi

XN
i¼1

½tm
i �wT

mXi � 1bm þ hm
i =l�

T

�lXi0
XN0

i0¼1

XK

m0¼1

½um0

i0 �wT
mXi0 � 1bm þ nm0

i0 =l�
T ;

(14)

and it can be used to define a minimization:

s�m ¼ argminsm

1

2
jjwT

m � smrT
wm
jj22

þl
2

XN
i¼1

h
jjtm

i � ðwT
m � smrT

wm
ÞXi � 1bm þ hm

i =ljj
2
2

i

þ
XN0

i0¼1

XK

m¼1

h l
2
jjum

i0 � ðwT
m � smrT

wm
ÞXi0 � 1bm þ nm

i0 =ljj
2
2

i
;

(15)

in terms of sm instead of wm. Differentiating Equation (15) with re-
spect to sm, setting the result equal to zero gives:

s�m ¼

�
wT

m � l
PN
i¼1

t̂
m
i XT

i � l
PN0
i0¼1

PK
m0

ûm0

i0 XT
i0

�
rwm

rT
wm

�
Iþ l

PN
i¼1

XiX
T
i þ lK

PN0
i0¼1

Xi0X
T
i0

�
rwm

(16)

where t̂
m
i ¼ tm

i �wT
mXi � 1bm þ hm

i =l and ûm0

i0 ¼ um0

i0 �wT
mXi0�

1bm þ nm0

i0 =l. Finally we plug Equations (14) and (16) into Equation
(13) to earn an efficient update equation which avoids the least
squares problem in Equation (8). The time complexity of the pro-
posed method is OðNdnÞ, where n is the average number of instances
per bag. The number of instances n is typically smaller than the num-
ber of features d (the multiple of 162 in our experiments), therefore
our model with the solution in Equation (13) (inexact pdMISVM) is
more scalable compared to Equation (8) (exact pdMISVM).

4 Results

In our experiments, we evaluate the classification performance and
scalability of the proposed exact and inexact pdMISVM implemen-
tations. The scalability of pdMISVM is assessed across the increas-
ing number of bags and features. Regarding the interpretability of
our model, we also identify the disease relevant patches (instances)
of each bag (image).

4.1 Benchmarks and hyperparameters
The classification performance and scalability of pdMISVM is com-
pared against the following standard MIL benchmarks:

• A SIL method that assigns the bags’ labels to all instances during

training and produces the maximum response for each bag/class

pair at testing time for the training bag’s instances.

Algorithm 1 The multiblock ADMM updates to optimize

Equation (4).

Data: X 2 R
D�ðn1þ���þnNÞ and Y 2 f�1; 1gK�N.

Hyperparameters: C>0, l > 0; q > 1 and tolerance > 0.

Initialize: primal variables W;b;E;Q;R;T;U and dual varia-

bles K;R;H;X;N.

while residual > tolerance do

for m 2 K do

Update wm 2W by Eq: ð13Þ:
Update bm 2 b by bm ¼
PN

i¼1½tm
i �wT

mXi þ hm
i =l� þ

PN0

i0¼1

PK
m¼1½um

i0 �wT
mXi0 þ nm

i0=l�
N þ KN0

:

end for

for ðp;mÞ 2 fN;Kg do

Update em
p 2 E by em

i ¼
nm

i �
C

l
ym

i when ym
i nm

i >
C

l
;

0 when 0 � ym
i nm

i �
C

l
;

nm
i when ym

i nm
i < 0;

8>>>><
>>>>:

where nm
i ¼ ym

i � qm
i þ rm

i � km
i =l:

Update qm
p 2 Q by

qm
i ¼
ðym

i � em
i þ rm

i � km
i =lþmaxðtm

i Þ � rm
i =lÞ

2
:

Update rm
p 2 R by

rm
i ¼
ðem

i � ym
i þ qm

i þ km
i =lþmaxðum

i Þ �xm
i =lÞ

2
:

for j 2 np do

Update tm
p;j 2 T by

tm
i;j ¼

maxð/m
i Þ þ qm

i þ rm
i =l

2
if j ¼ argmaxð/m

i Þ;
/m

i;j else;

8<
:

where /m
i ¼ wT

mXi þ 1bm � hm
i =l:

Update um
p;j 2 U by

um
i;j ¼

maxðwm
i Þ þ rm

i þ xm
i =l

2
if j ¼ argmaxðwm

i Þ;
wm

i;j else;

8<
:

where wm
i ¼ wT

y Xi þ 1by � nm
i =l:

end for

Update km
p ; r

m
p ;x

m
p ; h

m
p ; n

m
p by

km
i ¼ km

i þ lðem
i � ðym

i � qm
i þ rm

i ÞÞ;
rm

i ¼ rm
i þ lðqm

i �maxðtm
i ÞÞ;

xm
i ¼ xm

i þ lðrm
i �maxðum

i ÞÞ;
hm

i ¼ hm
i þ lðtm

i � ðwT
mXi þ 1bmÞÞ;

nm
i ¼ nm

i þ lðum
i � ðwT

y Xi þ 1byÞÞ:

end for

Update l ¼ ql.

end while

return ðwm; . . . ;wKÞ 2W and ðb1; . . . ; bKÞ 2 b.
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• The two bag-based methods; Normalized Set Kernel (NSK) and

Statistics Kernel (STK) (Gärtner et al., 2002), which map the en-

tire bag to a single-instance by a way of kernel function.
• An iterated discrimination Axis-Parallel Rectangles algorithm

(APR) (Dietterich et al., 1997): the APR is a MIL model which

starts from a single positive instance and grows the APR by

expanding it to cover the remaining positive instances.
• The two multi-instance deep learning methods: The mi-Net and

MI-Net (Wang et al., 2018) approach to the MIL problem in a

way of instance space and embedded space (learning vectorial

representation of the bag) paradigm respectively.
• The two attention mechanism-based MIL models: Ilse et al.

(2018) (AMIL) calculate the parameterized attention (import-

ance) score for each instance to generate the probability distribu-

tion of bag labels. Shi et al. (2020) (LAMIL) propose to learn the

instance scores and predictions jointly by integrating the atten-

tion mechanism with the loss function.

For these SVM models, the regularization tradeoff is set to 1.0.
For the exact and inexact pdMISVM, the regularization tradeoff C
is set to 1e� 3 and 1eþ 4 respectively, the tolerance is set to 1e� 5
for both, and l is initialized with 1e� 10 and 1e� 8 respectively.
We use the radial basis kernel function for all SVM models (except
inexact pdMISVM which uses linear kernel). For the deep learning
models (mi-Net, MI-Net, AMIL and LAMIL), we use the same
hyperparameters as in their articles.

4.2 Classification performance
In this section, we evaluate the classification models to investigate
whether our exact/inexact pdMISVM achieves the better or compar-
able performance to the best performing classical or recent models.
In Table 1, we report the performance of our pdMISVM compared
against the other MIL algorithms in the classification of benign/ma-
lignant bags. For each model, we provide the precision, recall, F1-
score, accuracy and balanced accuracy (BACC) across the 10 6-fold
cross-validation experiments (six repetitions per experiment).

From the results reported in Table 1, the proposed exact/inexact
pdMISVM show promising performance across the various magnifi-
cation levels. In particular, our exact pdMISVM outperforms the
other models based on recall. A high recall rate is critical in the med-
ical domain, as false negatives may result the serious consequences.
This result shows the clinical utility of our model as it is crucial not
to miss a malignant tumor in the diagnosis. When the SIL model is
compared to the other MIL models, SIL performed the worst be-
cause it is difficult to accurately classify labels from individual
patches. For example, evidence of malignancy may appear only in
some patches of the bag. In this case, it is difficult to classify a patch
as a malignancy from a patch where no evidence of a malignant
tumor appeared. Our experimental results support the assumption
that MIL models will classify better than SIL model.

Interestingly, our exact pdMISVM performs better than the in-
exact version at the smaller magnification levels, and while the op-
posite results are observed in the larger magnification levels. These
results show that the classification pattern of pdMISVM can vary
depending on the choice of optimization approach, just like the im-
pact of the optimization algorithm on the deep learning models
(Wang et al., 2019). Although our derivation for inexact pdMISVM
does not obtain the exact optimal solution of the MISVM objective
in Equation (1), our experimental results show that the inexact solu-
tion may improve the classification performance when compared to
the exact solution. This is well supported by the previous finding
(Chang et al., 2008) that some implementations of SVM achieve the
highest accuracy before the objective reaches its minimum. Our
exact/inexact pdMISVM has gained the overall improved accuracy/
BACC as well, and this validates their usefulness in the field of MIL
and the early detection of a malignant tumor.

4.3 The scalability against bags and features
The main contribution of this study is that the derived Algorithm 1
scales to the large dataset. In this timing experiment, our goal is to ver-
ify the analytical complexity calculated in Section 3.4 on the real world
dataset. We plot the training time of the classifiers on the BreaKHis
dataset to verify this improved scalability against the number of bags
in Figure 3 and the number of features in Figure 4. In this timing ex-
periment, we use the linear kernel function for all SVM models. The
deep learning models are excluded in this experiment as their training
times exceed the reasonable limit (5 h). In Figure 3, the running time of
NSK increases rapidly while the other models maintain the linear
trend. Our pdMISVM outperforms the other models in training a large
number of bags. This result validates the superior scalability of the
proposed primal-dual approach over the other SVM models which
rely on repeatedly solving a quadratic programming problem.

Despite the fact that the initial derivation with Equation (8) scales
well with respect to the bags, the update for wk in Equation (8)
requires solving a least-squares problem that scales quadratically as
the number of features d increases. To tackle this difficulty, we adapt
an optimal line search method in Equation (13) to achieve the linear
complexity against the number of features. In Figure 4, we compare
the training time of the exact/inexact versions of our models to the
other competing models. Among all models, Ours-inexact and APR
spend the smallest training time when trained with the large number
of features. Interestingly, inexact variation of pdMISVM scales sig-
nificantly better than the exact pdMISVM against the increasing
number of features where the number of bags is fixed at 1000. This
is well represented by the analytical complexity of the two deriva-
tions (OðNd2Þ versus OðNdnÞ) as discussed in Section 3.4.

4.4 Patch identification
Along with the improved prediction performance and scalability, our
model pdMISVM can identify disease-relevant locations. The inter-
pretability is crucial as it can add confidence to the generated predic-
tions and help clinicians use histopathological references to make a
diagnosis. We calculate the patch-wise importance maxðWTx

j
i þ bÞ

which is the response of jth patch to the decision function in Equation
(2). Figures 5 and 6 show the identified patches in the benign and ma-
lignant images at 400� magnification level. In Figures 5 and 6, the 10
boxes (patches) represent the 10 instances of each bag (image).

The patches identified by our model are in accordance with the
clinical insights. The color, shape and size morphologic abnormal-
ities of the nuclei are regarded as the key characteristics that categor-
ize a digitized biopsy as cancerous or non-cancerous (Rajbongshi
et al., 2018). For example, in the third image in Figure 5, our model
highlights the regions containing the cell’s nuclei. From the identi-
fied patches, our model can reveal that the nuclear to cell volume
ratio is consistent throughout which is a distinctive feature of non-
carcinoma (Jevti�c and Levy, 2014). Because of this, our model cor-
rectly classifies the bag as benign. A previous study (Kumar et al.,
2015) explains that a disorganized arrangement of cells is one of the
characteristics of cancerous cells. In the second image in Figure 5,
our model identifies a continuous, organized distribution of cells so
this is another indication that our model was correct in labeling this
image as benign. For the three malignant samples in Figure 6, our
model focuses on the variation in the size and shape of nuclei. Based
on the literature (Fischer, 2020), the loss of normal morphology and
large/varying shape of nuclei are essential for the diagnosis of malig-
nancy in the practice of surgical pathology. The accurately identified
regions validate the correctness of our model in the histopathologic-
al image classification and add value to its clinical practicability.

5 Discussion

We demonstrated that the MIL SVM can detect the malignancy in
the patches. With the development of image acquisition technology,
and it has become crucial to train the models with the large amount
of images to improve classification performance. Accordingly, scal-
ability has emerged as a major issue, and the improved scalability
can increase the performance and decrease the cost in response to
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Table 1. The classification performance of our pdMISVM and competing models with the different magnification levels

Model Magnification Precision Recall F1Score Accuracy BACC

SIL 403 0.874 6 0.018 0.752 6 0.043 0.829 6 0.030 0.787 6 0.036 0.808 6 0.032

NSK 403 0.906 6 0.016 0.902 6 0.025 0.904 6 0.014 0.868 6 0.019 0.848 6 0.022

STK 403 0.911 6 0.031 0.907 6 0.036 0.908 6 0.017 0.875 6 0.021 0.857 6 0.024

APR 403 0.881 6 0.019 0.813 6 0.034 0.856 6 0.036 0.793 6 0.024 0.817 6 0.035

mi-Net 403 0.883 6 0.016 0.872 6 0.037 0.883 6 0.025 0.836 6 0.032 0.850 6 0.027

Mi-Net 403 0.891 6 0.070 0.884 6 0.045 0.887 6 0.023 0.852 6 0.029 0.842 6 0.030

AMIL 403 0.901 6 0.025 0.897 6 0.019 0.899 6 0.031 0.870 6 0.031 0.861 6 0.024

LAMIL 403 0.896 6 0.041 0.900 6 0.023 0.894 6 0.047 0.863 6 0.024 0.859 6 0.027

Ours 403 0.894 6 0.018 0.924 6 0.036 0.903 6 0.023 0.853 6 0.028 0.842 6 0.034

Ours (inexact) 403 0.902 6 0.014 0.916 6 0.024 0.916 6 0.009 0.879 6 0.009 0.863 6 0.023

SIL 1003 0.908 6 0.014 0.797 6 0.034 0.848 6 0.023 0.804 6 0.027 0.808 6 0.025

NSK 1003 0.918 6 0.019 0.926 6 0.008 0.922 6 0.011 0.892 6 0.013 0.872 6 0.017

STK 1003 0.895 6 0.024 0.929 6 0.023 0.911 6 0.010 0.876 6 0.012 0.844 6 0.012

APR 1003 0.896 6 0.025 0.854 6 0.039 0.879 6 0.032 0.818 6 0.031 0.812 6 0.034

mi-Net 1003 0.860 6 0.019 0.917 6 0.025 0.889 6 0.019 0.879 6 0.032 0.862 6 0.023

Mi-Net 1003 0.876 6 0.026 0.928 6 0.029 0.891 6 0.025 0.869 6 0.027 0.870 6 0.019

AMIL 1003 0.889 6 0.027 0.935 6 0.038 0.914 6 0.039 0.867 6 0.029 0.869 6 0.029

LAMIL 1003 0.898 6 0.046 0.924 6 0.035 0.910 6 0.041 0.870 6 0.034 0.859 6 0.032

Ours 1003 0.873 6 0.016 0.944 6 0.019 0.919 6 0.009 0.883 6 0.017 0.864 6 0.026

Ours (inexact) 1003 0.923 6 0.025 0.942 6 0.022 0.925 6 0.020 0.891 6 0.024 0.876 6 0.041

SIL 2003 0.903 6 0.015 0.812 6 0.018 0.863 6 0.007 0.821 6 0.013 0.826 6 0.016

NSK 2003 0.902 6 0.020 0.935 6 0.022 0.923 6 0.016 0.893 6 0.022 0.867 6 0.025

STK 2003 0.898 6 0.025 0.927 6 0.020 0.922 6 0.011 0.892 6 0.017 0.871 6 0.025

APR 2003 0.889 6 0.021 0.897 6 0.024 0.895 6 0.013 0.857 6 0.018 0.864 6 0.027

mi-Net 2003 0.879 6 0.021 0.909 6 0.032 0.891 6 0.028 0.876 6 0.021 0.846 6 0.023

Mi-Net 2003 0.885 6 0.020 0.918 6 0.029 0.896 6 0.025 0.885 6 0.019 0.851 6 0.024

AMIL 2003 0.905 6 0.024 0.918 6 0.031 0.900 6 0.027 0.881 6 0.024 0.849 6 0.021

LAMIL 2003 0.891 6 0.031 0.914 6 0.037 0.907 6 0.030 0.875 6 0.024 0.853 6 0.028

Ours 2003 0.903 6 0.017 0.936 6 0.023 0.924 6 0.012 0.898 6 0.017 0.872 6 0.026

Ours (inexact) 2003 0.890 6 0.019 0.931 6 0.017 0.918 6 0.012 0.889 6 0.021 0.859 6 0.020

SIL 4003 0.860 6 0.021 0.744 6 0.042 0.819 6 0.027 0.778 6 0.032 0.797 6 0.029

NSK 4003 0.890 6 0.022 0.910 6 0.013 0.886 6 0.009 0.863 6 0.014 0.836 6 0.025

STK 4003 0.889 6 0.024 0.898 6 0.029 0.893 6 0.014 0.854 6 0.020 0.832 6 0.023

APR 4003 0.891 6 0.025 0.803 6 0.038 0.871 6 0.033 0.816 6 0.028 0.819 6 0.036

mi-Net 4003 0.837 6 0.021 0.901 6 0.025 0.864 6 0.029 0.831 6 0.031 0.822 6 0.024

Mi-Net 4003 0.849 6 0.020 0.895 6 0.026 0.871 6 0.024 0.841 6 0.028 0.820 6 0.025

AMIL 4003 0.852 6 0.019 0.897 6 0.022 0.880 6 0.023 0.846 6 0.024 0.818 6 0.027

LAMIL 4003 0.867 6 0.025 0.889 6 0.029 0.891 6 0.031 0.857 6 0.023 0.819 6 0.029

Ours 4003 0.909 6 0.012 0.932 6 0.016 0.899 6 0.012 0.868 6 0.016 0.838 6 0.018

Ours (inexact) 4003 0.875 6 0.023 0.923 6 0.019 0.898 6 0.015 0.858 6 0.019 0.823 6 0.020

Note: The reported metrics and their standard deviations are calculated across 10 6-fold cross-validation experiments. The best scores are highlighted in bold

font.

Fig. 3. Computation time over the increasing number of bags. The number of fea-

tures is fixed at 162

Fig. 4. Computation time over the increasing number of features. The number of

features are controlled by concatenating the multiple patches of image
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the system processing demands of CAD. Therefore, this study pro-
poses a new optimization method for SVM with improved scalabil-
ity. The proposed method reduces the computational complexity
against the large number of features of instances by approximating
the optimal point of SVM, but nevertheless, the experimental results
show that the classification performance of SVM is not sacrificed,
and rather improved in certain cases (in the lower magnification lev-
els). In addition, the permutation invariant property is satisfied in
Equation (1), which is desirable in the MIL. The proposed optimiza-
tion method can be applied regardless of whether the kernel function
is used, however we plan to deal with the improved scalability of
kernelized SVM in the future study. In this study, we have sampled
the patches of WSIs at the random locations, and we plan to inte-
grate the attention mechanism to automatically sample the patches
important for malignant tumor detection. In this study, we propose
a general framework for MIL and the other models stemming from
our approach can be flexibly applied to solve the various MIL
problems.

6 Conclusion

The improvement of the scalability of methods is attracting more at-
tention from machine learning studies as the amount of available
data is increasing due to the development of data mining technolo-
gies. In this work, we present a novel Primal-Dual Multi-Instance
SVM method and the associated derivations, which scale to a large
number of bags and features. We have conducted extensive experi-
ments on the BreaKHis dataset to show the promising performance
and scalability of the proposed method when compared to the trad-
itional SVM-based MIL techniques. In addition to the improved
classification performance and scalability, the key patches for the
classification identified by our model are well supported by previous
medical studies. The experimental results illustrate the clinical utility
of our approach on the detection of cancerous abnormalities in a
large dataset to prevent the progression of breast cancer in a patient.
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Gärtner,T. et al. (2002) Multi-instance kernels. In: International Conference

on Machine Learning (ICML), Vol. 2, p. 7.

Guo,Z. et al. (2010) A completed modeling of local binary pattern operator

for texture classification. IEEE Trans. Image Process., 19, 1657–1663.

Gurcan,M.N. et al. (2009) Histopathological image analysis: a review. IEEE

Rev. Biomed. Eng., 2, 147–171.

Hamilton,N.A. et al. (2007) Fast automated cell phenotype image classifica-

tion. BMC Bioinformatics, 8, 110–118.

Haralick,R.M. (1979) Statistical and structural approaches to texture. Proc.

IEEE, 67, 786–804.

Haralick,R.M. et al. (1973) Textural features for image classification. IEEE

Trans. Syst, Man, Cybern., SMC-3, 610–621.

Hong,M. and Luo,Z.-Q. (2017) On the linear convergence of the alternating

direction method of multipliers. Math. Program., 162, 165–199.

Ilse,M. et al. (2018) Attention-based deep multiple instance learning. In:

International Conference on Machine Learning. PMLR, pp. 2127–2136.

Jevti�c,P. and Levy,D.L. (2014) Mechanisms of nuclear size regulation in model

systems and cancer. Cancer Biol. Nuclear Envelope, 773, 537–569.

Kahya,M.A. et al. (2017) Classification of breast cancer histopathology images

based on adaptive sparse support vector machine. J. Appl. Math. Bioinf., 7, 49.

Khotanzad,A. and Hong,Y.H. (1990) Invariant image recognition by Zernike

moments. IEEE Trans. Pattern Anal. Machine Intell., 12, 489–497.

Krizhevsky,A. et al. (2012) Imagenet classification with deep convolutional

neural networks. Adv. Neural Inf. Process. Syst., 25, 1097–1105.

Fig. 5. The identified patches in the adenosis (benign) images, where the red, green and blue boxes denote the first, second and third most important patches

Fig. 6. The identified patches in the ductal carcinoma (malignant) images, where the red, green and blue boxes denote the first, second and third most important patches

Scaling multi-instance SVM to breast cancer detection i99

https://www.cdc.gov/genomics/disease/breast_ovarian_cancer/basics_hboc.htm
https://www.cdc.gov/genomics/disease/breast_ovarian_cancer/basics_hboc.htm


Kumar,M. and Rath,S.K. (2015) Classification of microarray using mapreduce

based proximal support vector machine classifier. Knowledge Based Syst.,

89, 584–602.

Kumar,R. et al. (2015) Detection and classification of cancer from microscopic

biopsy images using clinically significant and biologically interpretable fea-

tures. J. Med. Eng., 2015, 457906.

Nie,F. et al. (2014) New primal SVM solver with linear computational cost for

big data classifications. In: Proceedings of the 31st International Conference

on International Conference on Machine Learning, Vol. 32, pp. II–505.

Ojala,T. et al. (2002) Multiresolution gray-scale and rotation invariant texture

classification with local binary patterns. IEEE Trans. Pattern Anal. Machine

Intell., 24, 971–987.
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