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Abstract

Motivation: Estimating the effects of interventions on patient outcome is one of the key aspects of personalized
medicine. Their inference is often challenged by the fact that the training data comprises only the outcome for the
administered treatment, and not for alternative treatments (the so-called counterfactual outcomes). Several methods
were suggested for this scenario based on observational data, i.e. data where the intervention was not applied ran-
domly, for both continuous and binary outcome variables. However, patient outcome is often recorded in terms of
time-to-event data, comprising right-censored event times if an event does not occur within the observation period.
Albeit their enormous importance, time-to-event data are rarely used for treatment optimization. We suggest an ap-
proach named BITES (Balanced Individual Treatment Effect for Survival data), which combines a treatment-specific
semi-parametric Cox loss with a treatment-balanced deep neural network; i.e. we regularize differences between
treated and non-treated patients using Integral Probability Metrics (IPM).

Results: We show in simulation studies that this approach outperforms the state of the art. Furthermore, we demon-
strate in an application to a cohort of breast cancer patients that hormone treatment can be optimized based on six
routine parameters. We successfully validated this finding in an independent cohort.

Availability and implementation: We provide BITES as an easy-to-use python implementation including scheduled
hyper-parameter optimization (https://github.com/sschrod/BITES). The data underlying this article are available in the
CRAN repository at https:/rdrr.io/cran/survival/man/gbsg.html and https://rdrr.io/cran/survival/man/rotterdam.html.
Contact: stefan.schrod@bioinf.med.uni-goettingen.de or michael.altenbuchinger@bioinf.med.uni-goettingen.de
Supplementary information: Supplementary data are available at Bioinformatics online.

Average Treatment Effect (ATE) estimated from controlled trials

1 Introduction
does not necessarily hold on the level of individual patients. Thus,

Inferring the effect of interventions on outcomes is relevant in di-
verse domains, comprising precision medicine and epidemiology
(Frieden, 2017) or marketing (Bottou ez al., 2013; Kohavi et al.,
2009). A fundamental issue of causal reasoning is that potential out-
comes are observed only for the applied intervention but not for its
alternatives (the counterfactuals). This is particularly true in medi-
cine, where patient’s outcome is only known for the applied (the fac-
tual) treatment and not for its alternatives, i.e. the counterfactual
outcomes remain hidden. Therapeutic interventions, such as drug
treatments or surgeries, are typically made by physicians on the basis
of expert consensus guidelines. This process has to take into account
both the expected treatment benefit, but also the potential side
effects. Estimates of the former can be difficult. For instance, the
success of drug treatments in cancer strongly depends on multiple
characteristics of the tumor and the patient, and, consequently, the
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an estimate of the Individual Treatment Effect (ITE) is necessary,
which has to be inferred from data (Holland, 1986). Solving the lat-
ter ‘missing data problem’ was attempted repeatedly in the literature
using machine learning methods in combination with counterfactual
reasoning. There are two naive approaches to this issue: the treat-
ment can be included as a covariate or it can be used to stratify the
model development, i.e. individual treatment-specific models are
learned (also called T-learner). Potential outcomes can then be esti-
mated by changing the respective treatment covariate or model.
These naive approaches are occasionally discussed in performance
comparisons, e.g. in Chapfuwa et al., (2020) and Curth et al.
(2021). An alternative approach is to match similar patients between
treated and non-treated populations using, e.g. propensity scores
(Rosenbaum and Rubin, 1983). This directly provides estimates of
counterfactual outcomes. However, a central issue in this context is
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to define appropriate similarity measures, which should ideally also
be valid in a high-dimensional variable space (King and Nielsen,
2019). Further alternatives are Causal Forests (Athey et al., 2016;
Athey and Wager, 2019; Wager and Athey, 2017) or deep architec-
tures such as the Treatment-Agnostic Representation Network
(TARNet) (Johansson et al., 2016; Shalit et al., 2016). Both methods
do not account for treatment selection biases and thus will be biased
toward treatment-specific distributions. This issue was recently
approached by several groups which balanced the treated and non-
treated distributions using model regularization via representations
of Integral Probability Metrics (IPM) (Miiller, 1991). Suggested
methods are, e.g. balanced propensity score matching (Diamond
and Sekhon, 2013; Li and Fu, 2017), deep implementations such as
the Counterfactual regression Network (CFRNet) (Johansson et al.,
2016; Shalit et al., 2016) or the auto-encoder based Deep-Treat
(Atan et al., 2018). Recently, balancing was incorporated in a
Generative Adversarial Net for inference of Individualized
Treatment Effects (GANITE) (Yoon et al., 2018). Note, learning
balanced representations involves a trade-off between predictive
power and bias since biased information can be also highly
predictive.

All aforementioned approaches deal with continuous or binary
response variables. In medicine, however, patient outcome is often
recorded as time-to-event data, i.e. the time until an event occurs.
The patient is (right-)censored at the last known follow-up if the
event was not observed within the observation period. A plethora of
statistical approaches deal with the analysis of time-to-event data
(Martinussen and Scheike, 2006), of which one of the most popular
methods is Cox’s Proportional Hazards (PH) model (Cox, 1972).
The Cox PH model is a semi-parametric approach for time-to-event
data, which models the influence of variables on the baseline hazard.
Here, the PH assumption implies an equal baseline hazard for all
observations. In fact, the influence of variables can be estimated
without any consideration of the baseline hazard function (Breslow,
1972; Cox, 1972). The Cox PH model is also highly relevant in the
context of machine learning. It was adapted to the high-dimensional
setting using /; and /> regularization terms (Tibshirani, 1997), with
applications ranging from the prediction of adverse events in
patients with chronic kidney disease (Zacharias et al., 2021) to the
risk prediction in cancer entities (Jachimowicz et al., 2021; Staiger
et al., 2020). The Cox PH model can be also adapted to deep learn-
ing architectures, as proposed by (Katzman et al., 2018). Alternative
machine-learning approaches to model time-to-event data include
discrete-time Cox models built on multi-outcome feedforward archi-
tectures (Gensheimer and Narasimhan, 2019; Kvamme and Borgan,
2019; Lee er al., 2018) and random survival forests (RSF) (Athey
and Wager, 2019; Ishwaran et al., 2008).

The prediction of ITEs from time-to-event data has received little
attention in the machine learning community, which is surprising
considering the enormous practical relevance of the topic. Seminal
works are (Chapfuwa et al., 2020) and (Curth et al., 2021). Most re-
cently, Curth et al. (2021) suggested to learn discrete-time treat-
ment-specific conditional hazard functions, which were estimated
using a deep learning approach. Treatment and control distributions
were balanced analogously to Shalit et al. (2016) using the p-
Wasserstein distance (Kantorovitch, 1958; Ramdas et al., 2017).
This approach, named SurvITE, was shown to outperform the cur-
rent state of the art in simulation studies.

We propose to combine the loss of the Cox PH model with an
IPM regularized deep neural network architecture to balance gener-
ating distributions of treated and non-treated patients. We named
this approach ‘Balanced Individual Treatment Effect for Survival
data’ (BITES). We show that this approach—albeit its apparent sim-
plicity—outcompetes SurvITE as well as alternative state-of-the-art
methods. First, we demonstrate the superior performance of BITES
in simulation studies where we focus on biased treatment assign-
ments and small sample sizes. Second, we used training data from
the Rotterdam Tumour Bank (Foekens et al., 2000) to show that
BITES can optimize hormone treatment in patients with breast can-
cer. We validated the latter model using data from a controlled
randomized trial of the German Breast Cancer Study Group (GBSG)

(Schumacher et al., 1994) and analyzed feature importance using
SHAP (SHapley Additive exPlanations) values (Lundberg and Lee,
2017). We further provide an easy-to-use python implementation of
BITES including scheduled hyper-parameter optimization (https:/
github.com/sschrod/BITES).

2 Materials and methods

Patient outcome can be recorded as (right-)censored time-to-event
data. First, we will introduce models for such data, i.e. the Cox PH
model and recent non-linear adaptations. Second, we will discuss
the potential outcome model and how it can be used to model sur-
vival. Third, we introduce regularization techniques to account for
unbalanced distributions and, finally, we will combine these meth-
ods in a deep neural network approach termed BITES to learn treat-
ment recommender systems based on patient survival.

2.1 Survival data

Let X be the space of covariates and 7 the space of available treat-
ments. Furthermore, let y € ) be the observed survival times and
E € £={0,1} the corresponding event indicator. Denote sample
data of patient i by the triplet (x;,y;, E;) € X x Y x £. If the patient
experiences the event within the observation period, y£=! is the time
until the event of interest occurs, otherwise y£=0 is the censoring
time. Let the survival times y be distributed according to f{y) with
the corresponding cumulated event distribution F(y) = [7' f(y/)dy'.
The survival probability at time y is then given by S(y) =1 — F(y).
The hazard function is

Ay;x) = exp(B7x) Zo(y) (1)
N——

hazard rate

and corresponds to the risk of dying at time y (Cox, 1972), i.e. a
greater hazard corresponds to greater risk of failure. Here, the
model parameters are given by B and the baseline hazard function is
Jo(y) = My:x=0). Note that Ao(y) =I5 =~ £ log(S()).
According to Cox’s PH assumption, all patients share the same base-
line hazard function and, importantly, the baseline hazard cancels in
maximum likelihood estimates of B. Thus, time dependence can be
eliminated from the individual hazard prediction and rather than
learning the exact time to event, Cox regression learns an ordering
of hazard rates. At every event time y£=1, the set of patients at risk is
given by R; = Y(y > y¥=1). The partial log-likelihood of the Cox
model (Breslow, 1972; Cox, 1972) is given by:

UEDY [log ( ) e“) —ﬁTx,}. @

iE=1 jveR;

Faraggi and Simon (1995) suggested to replace the ordinary lin-
ear predictor function, p7x, by a feedforward neural network with a
single outcome node hy(x) and network parameters 0. Following
this idea, Katzman et al. (2018) introduced DeepSurv, which
showed improved performance compared to the linear case, particu-
larly if non-linear covariate dependencies are present.

2.2 The counterfactual problem

The outcome space for multiple treatment options k is given by
Y = Yo x -+ X Y-1). For simplicity, we will restrict the discussion
to the binary case, k =2, with a treated group, T=1, and a control
group, T=0.

We consider the problem where only a single factual outcome is
observed per patient, i.e. the outcomes for all other interventions,
also known as the counterfactuals, are missing. Hence, the individ-
ual treatment effect (ITE), defined as

() = Y= (%) — Y 0(xi), (3)

can only be inferred based on potential outcome estimates (Rubin,
1974). We will build a recommendation model that assigns treat-
ments to patients with predictions t(x;) > 0.
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Following recent work (Alaa and van der Schaar, 2017; Athey
and Wager, 2019; Johansson et al., 2016, 2020; Shalit et al., 2016;
Wager and Athey, 2017; Yao et al., 2018; Yoon et al., 2018), we
make the standard strong ignorability assumption, which has been
shown to be a sufficient condition to make the ITE identifiable
(Pearl, 2017; Shalit ez al., 2016), i.e. it guarantees proper causal
dependencies on the interventions. The strong ignorability assump-
tion contains the unconfoundedness and overlap assumptions:

THEOREM 1 (Unconfoundedness). Covariates X do not simultaneously in-
fluence the treatment T and potential outcomes (Y7=0, YT=1) i.e.

(YT=0 yT=1) 4 T|X. (4)

This assumption ensures that the causal effect is not influenced
by non-observable causal substructures such as confounding (Pearl,
2009). Correcting for confounding bias requires structural causal
models, which are ambiguous in general and need to be justified
based on domain knowledge (Pearl, 2008).

TueoreM 2 (Overlap). There is a non-zero probability for each patient i
to receive each of the treatments T € 7

0 < p(Tilx;) < 1. &)

2.3 Balancing distributions

Strong ignorability only removes confounding artifacts. Imbalances
of the generating distributions due to biased treatment administra-
tion might still be present. Balancing the generating distributions of
treated and control group has been shown to be effective both on
the covariate space (Imai and Ratkovic, 2014) and on latent repre-
sentations (D’Amour et al., 2017; Huang et al., 2016; Johansson
et al., 2016, 2020; Li and Fu, 2017; Lu et al., 2020; Shalit et al.,
2016; Yao et al., 2018). This is either achieved by multi-task models
or IPMs. The latter quantify the difference of probability measures P
and Q defined on a measurable space S by finding a function f € F
that maximizes (Miiller, 1991)

d]: (]P), Q) = sup
feFr

J'fdP—J'fd@\. (6)

Most commonly used are the Maximum Mean Discrepancy
(MMD), restricting the function space to reproducing kernel-Hilbert
spaces (Gretton et al., 2012), or the p-Wasserstein distance (Ramdas
et al., 2017). Both have appealing properties and can be empirically
estimated (Sriperumbudur et al., 2012). MMD has low sample com-
plexity with a fast rate of convergence, which comes with low compu-
tational costs. A potential issue is that gradients vanish for
overlapping means (Feydy et al., 2018). The p-Wasserstein distance,
on the other hand, offers more stable gradients even for overlapping
means, which comes with higher computational costs, i.e. by solving a
linear program. The computational burden can be reduced by entropi-
cally smoothing the latter and by using the Sinkhorn divergence,

1 1
S{(P,Q) := WE(P,Q) — 5 WI(P,P) - S WI(Q Q) )

where W?(P,Q) is the smoothed Optimal Transport (OT) loss
defined in the following (Feydy et al., 2018; Ramdas et al., 2017).

DErNITION 1 (Smoothed Optimal Transport loss). For p € [1,00) and Borel
probability measures P, Q on R the entropically smoothed OT loss is
Wf (IF’, Q) = minner(p.’@)‘fRdedHX — Y||p dn + 6KL(7L’|[F’ ® Q)

with  KL(#|P ® Q) := [pu, g« log <d§7§@> dn, (8)

with ['(P,Q) the set of all joint probability measures whose marginals
are P, Q on R, i.e. for all subsets A C R?, we have n(A x RY) = P(A)

and n(RY x A) = Q(A). Here, e mediates the strength of the Kullback-
Leibler divergence.

The Sinkhorn divergence can be efficiently calculated for e >0
(Cuturi, 2013). For p=2 and ¢ = 0 we can retrieve the quadratic
Wasserstein distance and in the limit € — +oc it becomes the MMD
(Genevay et al., 2017). BITES tunes ¢ to take advantage of the more
stable OT gradients to improve the overlap while remaining compu-
tationally efficient. In the following, we denote it by IPM?(,-) to
highlight the possibility to use any representation of the IPM. A
thorough discussion of the Sinkhorn divergence, its theoretical prop-
erties, as well as one- and two-dimensional examples can be found
in Feydy et al. (2018).

2.4 BITES

BITES model architecture: BITES combines survival modeling with
counterfactual reasoning, i.e. it facilitates the development of treat-
ment recommender systems using time-to-event data. BITES uses the
network architecture shown in Figure 1 with loss function

Igrres (xi, yi, Ei, T;) =
qLi (ho(@T0(x)), YT=0 ET=0)

Cox
(1 = )Ly (b1 (@771 (x)), Y=L ET)
FoLppye (BT, 0T0),

where ¢ is the fraction of patients in the control cohort (patients
with T=0) and LI _ is given by the negative Cox partial log-
likelihood of Equation 2, where we parametrize the hazard function
hr(®(x)) according to the network architecture illustrated in
Figure 1. The latent representation ® is regularized by an IPM term
to reduce differences between treatment and control distributions of
non-confounding variables. Throughout the article, we used the
Sinkhorn divergence of the smoothed OT loss with p=2 as IPM
term. Hence, the parameter ¢ in Equation 9 calibrates between the
quadratic-Wasserstein distance (e =0) and MMD (e = oo). The total
strength of the IPM regularization is adjusted by the hyper-
parameter «. Models with « = 0 do not balance treatment effects
and therefore we denote this method as ‘Individual Treatment
Effects for Survival’ (ITES). Models with o > 0 will be denoted as
‘Balanced Individual Treatment Effects for Survival® (BITES). Large
o values enforce balanced distributions between treatment and con-
trol population. Note, there is a trade-off between balancing distri-
butions and model performance since outcome relevant information
can be predictive for the treatment. (B)ITES uses the time-dependent
ITE for treatment decisions. For the studies shown in this article, we
assigned treatments based on the ITE evaluated for a survival prob-
ability of 50%, i.e. T(x;) = (S(x)41(y)) ' (0.5) — (S(x)40(y)) ' (0.5).

(pr=1

G,

ITE(z,y)

Fig. 1. The BITES network architecture. BITES uses shared deeply connected layers
for both treatment options, which are mapped on a latent representation ®@. This is
regularized by a Sinkhorn divergence to account for imbalances between treatment
and control distributions. The factual and counterfactual proportional hazard rates
are modeled by two different outcome heads (h; and hy), respectively. These are
used to predict the ITE together with the corresponding baseline hazard function.
The latter is individually estimated for treatment and control patients
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Implementation: BITES uses a deep architecture of dense-
connected layers which are each followed by a dropout (Srivastava
et al., 2014) and a batch normalization layer (Ioffe and Szegedy,
20135). It uses ReLU activation functions (Nair and Hinton, 2010)
and is trained using the Adam optimizer (Kingma and Ba, 2014).
Further, early stopping based on non-decreasing validation loss and
weight decay regularizations (Krogh and Hertz, 1992) are used to
improve generalization. Our implementation is based on the
PyTorch machine learning library (Paszke et al., 2019) and the
pycox package (Kvamme and Borgan, 2019). The Sinkhorn diver-
gence is implemented using the GeomLoss package (Feydy et al.,
2018). We provide an easy-to-use python implementation which
includes a hyperparameter optimization using the ray[tune| package
(Liaw et al., 2018) to efficiently distribute model training.

2.5 Treatment recommender systems
For comparison, we evaluated several strategies to build treatment
recommender systems.

Cox regression model: We implemented the Cox regression as T-
learner with treatment-specific survival models using lifelines
(Davidson-Pilon ez al., 2021). Note, an ordinary Cox regression
model which uses both the covariates X and the treatment variable
T as predictor variables generally recommends the treatment with
the better ATE; a treatment-specific term adds to f7x and thus the
treatment which reduces the hazard most will be recommended.
Therefore, we did not include the latter approach and focus on the
Cox T-learner in our analysis.

DeepSurv: Katzman et al. (2018) suggested to provide individual
recommendations based on single model predictions using 7 and X
as covariates based on tps(T,x;) = ho(T = 1,x;) — ho(T = 0,x;).
Hence, it uses a treatment independent baseline hazard which could
compromise the performance (Bellera et al., 2010; Xue et al., 2013).

Treatment-specific DeepSurv models: To account for treatment-
specific differences of baseline hazard functions, we also estimated
DeepSurv as a T-learner (T-DeepSurv), i.e. we learned models strati-
fied for treatments. We then evaluated the time-dependent ITE based
on the survival function t1_ps(x;,y) = ST=!(x;,y) — ST=0(x;, y).

Treatment-specific Random Survival Forests: Analogously to the
previous approach, we learned treatment-specific RSF (Athey et al.,
2016; Ishwaran et al., 2008) using the implementation of scikit-sur-
vival (Polsterl, 2020) to estimate the time-dependent ITE.

SurvITE: Curth et al. (2021) suggested to learn discrete-time
treatment-specific conditional hazard functions, which were esti-
mated using an individual outcome head for each time interval. (We
employed their python implementation available under https:/
github.com/chl8856/survITE.) We evaluated the time-dependent
ITE to assign treatments, as for the latter two methods.

2.6 Performance measures

We used different measures to assess the performance of treatment
recommendation systems. This comprises both measures for the
quantification of prediction performance and of treatment assign-
ment. Discriminative performance was assessed using a time-
dependent extension of Harrell’s C-index (Harrell, 1982) to account
for differing baseline hazards, which evaluates

Pf(S(yi|xi) < S(yilxj) lyi < y; &E;i = 1>7 (10)

for all samples i and  at all event times y=! (Antolini ez al., 2005).
This reduces to Harrell’s C-index for strictly ordered survival curves.
To quantify the performance of treatment recommendations, we
used the Precision in Estimation of Heterogeneous Effect (PEHE)
score (Hill, 2011), which is defined as the difference in residuals be-
tween factual and counterfactual outcome:

N
creste = x> (D1 Cen) — o)) = 51 o) — 3o (enl) - (1)
n=0

Note, the PEHE score can only be calculated if both the factual
and counterfactual outcomes are known, which is usually only the

case in simulation studies. Therefore, we restricted its application to
the latter. There, we further quantified the proportion of correctly
assigned ‘best treatments’.

3 Results

3.1 Simulation studies

We performed three exemplary simulation studies. First, we simu-
lated a scenario where covariates affect survival only linearly.
Second, we simulated data with additional non-linear dependencies,
and, finally, we performed a simulation where the treatment assign-
ments were biased by the covariates.

Linear simulation study: In analogy to (Alaa and van der Schaar,
2017) and (Lee et al., 2018), we simulated a 20-dimensional covari-
ate vector x = (x1,x2) ~ N(0,I) consisting of two 10-dimensional
vectors x; and x,, with corresponding survival times given by

YT=0(x) ~ exp ([yTx1 +y1x2]), 1)
Y= () ~ exp ([y] 21 +v{x2]).

We set the parameters 7y, =(0.1,...,0.1)T  and
7, = (15,35,55,75,95,115,135,155,175,195)7 - 102, The first
term in the exponent is treatment dependent while the second term
affects survival under both treatments identically. This simulation
gives an overall positive ATE in ~64% of the patients. Survival times
exceeding 10 years were censored to resemble common censoring at
the end of a study. Of the remaining samples, 50% were censored at
a randomly drawn fraction f, ~ U(0, 1) of the true unobserved sur-
vival time. Samples were assigned randomly to the treated, T=1,
and control group, T=0, without treatment administration bias.
Finally, we added an error e ~N(0,0.1-I) to all covariates.
Detailed information about hyper-parameter selection is given in the
Supplementary Section S1.

Figure 2a shows the distributions of Harrell’s C-index evaluated
on 1000 test samples for 50 consecutive simulation runs. We
observed that across all investigated sample sizes (x-axis) the T-
learner Cox regression showed superior performance, closely fol-
lowed by ITES and BITES. These three methods performed equally
well for the larger sample sizes 7=1800 and 7 =2400. We further
investigated the proportion of correctly assigned treatments,
Figure 2a, and PEHE scores, Supplementary Figure S1, where we
obtained qualitatively similar trends. RSF, DeepSurv and T-
DeepSurv showed inferior performance with respect to C-Indices,
correctly assigned treatments, and PEHE scores. Results for lower
sample sizes can be found in Supplementary Section S2. Consistent
with previous findings, Cox regression outperformed all competitors
closely followed by (B)ITES.

Non-linear simulation study: Next, we simulated non-linear
treatment-outcome dependencies using the model

YT=0(x) ~ exp <[(Y1Tx1)2 + ?fxz} C),

YT=1(x) ~ exp <[(y2Tx1)2 + lexz} c),
where we set the parameters gy, =(2,...,2)7 and
7 = (0.5,09,1.3,1.7,2.1,2.5,2.9,3.3,3.7,4.1)". Note, the first
term imposes sizable non-linear effects which differ between both
treatments. We further scaled the polynomials by ¢=0.01 to yield
realistic survival times up to 10years. This setting gives an overall
positive ATE in ~64% of the patients.

Figure 2b gives the performance of the evaluated methods in
terms of Harrell’s C-index. We observed that the ordinary Cox re-
gression with linear predictor variables performs worst across all
sample sizes, followed by RSF, and SurvITE. Approximately equal
performance was observed for the DeepSurv approaches, ITES, and
BITES. Among these methods, the treatment-specific DeepSurv
models (T-DeepSurv) showed a higher variance across the simula-
tion runs, in particular for the low sample sizes. Next, we studied
the corresponding PEHE scores (Supplementary Fig. S1) and the
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Linear Simulation
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Fig. 2. Harrell’s C-index and the fraction of correctly predicted treatments for the linear (a, d), non-linear (b, e), and treatment biased non-linear (c, f) simulations. The box-
plots give the distribution for 50 consecutive simulation runs, i.e. for different model initializations, based on the best set of hyper-parameter determined by the validation C-
index. Results are shown for different training sample sizes with 1000 fixed test samples for each of the simulations. The dashed horizontal line represents the fraction of

patients that benefits for 100% treatment administration

proportion of correctly assigned treatments (Fig. 2e). We observed,
although DeepSurv performed well in terms of C-Indices, that the
performance was highly compromised in the latter two measures. In
fact, it was not able to outperform the recommendation based on
the ATE, i.e. always assigning T=1, which corresponds to the
dashed horizontal line. We further observed that SurvITE performed
worst in this scenario with both substantially lower proportions of
correctly assigned treatments and higher PEHE scores compared to
the other methods. Here, T-DeepSurv, ITES, and BITES performed
best, however, the results of the former are inferior compared to
ITES and BITES for sample sizes of #=600 and n=1200.
Additional simulations for smaller sample sizes can be found in
Supplementary Section S2, where we observed that none of the
methods is able to outperform the ATE-based recommendation.

Non-linear simulation study with treatment bias: Finally, we
repeated the non-linear simulation study but now took into account
a treatment assignment bias, i.e. the value of one or more covariates
is indicative of the applied treatment. To simulate this effect, we
assigned the treatment with a 90% probability if the fifths entry of
x1 or x; was larger than zero. To ensure that the unconfoundedness
assumption holds, we set the corresponding entries y; and y, to
zero. This simulation study yields a positive treatment effect in
~71% of the patients (dashed horizontal line in Fig. 2f).

Figure 2¢ and f and Supplementary Figure S1 show the results in
terms of C-index, correctly assigned treatments, and PEHE scores, re-
spectively. Similar to the previous studies, the best performing meth-
ods with respect to C-Indices were the two DeepSurv models, ITES
and BITES. With respect to correctly assigned treatments and PEHE
scores, however, BITES consistently outperformed the other methods
for reasonable sample sizes starting from 7= 1200. For = 600, none
of the methods was able to outperform a model where the treatment
is always recommended (dashed line in Fig. 2f). This was further con-
firmed for lower sample sizes (Supplementary Section S2).

3.2 Bites optimizes hormone treatment in patients with
breast cancer

We retrieved data of 1,545 node-positive breast cancer patients
from the Rotterdam Tumour Bank (Foekens et al., 2000) as pro-
vided by Katzman ez al. (2018). The latter data were preprocessed

Table 1. Predictive outcomes on the controlled randomized test set
of the RGBSG data obtained by each of the discussed models with
minimum validation loss found in a hyper-parameter grid search

Method C-index P-value Fraction T=1
Cox reg. 0.471 0.0034 100%
DeepSurv 0.671 0.0034 100%
T-DeepSurv 0.652 0.2023 92.9%
RSF 0.675 0.0013 82.5%
SurvITE 0.631 0.0039 98.1%
ITES 0.676 0.000198 75.8%
BITES 0.666 0.000016 83.4%

Values in boldface indicate the best performing model with respect to
C-index and P-value, respectively.

according to (Royston and Parmar, 2013). We used recurrence-free
survival (RFS) time, defined as the time from primary surgery to the
earlier of disease recurrence or death from any cause, as outcome for
the further analysis. The available patient characteristics are age,
menopausal status (pre/post), number of cancerous lymph nodes,
tumor grade and progesterone and estrogen receptor status. Of these
patients, 339 were treated by a combination of chemotherapy and
hormone therapy. The remaining patients were treated by chemother-
apy only. Note, in this study, the application of hormone treatment
was not randomized. In total ~37% of the patients were censored.

We used these data to learn treatment recommender systems in
order to predict the ITE of adding hormone therapy to chemother-
apy. We performed hyper-parameter tuning as outlined in
Supplementary Section S3, and selected the models with the lowest
validation loss, respectively.

Next, we evaluated the performance using test data from the
GBSG Trial 2 (Schmoor et al., 1996). Excluding cases with missing
covariates, it contains 686 individual patients, with ~65% random-
ized hormone treatment assignments. The obtained C-indices are
summarized in Table 1. Note, since only the factual outcomes are
observable, we could not evaluate the performance with respect to
correctly assigned ‘best treatments’ or PEHE scores. However, to
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substantiate our findings, we stratified our patients into two groups;
the group ‘recommended treatment’ contains samples where the rec-
ommended treatment coincides with the applied treatment, while
the group ‘anti-recommended treatment’ contains the samples where
the recommended treatment does not coincide with the applied
treatment (following Katzman et al., 2018). The corresponding
Kaplan-Meier (KM) curves of BITES are shown in Figure 3 with
recommended treatment in green and anti-recommended treatment
in red. Corresponding results for the other methods are shown in
Supplementary Figure S3. For comparison, KM curves for the
treated and control group are shown in blue and orange in Figure 3.
Interestingly, BITES recommends hormone treatment only in 83.4%
which resulted in the largest difference in survival based on the rec-
ommendations made by BITES (P =0.000016). On the other hand,
DeepSurv and Cox regression suggest to treat all patients with hor-
mone therapy, closely followed by SurvITE (treatment recom-
mended for 98.1% of patients). The results for all models are
summarized in Table 1. Note, the group with BITES recommenda-
tion showed a superior survival compared to the treated group and
the group with BITES anti-recommendation showed an inferior

1.0 —— Treated
—— Control
—— BITES Recommendation
0.8 BITES Anti-Recommendation
>
£
%
<2 0.6
e
o
©
2
S04 p = 0.000016
=)
[}
C-Index=0.666
0.2 83.4% recommended for T=1

0 20 40 60 80
Survival Time [month]

Fig. 3. Recurrence-free survival probability for patients grouped according to the re-
spective treatment recommendations of BITES, based on the test data from the
GBSG Trial 2. For comparison, we show the KM curves for all hormone treated and
untreated (control) patients in blue and orange, respectively (shown without error
bars for better visibility)
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«efiem——s - .
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performance compared to the control group. Both comparisons,
however, were not significant in a log-rank test.

Finally, we explored feature importance of the BITES model
using SHAP values (Lundberg and Lee, 2017) with results shown in
Figure 4 which correspond to treatment option T=0 (no hormone
treatment) and T=1 (hormone treatment), respectively. Here,
points correspond to patients and positive (negative) SHAP values
on the x-axis indicate an increased (decreased) risk of failure.
Further, the feature value is illustrated in colors ranging from red to
blue, where high values are shown in red and low values in blue. We
observed that the number of positive lymph nodes has the strongest
impact on survival with SHAP values ranging from ~ — 0.5 to ~1 in
the group with and without hormone treatment, where more posi-
tive lymph nodes (shown in red) indicate a worse survival.
Considering menopausal status, we observed an increased risk of
death and recurrence in postmenopausal breast cancer patients that
had not received adjuvant hormone treatment (T=0). This effect
was substantially mitigated in the hormone-treated group, which is
in line with the observation that postmenopausal, more than preme-
nopausal breast cancer patients draw a disease-free survival benefit
from extended adjuvant endocrine treatment (Li et al., 2018).
However, this does not preclude a survival benefit from hormone
treatment for certain premenopausal breast cancer patients as revealed
by a comparison of Figure 4a and b. It is also noteworthy, that high
tumor grade (grade 3, shown in red) yielded increased SHAP values of
up to 0.5 in the tamoxifen-treated group. This effect was substantially
mitigated in the group without hormone treatment. This finding is in
line with a recent study by Dar et al. (2021), which found a significant
tamoxifen treatment benefit only among patients suffering from lower
grade tumors, while no benefit was observed for grade 3 tumors. In
summary, we observed strong hints that hormone treatment alleviates
the negative effect of menopause, and increases the negative effect of
high tumor grade on patient survival.

4 Conclusion

We presented BITES, which is a machine learning framework to op-
timize individual treatment decisions based on time-to-event data. It
combines Deep Neural Network counterfactual reasoning with
Cox’s PH model. It further enables balancing of treated and non-
treated patients using IPM on a latent layer data representation. We
demonstrated in simulation studies that BITES outcompetes state-
of-the-art methods with respect to prediction performance (Harrell’s
C-index), correctly assigned treatments, and PEHE scores. We

Hormone Treatment
b

4%*---& -
-.‘*..... .

-

Menopause
Estrogene
Progesterone
0.5 0.0 0.5
SHAP value

1.0 -0.5 0.0 0.5 1.0
SHAP value

Fig. 4. SHAP (SHapley Additive exPlanations) values for the best selected BITES model on the controlled randomized test samples of the RGBSG data. Red points correspond
to high and blue points to low feature values. A positive SHAP value indicates an increased hazard and hence decreased survival chances and vice versa (A color version of this

figure appears in the online version of this article)
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observed that BITES can effectively capture both linear and non-
linear covariate outcome dependencies on both small and large scale
observational studies. Moreover, we showed that BITES can be used
to optimize hormone treatment in breast cancer patients. Using inde-
pendent data from the GBSG Trial 2, we observed that BITES treat-
ment recommendations might improve patients’ RFS. In this
context, SHAP values were demonstrated to enhance the interpret-
ability and transparency of treatment recommendations.

Like most recently developed counterfactual tools, BITES
depends on the strong ignorability assumption. Hence, caution is ne-
cessary when analyzing heavily confounded observational data.
Future work needs to address more specialized time-to-event mod-
els, such as competing event models, and the generalization to mul-
tiple treatments and combinations thereof. Both could substantially
broaden the scope of applications for BITES.

In summary, BITES facilitates treatment optimization from time-
to-event data. In combination with SHAP values, BITES models can
be easily interpreted on the level of individual patients, making them
a versatile backbone for treatment recommender systems.
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