

HHS Public Access

Adv Carbohydr Chem Biochem. Author manuscript; available in PMC 2022 June 27.

Published in final edited form as:

Author manuscript

Adv Carbohydr Chem Biochem. 2015; 72: 113–190. doi:10.1016/bs.accb.2015.08.002.

HUMAN MILK OLIGOSACCHARIDES (HMOS): STRUCTURE, FUNCTION, AND ENZYME-CATALYZED SYNTHESIS

Xi Chen^{*}

Department of Chemistry, University of California, Davis, California, 95616, USA

Abstract

The important roles of human milk oligosaccharides (HMOS), the third major component of human milk, in the health of breast-fed infants have been increasingly recognized. Structures of more than 100 different HMOS have now been elucidated. Despite the recognition of the various functions of HMOS as prebiotics, antiadhesive antimicrobials, and immunomodulators, the roles and the applications of individual HMOS species are less clear. This is mainly due to the limited accessibility to large amounts of individual HMOS in their pure forms. Current advance on the development of enzymatic, chemoenzymatic, whole cell, and living cell systems allows for the production of a growing numbers of HMOS in increasing amounts. This effort will greatly facilitate the elucidation of the important roles and exploring the applications. The structures, functions, and enzyme-catalyzed synthesis of HMOS are briefly surveyed to provide a general picture about the current progress on these aspects. Future efforts should be devoted to elucidating the structures of more complex HMOS, synthesizing more complex HMOS including those with branched structures, and to develop HMOS-based or HMOS-inspired prebiotics, additives, and therapeutics.

Keywords

human milk oligosaccharides (HMOS); prebiotic; antiadhesive; antimicrobial; immunomodulator; structure; function; synthesis

1. Introduction

Carbohydrates in human milk are presented in diverse forms including monosaccharides such as glucose and galactose, lactose (a disaccharide), oligosaccharides, glycoproteins, glycopeptides, and glycolipids.¹ Human milk oligosaccharides (HMOS) containing a diverse array of oligosaccharides with three or more monosaccharide units are the subject of investigation here.

HMOS are the third major component of human milk after lactose (55–70 g/L) and lipids (16-39 g/L).^{2–4} Historically, purified HMOS were used to synthesize glycan antigens to obtain antibodies^{5, 6} which was later used as important bioreagents to identify novel glycans

^{*}Corresponding author: xiichen@ucdavis.edu.

and detect glycoconjugates.⁷ The amounts of HMOS vary in lactation stages with 12-14 g/L in mature milk and 20-24 g/L in colostrum.⁸⁻¹⁰ HMOS were found to be presented in higher concentrations in preterm human milk than those in term human milk.¹¹ The presence and the quantity of HMOS also vary among individuals and are related to the secretor status and the Lewis group type of the nursing mothers.^{10–13} Four human milk groups have been classified based on the HMOS profiles controlled by the Secretor (Se) status and the Lewis (Le) blood type of the nursing mother.¹¹ Individuals (Se^+/Le^+) with both α 1– 2-fucosyltransferase FUT2 encoded by the Secretor (Se) gene and $\alpha 1-3/4$ -fucosyltransferase FUT3 encoded by the Lewis (Le) gene represent about 70% of the European population and contain all types of fucosylated HMOS with $\alpha 1-2/3/4$ -fucosyl linkages. Those (Se⁻/ Le^+) with no FUT2 but with FUT3 represent 20% of the population and do not have α 1–2-fucosylated HMOS. Those (Se⁺/Le⁻) with FUT2 but no FUT3 represent 9% of the general population and do not have $\alpha 1$ -4-fucosyl oligosaccharides. Finally, those (Se⁻/Le⁻) without FUT2 nor FUT3 represent 1% of the general population contains α 1–3-fucosylated HMOS but not other fucosylated HMOS due to the expression of a Lewis-independent a1-3-fucosyltransferase.^{11, 14}

Due to its structure complexity and the lack of efficient analytic methods, the presence and the functions of HMOS were unaware of in early time. For example, lactose was first isolated from milk in 1633.¹⁵ In comparison, three centuries years later in the early 1930, Polonowski and Lespagnol found and named nitrogen-containing "gynolactose"^{16, 17} which was confirmed two decades later to be a mixture of more than ten oligosaccharides by twodimensional paper chromatography separation.¹⁸ In 1954, György, Kuhn, and *et al.* reported β-linked N-acetylglucosamine (GlcNAc)-containing oligosaccharides and polysaccharides in human milk as "bifidus factors"¹⁹ that promote the growth of Lactobacillus bifidus var. Penn (now Bifidobacterium bifidum).²⁰⁻²³ This ignited the efforts on elucidating the structures of HMOS. Several papers published in 1956 reported the structures of lacto-N-tetraose (LNT), 2'-fucosyllactose (2'FL), lacto-N-fucopentaose I (LNFP I), and 3-fucosyllactose (3FL).²⁴⁻²⁷ By 1965, 14 HMOS structures have been reported, mainly by the groups of Kuhn and Montreuil.²⁸ Additional structures were soon elucidated by the efforts of Ginsburg, Kobata, and others. The introduction of mass spectrometry to the identification of HMOS²⁹ further speeds up the progress. Modern advance on the separation and analysis method development allows fast profiling of HMOS and the structure identification of additional HMOS. More than 200 HMOS species have now been observed^{30, 31} and more than 100 HMOS structures have been elucidated.^{28, 32–34}

Unlike lactose, the primary component and the principle carbohydrate of human milk which is digestible by infants and provides them nutritional needs,³⁵ HMOS are not digestible by the infant.^{1, 36, 37} Therefore, the direct physiological roles of HMOS are not clear. Accumulating evidence has shown that HMOS can survive the obstacles encountered upon suckling and reach the infant gut where they regulate the microbiota population which in turn can affect the health of breastfed infants.^{36–39} HMOS are believed to contribute significantly to the health of breast-fed infants in lowering their risk of diarrheal disease, respiratory infections, allergy, and other infectious diseases including otitis media.^{15, 40–42} The prebiotic (stimulating the growth and colonization of beneficial bacteria, mainly bifidobacteria, in the gut), antiadhesive antimicrobial (acting as decoys to inhibit specific

pathogenic bacteria, viruses, or parasites binding to epithelial surface and translocation), immunomodulating, and brain development nutritional functions of HMOS have also been reported.^{1, 15, 38, 43–46} The enrichment of bifidobacteria in the gut also leads to the increased production of lactate and short-chain fatty acids thus the decrease of pH, worsening the environment for the growth and colonization of some pathogens.¹ Additional mechanism of pathogen inhibition may include the release of other anti-microbial substances by bifidobacteria.⁴⁷

The functions of individual structures, however, are less clear. Only a handful of HMOS have known specific roles, and only a limited number of HMOS have been synthesized. The current knowledge about the structures, functions, and production of HMOS by enzyme-catalyzed processes is presented here.

2. Structures Of HMOS

2.1 HMOS monosaccharide building blocks, core structures, and glycosidic linkages.

Human milk is unique in containing a large number of oligosaccharides compared to the milk of other mammals.⁴⁸ Five monosaccharides have been found to be major building blocks for HMOS which include D-glucose (Glc), D-galactose (Gal), *N*-acetyl-D-glucosamine (GlcNAc), L-fucose (Fuc), and *N*-acetylneuraminic acid (Neu5Ac). These monosaccharide building blocks in HMOS are presented in the six-membered ring pyranose (for Glc) or pyranoside (for Gal, GlcNAc, Fuc, and Neu5Ac) structures. HMOS are extended from lactose (Gal β 1–4Glc with Glc at the reducing end) by *N*-acetylglucosaminylation and/or galactosylation with or without fucosylation and/or sialylation. Among the five major HMOS monosaccharide building blocks (TABLE I), the glucose (Glc) is at the reducing end with a mix of α - and β - configuration at the anomeric carbon. While Gal and GlcNAc are always presented with β -glycosidic linkages, Fuc and Neu5Ac are always presented with α -glycosidic linkages.

Other than lactose (which itself is not considered an HMOS), at least fifteen neutral oligosaccharides (TABLE II), including linear and branched structures, have been identified to be able to serve as the core structures of other HMOS.^{32–34} It is interesting to observe that these structures rarely have GlcNAc as the terminal unit at the non-reducing end, indicating the high efficiency of galactosyltransferases (either β 1–3- or β 1–4-galactosyltransferase) in capping the GlcNAc residues in these HMOS. In addition, unlike *N*-acetyllactosamine (LacNAc, Gal β 1–4GlcNAc) which can serve as both internal and non-reducing-end terminal disaccharide units, lacto-*N*-biose (LNB, Gal β 1–3GlcNAc) can only serve as the non-reducing-end terminal disaccharide. Linear structures only contain β 1–3-linked GlcNAc residue, while any β 1–6-linked GlcNAc generates branching.³⁸

Other than the exceptions mentioned above, twelve glycosidic linkages constitute the structures of HMOS and the list is shown in TABLE III which include three types of galactosidic, two types of *N*-acetyl-glucosaminidic, four types of fucosidic, and three types of sialidic linkages.

2.2 HMOS structures

Over 200 individual HMOS molecular species have been found^{30, 31} and the structures of more than 100 HMOS have been successfully elucidated (see TABLE IV).^{28, 32–34} These were achieved using chromatography separation, tritium labeling, derivatization with a chromophore or fluorophore, methylation analysis, glycosidase digestion, ¹H and ¹³C nuclear magnetic resonance spectroscopy (NMR) characterization, high performance liquid chromatography (HPLC), high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), capillary electrophoresis, and various mass spectrometry (MS) techniques.^{8, 11, 30, 58, 60, 61} Diversity of HMOS comes from five different monosaccharide building blocks (TABLE I), the length, the size, the sequence (TABLE II), and twelve glycosidic linkages (TABLE III) of the glycans.¹⁵ TABLE IV lists 144 structures (lactose is not counted) in the **I–XVI** categories based on the differences of core structures and 12 structures in the **XVII** category of deviant structures.

Several exceptions have been found to the general structure featured described above for HMOS. For example, a few HMOS containing a terminal *N*-acetylgalactosamine (GalNAc) such as A antigen-tetrasaccharide, pentasaccharide, hexasaccharide,⁶² and heptasaccharide⁶³ were isolated from urine or feces of blood group A breast-fed infants. In addition, several HMOS containing 6-*O*-sulfated monosaccharides have been identified.^{64, 65} Several HMOS missing the glucose⁵⁹ or lactose^{34, 59, 66} at the reducing end have been identified. In addition, an unusually Gal β 1–3Gal,^{59, 67} Gal β 1–4Gal,⁶⁸ or Gal β 1–6Gal⁶⁹ component has been found in several HMOS (see **XVII** Deviant structures in TABLE IV).

The presence of some HMOS is related to the secretor status and the Lewis blood type of the mother.⁷⁰ The milk produced by Le^{a+b+} secretors, presenting in 70% of the general population, has the highest diversity of HMOS.¹⁴ Fuca.1–2Gal-containing HMOS such as 2'-fucosyllactose (2'FL),^{71, 72} lactodifucotetraose (LDFT), lacto-*N*-fucopentaose I (LNFP I), and lacto-*N*-difuco-hexoase I (LNDFH I) are missing in the milk of Le^{a+b-} non-secretors.⁷³ Fuca.1–4GlcNAc-containing HMOS including LNFP II, LNDFH I, and LNDFH II are missing in the milk of Lewis negative (Le^{a-b-}) individuals⁷⁴ (TABLE IV). It has been shown that in the absence of blood samples, the ratios of 2'FL versus 3'FL; LNFP I, LDFT, and LNDFH I versus LNT; and 6'SL versus 3'SL in human milk can be used as specific and sensitive markers for determining the secretor status of individuals.⁷⁵

High molecular weight HMOS (Mr 2242–8000),¹¹² complex neutral HMOS with up to 10 fucose residues on a core structure containing 7 LacNAc units,⁶⁰ HMOS with up to 32 monosaccharide units,¹¹³ neutral HMOS with up to 35 monosaccharides and HMOS with more than 50 monosaccharide units¹¹⁴ have been observed. Nevertheless, the identified of HMOS containing more than 14 monosaccharide units have not been elucidated and are not presented in TABLE IV.

Overall, about 70% of HMOS in pooled milk are fucosylated and about 20% are sialylated.³⁰ The major components of HMOS are lacto-*N*-tetraose (LNT), lacto-*N*-neotetraose (LNNT), as well as monofucosylated, monosialylated, difucosylated, and disialylated lactose, LNT, and LNnT (TABLE IV).⁵⁷ Oligosaccharides with both sialic acid and fucose are also presented in HMOS. The top 10 most abundant HMOS species are

Compared to the milk oligosaccharides (MOS) characterized for some domestic animals^{118–120} and other primates,^{48, 121} HMOS are higher in quantities and complexity with more diversity and longer structures. In general, HMOS are high in fucosylation which is rare in the MOS of cows and pigs. In comparison, sialylation is more abundant in the MOS of cows and pigs.^{118–120} Furthermore, *N*-glycolylneuraminic acid (Neu5Gc)containing MOS found in the milk of cows, pigs, and primates^{48, 118–121} and 4-*O*-acetyl-*N*-acetylneuraminic acid (Neu4,5Ac₂)-containing MOS found in the milk of monotremes including echidna^{122, 123} and platypus^{124–126} have not been observed in human milk. Except for 3'-galactosyllactose (3'GL), other oligo- β 1–3-galactoside structures abundant in the milk of metatheria (marsupials)^{127–129} such as common brushtail possum, tammar wallaby, red kangaroo, and koala, have not been found in HMOS.

3. Biosynthesis Of HMOS

Our understanding on the biosynthesis of HMOS is limited. Most, if not all, HMOS are extended from lactose at the non-reducing ends and are believed to be catalyzed by glycosyltransferases in the mammary gland.^{130–133} Glucose and galactose can be *de* novo synthesized in the mammary gland by a process named hexoneogenesis although plasma glucose is the major carbon source of milk lactose.^{134, 135} Lactose and other MOS are most likely accumulated in the secretory vesicle and secreted by exocytotic fusion with the apical plasma membrane.¹³⁶ Lactose itself is produced in the mammary gland by β 1–4-galactosyltransferase 1 (β 1–4GalT1) bound to α -lactalbumin in a lactose synthase complex.^{137–139} However, most of the specific glycosyltransferases that are responsible for the formation of HMOS structures with specific glycosidic linkages have not been identified. The best understood examples are human a1-2-fucosyltransferase FUT2 encoded by the secretor (Se) gene^{71, 140} and α 1–3/4-fucosyltransferase FUT3 encoded by the Lewis (*Le*) gene⁷⁴ that are responsible for the formation of $\alpha 1$ –2- and a1-3/4-linked fucosides, respectively, in human mammary glands.^{130, 141} Lewis (Le) geneindependent a 1-3-fucosyltransferase presented in all women has also been described.^{11, 14} Transgenic introduction of a human a 1-2-fucosyltransferase gene to mice was shown to allow the mice to express large quantities of 2'-fucosyllactose¹⁴² which is a good indication of the ability of the mammary gland in producing corresponding oligosaccharides in the presence of suitable glycosyltransferases. Similar success was achieved for the transgenic manipulation of mice, but not rabbit, using other glycosyltransferases including a homologous galactosyltransferase and different fucosyltransferases.¹⁴³

The presence of several glycosyltransferases in human milk has been confirmed. For example, $\beta 1$ -4GalT1,^{144, 145} $\alpha 1$ -3- and $\alpha 1$ -4-fucosyltransferases,¹⁴⁶ as well as an

 α 1–3/4-fucosyltransferase^{147–149} have been purified from human milk. The activity of β 1–3-*N*-acetylglucosaminyltransferase was identified in human colostrums but not in bovine (Holstein and Jersey cow) colostrums studied.¹⁵⁰ In addition to the presence of fucosyltransferase activity in human milk, α -fucosidase activity has also been identified.¹⁵¹

Enzymes purified from human milk have been used for the synthesis. For example, partially purified $\alpha 1-3/4$ -fucosyltransferase from human milk was used for synthesizing sialyl Lewis a,¹⁵² Lewis a and Lewis x¹⁵³ including their deoxy analogs,¹⁵⁴ sulfated Lewis x,¹⁵⁵ and multivalent tyrosinamide-tagged Lewis x structures.^{156, 157} Purified human milk fucosyltransferase preparation was also used for the synthesis of tumor-associated trimeric Lewis x¹⁵⁸ and its sialylated structures,¹⁵⁹ sialyl Lewis a and sialyl Lewis x tetrasaccharide structures modified at the C-2 position of the glucose residue at the reducing end.¹⁶⁰ Fucosylation of lacto-N-neohexaose (LNnH) by a partially purified human milk a1-3-fucosyltransferase was found to add fucose at the LacNAc units of LNnH in the non-reducing end.^{161, 162} Human milk a1–3FucTs were also shown to fucosylate chitin oligosaccharides containing 2-4 GlcNAc units.¹⁶³ Purified human milk β 1–4GalT was used together with a partially purified rat liver β 1–3GalT, a recombinant core 2 β 1–6GlcNAcT, and a recombinant human α 1–3FucT in synthesizing a sialyl Lewis x hexasaccharide.¹⁶⁴ Carbon 13-labeled linear N-acetylpolylactosamines (LacNAc)_n were enzymatically synthesized at 10–100 µmol scale using the partially purified and immobilized bovine milk β 1–4GalT and human serum β 1–3GlcNAcT.¹⁶⁵ N-Acetylglucosaminyltransferase I (GnT-I) purified from human milk was shown to be able to catalyze the transfer of deoxy derivatives of GlcNAc.^{166, 167} These synthetic applications of human milk enzymes provide important information about their properties. Nevertheless, the syntheses were limited to small scales and were mostly used for HMOS derivatives instead of natural HMOS structures with a free reducing end.

4. Functions Of HMOS

The functional studies of HMOS were usually carried out using mixtures of HMOS that were isolated from human milk pools. The benefits of breast-feeding was observed as early as the end of the 19th century.³⁸ Increasing evidence has now shown that HMOS contribute significantly to the health of breast-fed infants via several mechanisms by serving as listed in the following:¹, 2, 15, 35, 38, 44, 45, 57, 133, 168–177

- 1. Prebiotics: HMOS are carbon and energy sources preferably used by beneficial bacteria such as probiotic bifidobacteria, thus promoting their growth, which in turn produce lactic acid and short chain fatty acid to decrease the pH of the gut, making it less desirable for the growth of pathogens. The predominant growth and colonization of bifidobacteria allow them to compete well pathogens for the limited nutrient available in the gut. Bifidobacteria also occupy the epithelia binding sites and make them less available for the binding of pathogens. Some antimicrobial substances released by bifidobacteria also generate an unfavorable environment for pathogens.⁴⁷
- 2. Antiadhesive antimicrobials: HMOS mimic the glycan structures presented on the surface of gut epithelium and serve as soluble decoy receptors to pathogenic

bacteria to decrease their binding to infant gut surface for colonization, thus lowering the risk for viral, bacterial and protozoan parasite infections. HMOS can also serve as inhibitors for toxins released by pathogenic bacteria.

- **3.** Immunomodulators: Evidence has shown that HMOS can modulate epithelial and immune cell responses. Some HMOS can directly influence the gut epithelium functions,¹⁷⁸ reduce excessive mucosal leukocyte infiltration and activation which can lower the risk for necrotizing enterocolitis (NEC), one of the most common and fatal intestinal disorders in preterm infants. *Bifidobacterium infantis* grown on HMOS can also change the functions of intestinal cells.⁴³
- 4. Nutrient providers for brain: Some HMOS, mainly sialylated ones, may also be providers of sialic acid for the synthesis of sialic acid-containing glycolipids (gangliosides) and glycoproteins important for the development of brain and cognition of infants.

These functions have been discussed quite thoroughly in several excellent reviews published recently.^{1, 35, 38, 44, 45, 61, 133, 168–172} The functional roles of individual HMOS species, however, are less clear. This is mainly due to the unavailability of sufficient amounts of pure HMOS for detailed functional studies. Only a handful examples have been shown. These are discussed briefly in the sections below as three categories.

4.1 Neutral non-fucosylated HMOS

Neutral non-fucosylated HMOS constitute the core structures or the backbones of all HMOS. Despite earlier studies on identifying β-GlcNAc-containing oligosaccharides and polysaccharides in human milk as "bifidus factors", ^{19, 179} their identities have not been elucidated conclusively. The discovery of a novel galactose operon responsible for the assembly of GNB/LNB pathway in Bifidobacterium longum JCM1217 for galacto-N-biose (GNB) and lacto-N-biose (LNB) consumption 10 years ago pointed to lacto-N-biose (LNB, Galβ1–3GlcNAc) presented at the non-reducing end of many neutral non-fucosylated HMOS as a potential "bifidus factor".⁹ This was further supported by the property of LNB in selective stimulating the growth of bifidobacteria, but not *Clostridia, Enterococci*, and Lactobacillus.^{180–182} The extracellular lacto-N-biosidase, $\alpha 1-2$ -fucosidase, $\alpha 1-3/4$ fucosidase, and sialidase of *B. bifidum*^{183–185} can de-cap fucosylated and/or sialylated HMOS to release their core structures which can then be used by its extracellular lacto-Nbiosidase to produce LNB.¹⁸⁶ LNB can be transported into the bacterium by the GNB/LNB transporter in the GNB/LNB pathway and be metabolized by other enzymes involved in the GNB/LNB pathway.¹⁸⁷ On the other hand, LacNAc-terminated core HMOS can be broken down by extracellular β -galactosidase and β -*N*-acetylhexosaminidase of *B. bifidum*.¹⁸⁸

Among bifidobacteria species commonly found in breast-fed infant such as *B. longum* subsp. *longum*, *B. longum* subsp. *infantis*, *B. bifidum*, and *B. breve*¹⁷⁵ *B. longum* subsp. *infantis* (e.g. JCM1222) and *B. bifidum* (e.g. JCM1254) were both found to consume both type I and type II HMOS core structures equally well. The other two species tested had preference towards LNT, but not LNnT. The *B. longum* subsp. *infantis* strain tested also consume mono- and di-fucosylated LNT/LNnT, disaccharides and monosaccharides

monitored in the experiment quite well.¹⁸² LNnT was further confirmed to provide advantages for *B. infantis* versus *B. thetaiotaomicron* in both *in vitro* growth studies and germ-free mice studies.¹⁸⁹

Different from *B. bifidum* which express extracellular glycosidases, *B. longum* subsp. *infantis* express internal glycosidases^{190–192} and rely on their glycan ABC transporters¹⁹³ for internalization of the corresponding HMOS.¹⁷⁵ The extracellular glycosidases on some bacteria such as *B. bifidum* could be used as a mechanism to release components from HMOS which can be readily transported into *B. longum* subsp. *infantis* or other bacteria for consumption. The symbiotic sharing of HMOS and components could be one of the mechanisms used to shape the gut microbiota. The enrichment of bifidobacteria in infant gut could be the result of coevolution of the bacteria and milk ingredients including HMOS.¹⁷⁵, 182

LNT is a carbon source that can be used by most bifidobacteria.¹⁸² LNT in HMOS, and may be other HMOS with Gal at the non-reducing end, was shown to reduce *Entamoeba histolytica* (a protozoan parasite infecting ~ 50 million people and causing ~100,000 deaths per year¹⁹⁴) attachment and its cytotoxicity towards human intestinal epithelia HT-29 cells in a dose-dependent manner.¹⁹⁴ Further *in vivo* studies are needed to show the prebiotic and antimicrobial potentials of LNT.

In comparison, LNnT was shown to be a selective carbon source for certain bifidobacteria such as *B. longum* subsp. *infantis* and *B. bifidum*. LNnT was also shown to have immunosuppressive functions¹⁹⁵ and can inhibit the binding of *Streptococcus pneumoniae* to ciliated chinchilla tracheal epithelium.¹⁹⁶ Higher concentrations of LNnT in the milk of HIV-infected women was found to be associated with reduced postnatal transmission via breastfeeding.¹⁹⁷ Therefore, LNnT is a potential candidate for developing prebiotics and therapeutics against infectious disease.¹⁹⁸

4.2 Fucosylated HMOS

Fucosylated HMOS are the most abundant HMOS species.³³ Their prebiotic, antiadhesive antimicrobial, and immunomodulation activities have been shown.

2'FL, 3FL, and LDFT were shown to selectively promotes the growth of bifidobacteria.¹⁹⁹ Fucosylated HMOS including 2'FL, 3FL, LDFT, LNFP I/II/III, LNDFH I, and LNDFHII showed preferred consumption by *B. longum* subsp. *infantis* and *B. bifidum* compared to *B. longum* subsp. *longum* or *B. breve*.¹⁸² In fact, five fucosidases have been identified from *B. longum* subsp. *infantis* strain ATCC 15697 and characterized. Their ability in using fucosylated HMOS was confirmed.¹⁹⁰

Several examples have been shown for the antiadhesive antimicrobial functions of fucosylated HMOS including antibacterial, antiyeast, and antiviral activities. Fucosylated HMOS were also found to bind norovirus²⁰⁰ and inhibit the adhesion of an enteropathogenic *Escherichia coli* (EPEC) to HEp-2 cells.²⁰¹ A minor neutral fucosylated HMOS component was shown to protect suckling mice from the diarrheagenic effects caused by heat-stable enterotoxin of *E. coli*.²⁰² α 1–2-Fucosylated HMOS were shown to inhibit the adherence

of Std fimbriated *Salmonella enterica* serotype *Typhimurium* to Caco-2 cells.²⁰³ They also inhibit the binding of *Campylobacter jejuni* to intestinal H(O) antigen and lower the chance of infection²⁰⁴ and potentially protect infants against diarrhea caused by Campylobacter or calicivirus.²⁰⁵ More specifically, high levels of 2'FL in mother's milk corresponded to lower occurrences of Campylobacter diarrhea of the infants. LDFH I was also shown to correlated to lower incidences of calicivirus diarrhea.²⁰⁵ In addition, $\alpha 1$ –2-fucosylated HMOS, but not those of Lewis blood group-type, were found to inhibit the binding of *Candida albicans* yeasts to human buccal epithelia cells.²⁰⁶ On the other hand, Lewis blood group antigen-containing HMOS bind well to dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN), competing against human immunodeficiency virus (HIV) surface glycoprotein gp120 binding to DC-SIGN *in vitro*.²⁰⁷ Indeed, breastfeeding with human milk with high concentrations of $\alpha 1$ –2-fucosylated HMOS and $\alpha 1$ –3-fucosylated was found to be protective against mortality for HIV-exposed uninfected (HEU) children during breastfeeding.²⁰⁸ Lewis b (Le^b) antigens including Le^b-terminated LNDFH I that was synthesized enzymatically were shown to bind to *Helicobacter pylori*.^{209, 210}

The immunomodulating function of fucosylated HMOS was represented by Lewis x-type LNFP III which was shown to have immunosuppressive functions.¹⁹⁵ It was able to activate macrophages *in vitro* which can further activate natural killer (NK) cells.²¹¹ HMOS containing Lewis blood group antigens were also shown to reduce selectin-mediated cell-cell interactions.^{176, 212} 2'FL and 3FL were shown to decrease colon motor contractions in a dose-dependent fashion with a better activity observed for 3FL than for 2'FL.¹⁷⁸

The understanding of the important roles of $\alpha 1$ –2- and $\alpha 1$ –3/4-fucosylated HMOS for infant health is greatly facilitated by the presence of nursing mothers with differences on the secretor status (determined by $\alpha 1$ –2-fucosyltransferase FUT2) and Lewis blood type (determined by $\alpha 1$ –3/4-fucosyltransferase FUT3). Bifidobacteria were shown to be established earlier and more often in infants fed by secretor mothers.²¹³ Mother's milk with a higher ratio of $\alpha 1$ –2-fucosylated versus non- $\alpha 1$ –2-fucosylated HMOS was shown to provide protection of breast-fed infants against diarrhea.²¹⁴

The secretor status of premature infants was also shown to be a predictor for the outcome of infants on their survival or susceptibility to diseases. Low or non-secretor status was associated with a higher death rate, higher incident of necrotizing enterocolitis (NEC) and Gram-negative sepsis.²¹⁵

4.3 Sialylated HMOS

Sialylated HMOS are charged species and represent about 20% of HMOS.³⁰ Their prebiotic, antiadhesive antimicrobial, and immunomodulating activities as well as their nutritional value for infant brain development have been shown.

A sialylated HMOS fraction was shown to inhibit the adhesion of *Escherichia coli* serotype O119, *Vibrio cholerae*, and *Salmonella fyris* to differentiated Caco-2 cells.²¹⁶ As hemagglutinins on the surface of influenza viruses bind to sialylated glycans on host cell surface, it is not a surprise that sialylated HMOS bind to influenza virus or inhibit the viral hemagglutinin binding to its ligand.²¹⁷

Sialylated HMOS have been shown to influence lymphocyte maturation²¹⁸ and have anti-infective and immunomodulating effects.³⁸ Sialylated HMOS, but not non-sialylated HMOS, reduce leukocyte rolling and adhesion in a dose-dependent manner.¹⁷⁶ In fact, sialylated HMOS fraction in a physiological range (12.5–125 μ g/mL) was shown to be even better than soluble sialyl Lewis x in inhibiting leukocyte rolling and adhesion. 3'SL and 3'S-3FL were further identified to be the key ingredients and were suggested to contribute to the lower incidence of inflammatory diseases in breast-fed infants.¹⁷⁶ Similarly, sialylated HMOS reduce platelet-neutrophil complex formation and subsequent neutrophil activation in an ex vivo model with whole human blood.²¹²

Sialylated HMOS may also be used as source of sialic acid for the synthesis of sialic acid-containing glycolipids (gangliosides) and glycoproteins important for the development of brain and cognition of infants.⁴⁵

The simplest and the most well studied sialylated HMOS are sialyllactose including 6'SL and 3'SL. Sialyllactose inhibited cholera toxin induced fluid accumulation in a rabbit intestinal loop model. These effects are believed to be responsible for the activity of human milk and its low molecular weight fraction in inhibiting cholera toxin B subunit binding to monosialoganglioside (GM1).²¹⁹ Sialyllactose was also shown to inhibit the binding of Aspergillus fumigatus conidia to laminin extracted from mouse sarcoma tumor²²⁰ and the binding of Pseudomonas aeruginosa 8830 to immobilized asialo GM1 in a microtiter plate assay²²¹ although the mechanism for the latter is unknown. Sialyllactoses were also shown to induce differentiation in transformed human intestinal cells HT-29 and human intestinal epithelial cells HIEC.²²² 6'SL alone or with 3'SL, but not 3'SL alone or oligofructose alone, was shown to enhance the adhesion of B. longum subsp. infantis strain ATCC15697 to HT-29 human intestinal cells.²²³ 3'SL was shown to bind to polyomarvirus.²²⁴ It inhibited the binding of S fimbriated *E. coli* to endothelial and epithelial.^{225, 226} It also inhibited the adhesion of Helicobacter pylori binding to human epithelial cells in vitro and was shown to decrease Helicobacter pylori colonization in a rhesus monkey antiadhesive therapy model.²²⁷ 3'SL was shown to inhibit the binding of some sialyl oligosaccharides to Helicobacter pylori,²²⁸ E. coli S-fimbriate,²²⁹ and influenza viruses.¹⁷³

The 3'SL level in human milk, however, can also be an indicator of HIV infection. Higher relative abundances of 3'SL were shown in the milk of HIV-infected mothers²³⁰ and in the milk of mothers who transmit HIV to their babies via breastfeeding.¹⁹⁷

Another exiting example about the potential use of sialylated HMOS is their application in treating necrotizing enterocolitis, one of the most common and fatal intestinal disorders in preterm infants^{231, 232} that does not currently have an ideal therapeutic outcome.^{233–235} A single sialylated HMOS, disialyllacto-*N*-tetraose (DSLNT), but not its non-sialylated or mono-sialylated analog, was identified as a specific HMOS component that is effective for preventing necrotizing enterocolitis (NEC) in a neonatal rat model.²³⁶ Low concentrations of DSLNT in mother's milk are corresponding to an increased risk of NEC in the preterm very-low-birth weight infants.²³⁰

5. Production Of HMOS By Enzyme-Catalyzed Processes

Chemical synthesis of more than 15 different HMOS and derivative $(2'FL,^{237} 3FL,^{237} LDFT,^{237} LNT,^{238-240} LNnT,^{238, 241} LNFP I,^{239, 242} LNFP III^{242-245} and its protected form,^{246} LSTa and LSTd (Neu5Aca2–3LNnT, not found in human milk) with an aglycon,^{247, 248} LNDFH I with a <math>\beta$ -linked aglycone,²⁴⁹ *p*LNnH,^{241, 250} LNnH²⁵¹ and its protected forms,^{252, 253} *i*LNO,²⁵⁴ *p*LNnO²⁴¹ and its protected form,²⁵⁵ trifucosylated *p*LNnO in its protected form,²⁵⁵ DF-LNH II,^{256, 257} and DF-LNnH^{256, 257}) with 3–11 monosaccharide units have been reported including recent successes in the synthesis of LNFP I and its a1–2-fucosylated LNnT analog using one-pot glycosylation approaches.²⁵⁸ These chemical synthetic efforts are out of the scope of this review. The focus of this section will be a survey on enzyme-catalyzed processes for the production of HMOS.

The production of only a handful of HMOS has been reported using enzyme-catalyzed processes²⁵⁹ and the synthesized HMOS are limited to those with relatively simple structures. Despite the success on the characterization of mammalian enzymes and purification of several glycosyltransferases from human milk, their application in synthesis has been limited due to the difficulties in obtaining them in large amounts and in an economically efficient manner. On the other hand, bacteria express a wide array of glycosyltransferases which are responsible for the construction of diverse lipopolysaccharides (LPS) and capsular polysaccharide structures. Some of these glycan structures mimic those found on human cell surfaces and those in HMOS.^{260, 261} Therefore, bacteria are a rich source of glycosyltransferases that can be used for the synthesis of HMOS as well as the glycans and glycoconjugates presented on human surface.^{262–265} Recombinant bacterial glycosyltransferases have been increasingly used for the synthesis of several HMOS structures in enzymatic, chemoenzymatic, whole cell, and living cell approaches.

Early enzymatic methods used expensive sugar nucleotides as donor substrates for glycosyltransferases for the production of HMOS. Glycosyltransferase-catalyzed reactions with in situ donor regeneration cycles that applied for preparative-scale synthesis of oligosaccharides^{266–268} can also be used for the synthesis of HMOS. Recently, highly efficient one-pot multienzyme (OPME) systems have been established for the synthesis of HMOS.^{264, 269–271} These systems use inexpensive, free monosaccharides as starting materials, which are enzymatically converted to sugar nucleotides with or without the formation of sugar-1-phosphate intermediates. The activated sugars in the forms of sugar nucleotides are supplied to the corresponding glycosyltransferases in one-pot for the formation of the corresponding oligosaccharides. Multiple OPME systems can be used in sequential to build up more complex oligosaccharides.^{269, 272} The high efficiency of the systems is facilitated by the elucidation of novel salvage pathways of sugar nucleotide biosynthesis as well as the identification and characterization of new bacterial glycosyltransferases and mutants with high expression levels in *E. coli*, good solubility and stability, and high activity.

Much progress has been made recently in identifying glycosyltransferase mutants with improved functions and many of these successes are based on protein crystal structure-

based rational design and some are from directed evolution coupled with high-throughput screening methods.^{262, 273} These are effective approaches for obtaining additional or better catalysts that are not readily available from nature.

If not all glycosyltransferases that are responsible for formation of desired HMOS are available, enzymatically synthesized oligosaccharide derivatives can be as building blocks (or synthons) for chemical synthesis of more complex HMOS and derivatives. Such chemoenzymatic methods have been explored for the synthesis of sialyl galactosides,^{274, 275} sialyl Lewis x tetrasaccharides,^{276, 277} protected sialyllacto-*N*-tetraose a (LSTa, Neu5Aca2–3LNT) and LSTd (Neu5Aca2–3LNnT,^{126, 263} has not been found in human milk),²⁷⁸ and an LNT derivative²⁷⁹. The obtained LNT derivative was further used as a glycosyltransferase acceptor for the production of LSTa derivatives by OPME enzymatic sialylation.²⁷⁹

A limited number of HMOS have also been synthesized by whole cell synthesis and engineered *E. coli* living cell fermentation approaches. Both approaches take a good use of microorganisms' own metabolic machinery for the production of some components (such as nucleotides, monosaccharides, and/or or sugar nucleotides) from less expensive materials (simple carbon and energy source such as glycerol or glucose). One of the limitations of the living cell system is the restriction of the oligosaccharide transporter systems for transfer acceptors from external sources into the cells for the product formation.²⁶²

Alternative enzymatic synthetic strategies using glycosidases, trans-glycosidases, and glycosidase mutants designed for synthesizing carbohydrates (e.g. glycosynthase²⁸⁰) have also been developed for obtaining HMOS. These methods require the use of glycosylated donors which may not be readily available. The synthetic donors used have to be chemically synthesized and may not be stable.^{281, 282} Low yields and poor regioselectivity are also common problems for glycosidase-catalyzed reactions. Strategies to improve the trans-glycosylation reactions of glycosidases including controlling acceptor/donor ratio and reaction time, removing product continuously, enzyme immobilization and recycling, using cosolvents, and enzyme engineering have been reviewed recently.²⁸³

Examples of HMOS that have been synthesized as their natural oligosaccharide forms with a free reducing end using enzymatic, whole cell, and living cell approaches are shown in the following sections.

5.1 2'FL

Enzymatic production of 2'FL (18 mg, 65% yield) from lactose was achieved using a reaction catalyzed by *Helicobacter pylori* NCTC 364 α 1–2-fucosyltransferase (glutathione S-transferase or GST fusion was shown to improve the expression of soluble protein)²⁸⁴ using GDP-L-fucose (78 mg, 78% yield) produced from GDP-D-mannose by enzymatic reactions catalyzed by *E. coli* K-12 GDP-D-mannose 4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose 3,5-epimerase-4-reductase.²⁸⁵

Living cell biosynthesis of 2'FL (1.23 g/L, 20% yield) from lactose (14.5 g/L) in batch fermentation was achieved using *E. coli* JM109(DE3) cells engineered to overexpress *Helicobacter pylori* 26695 strain (ATCC 700392) a1–2-fucosyltransferase²⁸⁶

and overproduce GDP-fucose.²⁸⁷ The production of 2'FL (6.4 g/L) was further improved using an engineered *Helicobacter pylori* α 1–2-fucosyltransferase by adding three aspartate residues at its N-terminus in an alternative expression host obtained by engineering *E. coli* BL21star(DE) strain to delete its endogenous lactose operon and to introduce a *lacZ M15*containing modified lactose operon from *E. coli* K-12.²⁸⁸

An improved large-scale production of 2'FL (20 g/L) from lactose and glycerol was achieved using an antibiotic-free fed batch fermentation (13 L) of engineered *E. coli* JM109 (*lac* Y^+ , *lacZ*⁻) cells. The cells were engineered by chromosome incorporation of genes involved in the *de novo* GDP-L-fucose biosynthetic pathway, two copies of *Helicobacter pylori* α 1–2-fucosyltransferase *futC* gene, and *Bacteroides fragilis* bifunctional fucokinase and GDP-fucose pyrophosphorylase *fkp* gene involved in the salvage pathway of GDP-fucose formation to the chromosome.²⁸⁹

2'FL production was also achieved in the milk of transgenic mice by introducing to mice a fusion gene containing a human α 1–2-fucosyltransferase gene downstream of a murine whey acidic protein promoter and upstream of a polyadenylation signal.¹⁴² The same transgenic manipulation on rabbits seemed to interfere with their lactation process.²⁹⁰ The presence of glycoconjugates containing Fuca1–2Gal epitope reduces the rate and duration of pathogen colonization in pups inoculated with pathogenic strains of *Campylobacter jejuni.*²⁰⁴

Several α 1–2-fucosynthases were obtained from *Bifidobacterium bifidum* α 1–2-fucoisdase (AfcA), an inverting glycosidase, by mutating the amino acid residues involved in catalysis (N421G, N423G, or D766G).^{183, 291} The D766G mutant was found to be the most effective enzyme in catalyzing the synthesis of 2'FL from β -L-fucosyl fluoride (10 mM) and lactose (30 mM). A 6% yield was obtained based on the β -L-fucosyl fluoride donor substrate used.²⁹²

5.2 3'SL and 3'SLN

Neu5Aca2–3Lac (3'SL) and Neu5Aca2–3LacNAc (3'SLN) were synthesized using a onepot three-enzyme (OP3E) system containing an *E. coli* sialic acid aldolase (EcNanA),^{262, 293} *Neisseria meningitidis* CMP-sialic acid synthetase (NmCSS),²⁹³ and a multifunctional *Pasteurella multocida* a2–3-sialyltransferase 1 (PmST1).²⁹⁴ The amount of the enzyme used and the reaction time needed to be controlled to allow the optimal production of the product due to the multi-functionality of PmST1. The synthesis can be improved by replacing the wild-type PmST1 with a PmST1 E271F/R313Y double mutant which has retained a2–3-sialyltransferase activity while with >6000-fold decreased a2–3-sialidase activity.²⁹⁵ PmST1 M144D mutant with decreased donor hydrolysis and lowered a2–3sialidase activities²⁹⁶ can also be used for high efficient synthesis of 3'SL and 3'SLN. The sialosides can also be synthesized from Neu5Ac and a suitable acceptor using a one-pot two-enzyme system containing NmCSS and a sialyltransferase.

Production of 3'SL and 3'SLN has also been reported from CMP-Neu5Ac and lactose by catalyzed a *Pasteurella multocida* a2–3-sialyltransferase²⁹⁷ or *Pasteurella dagmatis* a2–3-sialyltransferase.^{298, 299}

The α 2–3-trans-sialidase activity of *Pasteurella multocida* α 2–3-sialyltransferase (GenBank accession number AAK02272) (PmST) which differs from PmST1 protein sequence by three amino acid residues (N105D, Q135R, and E295G) and has α 2–3- and α 2–6- dual trans-sialidase activities was used for the synthesis of 3'SL from lactose and casein glycomacropeptide (whey protein). The product 3'SL was accumulated up to 2.75 mM from lactose (100 mM) and 5% (w/v) casein glycomacropeptide (containing 9 mM bound sialic acid) under an optimal condition at pH 6.4 and 40 °C for 6 hours.³⁰⁰

The trans-sialidase activities of *Bacteroides fragilis* sialidase,³⁰¹ *Arthrobacter ureafaciens* or *Bifidobacterium infantis* sialidase,³⁰² and *Trypanosoma cruzi* α 2–3-trans-sialidase have also been explored for the synthesis of 3'SL.^{303, 304} Low or moderate yields were achieved.

A fusion protein of NmCSS and *Neisseria meningitidis* a2–3-sialyltransferase (Nma2–3ST) was used in a sugar nucleotide regeneration reaction for the synthesis of 3'SL (68 g in a partial purified solid form, 68% yield) at the 100 gram scale from lactose, Neu5Ac, phosphoenolpyruvate, and catalytic amounts of ATP and CMP.³⁰⁵

Large-scale production of 3'SL was also achieved using a whole cell approach.³⁰⁶ In this process, *Corynebacterium ammoniagenes* DN510 cells (for the production of UTP from inexpensive orotic acid and converting CMP to CDP) and three recombinant *E. coli* strains (containing *E. coli* K12 CTP synthetase, *E. coli* K1 CMP-Neu5Ac synthetase, and *Neisseria gonorrhoeae* α2–3-sialyltransferase respectively) were permeabilized by treating cell pellets with polyoxyethylene octadecylamine (Nymeen S-215) and dimethylbenzenes (xylene). Multiple grams of 3'SL (0.99 g, 36% yield and 72 g, 44% yield) were synthesized from lactose, Neu5Ac, and orotic acid at 32 °C for 11 h.³⁰⁶

3'SL (2.6 g/L, 49% yield) has also been produced from Neu5Ac and lactose fed to living *E. coli* (*lac Y*⁺, *lacZ*⁻, *nanT*⁺, *nanA*⁻) cells engineered to express *N. meningitidis* CMP-Neu5Ac synthetase (NmCSS) and an *N. meningitidis* L3 strain MC58 α 2–3-sialyltransferase (Nm2–3ST). The knockout of *lacZ*⁻ and *nanA*⁻ genes was to ensure that the lactose and Neu5Ac fed to the cells were not broken down by the β -galactosidase and sialic acid aldolase, respectively. Neu5Ac was transported into the cells by Neu5Ac permease NanT and β -galactoside permease LacY endogenous to the *E. coli* host cells were responsible for transporting exogenous Neu5Ac and lactose, respectively, into *E. coli* cells for the production of 3'SL.³⁰⁷

To decrease the cost for 3'SL production, the engineered 3'SL biosynthetic *E. coli* K12 cells were modified further by deleting ManNAc kinase *nanK* gene and incorporating plasmids for the expression of *Campylobacter jejuni* strain ATCC43438 *neuABC* genes encoding GlcNAc-6-phosphate 2-epimerse, sialic acid synthase, and CMP-Neu5Ac synthetase to produce CMP-Neu5Ac from endogenous UDP-GlcNAc and avoid the need of exogenous Neu5Ac. Using this improved engineered bacterial strain, a higher concentration (25 g/L) of 3'SL was obtained.³⁰⁸

5.3 6'SL and 6'SLN

Neu5Aca2–6LacNAc (6'SLN) was synthesized using a similarly OP3E sialylation system as described above for the synthesis of 3'SL and 3'SLN except for replacing the PmST1 by *Photobacterium damselae* a2–6-sialyltransferase (Pd2,6ST).³⁰⁹ Neu5Aca2–6Lac (6'SL) can also be synthesized similarly using the same OP3E system as shown for the synthesis of 6'SL derivatives.

Both 6'SL and 6'SLN have been synthesized from CMP-Neu5Ac and lactose using *Pasteurella dagmatis* α 2–3-sialyltransferase P7H/M117A double mutant which was completely switched to an α 2–6-sialyltransferase.²⁹⁸

More recently, 6'SL (3.33 mM) was synthesized from lactose (100 mM) and casein glycomacropeptide (containing 9 mM bound sialic acid) at pH 5.4 and 40 °C for 8 hours using the α 2–6-trans-sialidase activity of PmST (GenBank accession number AAK02272) which has the dual α 2–3- and α 2–6-trans-sialidase activities.³⁰⁰ PmST1 P34H mutant with α 2–6-trans-sialidase activity was used to further improve the regio-selective production of 6'SL versus 3'SL.

6'SL was also produced together with its disialylated derivative, 6,6'-disialyllactose, using a living cell system engineered to overexpress *Photobacterium sp.* JT-ISH-224 α2–6sialyltransferase (Psp2,6ST)^{304, 310} with *Campylobacter jejuni* strain ATCC43438 *neuABC* genes encoding GlcNAc-6-phosphate 2-epimerse, sialic acid synthase, and CMP-Neu5Ac synthetase.³¹¹ A 6'SL derivative Kdoα2–6Lac was also able to be produced using a similar system with Psp2,6ST gene under the control of a strong Ptrc promoter and *neuABC* genes under the control of a weaker Plac promoter.³¹¹

5.4 LNT2, LNnT, LNnH, LNnO, LNnD, LSTd, and disialyl oligosaccharides

Recently, two β -*N*-acetylhexosaminidases HEX1 and HEX2 identified from soil-derived metagenomic library screening were found to be able to catalyze trans-glycosylation reactions using chitin oligosaccharides as donor substrates and lactose as the acceptor for the formation of lacto-*N*-triose II (LNT2, GlcNAc β 1–3Lac),³¹² the precursor for the synthesis of LNT and LNnT. Although the yields are low (2% and 8% respectively), they have the potential for improvement by mutagenesis.

LNT2 (106.3 mg) was also synthesized from lactose and UDP-GlcNAc catalyzed by bovine serum β 1–3-*N*-acetylglucosaminyltransferase. LNnT (12 mg) was subsequently produced from LNT2 and *ortho*-nitrophenyl β -galactoside by a commercially available *Bacillus circulans* β -D-galactosidase.³¹³

Large-scale production of LNT2 trisaccharide and LNnT in several hundred grams in a 100 L reactor has been reported. LNT2 trisaccharide (250 grams) was synthesized from lactose and UDP-GlcNAc using *E. coli* cells expressing β 1–3-*N*-acetylglucosaminyltransferase (LgtA). LNnT (300 grams, >85% yield) was subsequently synthesized from LNT2 and UDP-galactose using *E. coli* cells expressing β 1–4GalT (LgtB). Sialyllacto-*N*-tetraose d (LSTd, Neu5Aca2–3LNnT, has not been identified in human milk) was further produced

in 50 grams with a 90% yield from LNnT and Neu5Aca2–3Lac using a recombinant *Trypanosoma cruzi* a2–3-trans-sialidase expressed in *E. coli*.²⁶³

LNT2 and LNnT were reported to be produced in kilograms in a fermentation-based system to allow the conduct of clinical trials.^{290, 314} At the tested concentration, LNnT was proven to be stable and safe to use as a component of infant formula although it did not reduce oropharyngeal colonization of *Streptococcus pneumoniae* in children of 6 months or older.³¹⁵

LNnT was also synthesized from 1-thio- β -LNT2 conjugated to a polyethylene glycol (PEG)based dendrimeric support and UDP-Glc using reactions catalyzed by UDP-Gal 4-epimerase and bovine milk β 1–4GalT. In this system, the UDP-Gal 4-epimerase was responsible for the formation of UDP-Gal from less expensive UDP-Glc, thus providing donor substrate for the bovine milk β 1–4GalT for the formation of LNnT. The thio-linked PEG-support was readily cleaved off using mercuric (II) trifluoroacetate (CF₃CO₂)₂Hg (2 equivalents) in acetic acid (0.05 M) at room temperature to release free LNnT (18 mg).³¹⁶

Large-scale production of LNT2 (6 g/L, 73% yield) and LNnT (> 5 g/L), and lower level formation of lacto-*N*-neohexaose (LNnH), lacto-*N*-neooctaose (LNnO), and even lacto-*N*-neodecaose (LNnD) were reported using living *E. coli* JM109 cells (*lacY+ lacZ*⁻) engineered to overexpress *Neisseria meningitidis* β 1–3-*N*-acetylglucosaminyltransferase (NmLgtA) and *Neisseria meningitidis* β 1–4GalT (NmLgtB).³⁰⁷

Enzymatic synthesis of LNT2 (1.36 g, 95% yield), LNnT (1.19 g, 92% yield) and disialyl glycans was successfully achieved using sequential one-pot multienzyme (OPME) systems as shown in FIG. 1 and FIG. 2.²⁶⁹ In these systems, free monosaccharides were added one-by-one at each one-pot systems containing multiple enzymes responsible for catalyzing monosaccharide activating followed by transfer processes. Multiple OMPE systems were used sequentially for building up complex HMOS structures. The combination of several OPME systems were used for the synthesis of disialyl oligosaccharides milk including DSLNnT (236 mg, 99% yield), GD3 tetraose (239 mg, 82% yield), DSLac (112 mg, 93% yield), and DS'LNT (268 mg, 98% yield) which are analogs of disialyl lacto-*N*-tetraose (DSLNT), a hexaose commonly found in human. A monosialylpentaose LSTd (or 3^{***}-sLNnT) (138 mg, 98% yield) was synthesized similarly using sequential OPME systems.²⁶⁹ Similar to DSLNT and HMOS pool,²³⁶ both synthetic DSLNNT and DS'LNT were shown to protect neonatal rats from necrotizing enterocolitis.²⁶⁹

5.5 Fuca1-2LNnT

Fuca1–2LNnT, a monofucosylated pentaose that has not been identified from human milk, was produced together with 2'FL using *E. coli* living cells engineered to overproduce GDP-fucose³²⁵ and LNnT³⁰⁷ with an additional introduction of a modified *H. pylori* strain 26695 α 1–2-fucosyltransferase.³²⁶

5.6 LNFP III, LNnFP V, and LNnDFH

 $\label{eq:lacto-N-neofucopentaose} \ensuremath{\left(LNnFP \ensuremath{V} \right)}, lacto-N-neodifucohexaose (LNnDFH), and a lacto-N-neodifucooctaose [Gal\beta1-4GlcNAc\beta1-3Gal\beta1-4(Fuca1-3)Gal\beta1-4(Fuca1-3)Galba1-4(Fuca1-3)Galba1-4(Fuc$

4(Fuca 1–3)Glc] have been synthesized from lactose using living *E. coli* cells engineered to inactivate genomic *wcaJ* gene involved in colanic acid synthesis and to express NmLgtA, NmLgtB, *Helicobacter pylori* strain 26695 α 1–3-fucosyltransferase FutA (encoded by *HP0379* gene), and RcsA (a positive regulator of the colanic acid operon). Glucose was used as a carbon source.³²⁵ The construct was further modified to improve the yield for the synthesis of LNnDFH (1.7 g/L). In addition, the living cell system containing another *Helicobacter pylori* strain 26695 α 1–3-fucosyltransferase *futB* gene (*HP0651*) was shown to produce both lacto-*N*-neofucopentaose III (LNFP III) (260 mg/L) and LNnFP V (280 mg/L).³²⁷

5.7 LNT

LNT was enzymatically synthesized from LNT2 and *ortho*-nitrophenyl β -D-galactoside using a *Bacillus circulans* ATCC31382 β -galactosidase-catalyzed transglycosylation reaction. Alternatively, LNT (7.1 mg) was able to be synthesized from lactose and Gal β 1–3GlcNAc β *p*NP using *Aureobacterium sp.* L-101 lacto-*N*-biosidase-catalyzed transglycosylation reaction.³¹³ Inherent low yields (19–26%) were observed for typical glycosidase-catalyzed trans-glycosylation reactions.

An LNT benzyl glycoside was efficiently produced from LNT2 benzyl glycoside (synthesized by NmLgtA-catalyzed glycosylation reaction from lactose benzyl glycoside and UDP-GlcNAc) and UDP-Gal using a GST-tagged *Escherichia coli* O55:H7 β 1–3-*N*-acetylglucosaminyltransferase WbgO fusion protein.³¹³

Large-scale production of LNT was not achieved until recently using *E. coli* strain LJ110 (with intact LacY but with *lacZ* knockout) chromosomally integrated with *Neisseria meningitidis* β 1–3-*N*-acetylglucosaminyltransferase *lgtA* and *Escherichia coli* O55:H7 β 1–3-*N*-acetylglucosaminyltransferase *wbgO* genes.³²⁸ Nevertheless, when glucose was used as the carbon source, LNT2 was the major product and only about 5% of the lactose was converted to LNT (219 mg/L).³²⁸ By substituting the glucose with galactose, the yield of LNT production (811 mg/L) was improved by 3.6-fold. Fed-batch cultivation with galactose further improved the efficiency and produced LNT in 173 grams (12.72 g/L).³²⁹

5.8 3FL, LDFT, LNFP II, Le^a tetrasaccharide, and Le^x tetrasaccharide

Several $\alpha 1-3/4$ -fucosynthases were obtained from *Bifidobacterium bifidum* $\alpha 1-3/4$ -fuocisdase (BbAfcB), a retaining glycosidase, by mutating the amino acid residue that was predicted to serve as a nucleophile (D703). Among the D703A, D703C, D703G, and D703S four mutants, D703S mutant was found to be the best $\alpha 1-3/4$ -fucosynthase and was used for the production of several fucosylated HMOS and derivatives using β -L-fucosyl fluoride (40 mM) and a suitable acceptor (100 mM) such as Lac, 2'FL, LNT, LNB, and LacNAc. HMOS and derivatives 3FL, LDFT, LNFP II, Le^a tetrasaccharide, and Le^x tetrasaccharide were obtained in 13%, 5.5%, 41%, 47%, and 55% yields, respectively, based on the β -L-fucosyl fluoride donor substrate used. Increasing the LNB concentration to 200 mM was able to improve the yield to 56%.³³⁰

LNFP I (7% yield) and LNDFH I (6% yield) was synthesized from lactose using several glycosyltransferase-catalyzed reactions with the corresponding sugar nucleotides and a galactosidase-catalyzed reaction with a corresponding synthetic donor. LNT2 (44% yield) was initially synthesized from lactose and UDP-GlcNAc catalyzed by a β 1–3GlcNAcT that was partially purified from bovine blood. LNT (22% yield) was then produced from LNT2 and *ortho*-nitrophenyl- β -galactoside (Gal β *o*NP) using a recombinant *Bacillus circulans* β 1–3-galactosidase. The production of LNFP I (71% yield) was achieved from LNT and GDP-Fuc using a recombinant human α 1–2-fucosyltransferase 1 (FUT1) expressed in a baculovirus system. Finally, LNDFH I (85% yield) was produced from LNFP I and GDP-Fuc by a FUT3-catalyzed reaction using a commercial enzyme.²¹⁰

5.10 Other oligosaccharides

Gram-scale production of globotriose (Gb₃) and globotetraose (Gb₄) oligosaccharides was achieved using bacterial glycosyltransferases and sugar-nucleotides. Gb₃ trisaccharide (5 grams, 75% yield) was synthesized from lactose and UDP-galactose using *Neisseria gonorrhoeae* α 1–4-galactosyltransferase (NgLgtC). Gb₄ tetrasaccharide (1.5 grams, 60% yield) was synthesized from Gb₃ trisaccharide and UDP-GalNAc using *Neisseria gonorrhoeae* β 1–3-*N*-acetylgalactosaminyltransferase (NgLgtD).²⁶³

UDP-galactose (44 g/L) and globotriose Galα1–4Lac (188 g/L) were also produced using permeabilized *Corynebacterium ammoniagenes* cells (for the production of UTP from orotic acid) and *E. coli* cells engineered to overexpress UDP-Gal biosynthetic genes with or without *Neisseria gonorrhoeae* α1–4-galactosyltransferase.³³¹ A whole cell approach using permeabilized *Corynebacterium ammoniagenes* cells (for the production of GTP from GMP) and *E. coli* cells engineered to overexpress *de novo* GDP-Fuc biosynthetic enzymes, phosphoglucomutase, phosphofructokinase, and *Helicobacter pylori* α1–3-fucosyltransferase was also developed for the production of Lewis x trisaccharide (21 g/L in a 30 mL scale, purification yield 32%) from GMP, mannose, and *N*-acetyllactosamine (LacNAc).³³²

The engineered *E. coli* living cell strategy can be used for the synthesis of other HMOS by introducing plasmids for the expression of necessary glycosyltransferases and sugar nucleotide biosynthetic enzymes. For example, gram-scale synthesis of Lewis x tetrasaccharides Gal β 1–4(Fuca1–3)GlcNAc β 1–4GlcNAc (0.62 g) and Gal β 1–4(Fuca1– 3)GlcNAc β 1–3Gal (1.84 g) was achieved by placing four de novo GDP-Fuc biosynthetic gene under *Plac* promoter without knocking out *wcaJ* involved in colanic acid synthesis or introducing RcsA (a positive regulator of the colanic acid operon).³³³ The engineered living cells strategy was also used to produce the oligosaccharide components of gangliosides GM2 and GM1, GalNAc β 1–4(Neu5Aca2–3)Lac and Gal β 1–3GalNAc β 1–4(Neu5Aca2– 3)Lac,³³⁴ has been achieved.

6. Perspectives

Future efforts on HMOS analysis should be focused on elucidating the structures of more complex and longer chain HMOS including those with more than 14 monosaccharide residues that are not currently presented in TABLE IV. These more complex structures are unlikely the byproducts of biosynthesis of HMOS. Although less abundant, they could have significant biological functions. Profiling HMOS in a high-throughput format will also help to find correlation of disease states and the roles of certain populations of HMOS. Various enzyme-catalyzed synthetic methods that have been successfully used in production of relatively simple HMOS include glycosyltransferase-catalyzed reactions with or without cofactor recycling, sialidase and trans-glycosidase-catalyzed reactions, one-pot multienzyme (OPME) and sequential OPME systems, whole cell approaches, and living cell strategies. Such efforts, however, have not been applied for the production of more complex structures, especially the ones with branches. With the limited access to all enzymes needed, especially essential glycosyltransferases, the combination of chemical and enzymatic methods can be used. Such methods have been developed but have not been broadly used for the synthesis of HMOS. The strategy of chemoenzymatic synthesis of asymmetrically branched N-glycan structures^{335, 336} can be readily applicable for the synthesis of branched HMOS structures. Efficient purification methods for large scale production of HMOS either by chemical, enzymatic, or cell-based systems are also in a great demand. The availability of structurally defined more complex individual HMOS species will greatly facilitate their function studies and to explore their prebiotic and therapeutic potentials. Other than functional studies using pooled HMOS and individual pure synthetic HMOS, the synergistic effect of a mixture of two or more structurally defined HMOS should also be investigated as, most likely, a single compound will not provide the desired protection against multiple pathogens.¹⁵

Acknowledgements

X.C. expresses her sincerest appreciation for the invitation to write on the subject from the late Prof. Derek Horton, who provided much needed instructions, but unfortunately could not see the submission of this work. X.C. is also grateful for the editing provided by Prof. David C. Baker. Research activities on milk oligosaccharide projects in the Chen group were supported, in part, by the National Institutes of Health (NIH) grant R01HD065122.

Abbreviations

ATP	adenine 5'-triphoaphate
B. breve	Bifidobacterium breve
B. bifidum	Bifidobacterium bifidum
B. infantis	Bifidobacterium longum subsp. infantis
BiNahK	B. infantis N-acetylhexosamine-1-kinase
B. longum	Bifidobacterium longum subsp. longum
BLUSP	B. longum UDP-sugar synthase
CDP	cytidine 5'-diphoaphate

CMP	cytidine 5'-monophoaphate
CMP-Neu5Ac	cytidine 5'-monophoaphate-N-acetylneuraminic acid
CstII	Campylobacter jejuni a.2–8-sialyltransferase II
СТР	cytidine 5'-triphoaphate
DSLNT	disialyllacto-N-tetraose
EcGalK	E. coli K-12 galactose kinase
EcNanA	<i>E. coli</i> sialic acid aldolase
NmCSS	Neisseria meningitidis CMP-sialic acid synthetase
PmGlmU	<i>P. multocida N</i> -acetylglucosamine 1-phosphate uridylyltransferase
PmPpA	P. multocida inorganic pyrophosphatase
PmST	<i>Pasteurella multocida</i> a.2–3-sialyltransferase (GenBank accession number AAK02272)
PmST1	multifunctional <i>Pasteurella multocida</i> a.2–3- sialyltransferase 1
2'FL	2'-fucosyllactose
3FL	3-fucosyllactose
Fuc	fucose
FucT	fucosyltransferase
FUT2	human α 1–2-fucosyltransferase encoded by the Secretor (<i>Se</i>) gene
FUT3	human α 1–3/4-fucosyltransferase encoded by the Lewis (<i>Le</i>) gene
FutA	Helicobacter pylori strain 26695 a 1–3-fucosyltransferase
Gal	galactose
GalT	galactosyltransferase
GalNAc	N-acetylgalactosamine
GDP	guanidine 5'-diphosphate
GMP	guanidine 5'-monophosphate
GTP	guanidine 5'-triphosphate
Glc	glucose

GlcNAc	N-acetylglucosamine
GlcNAcT	N-acetylglucosaminyltransferase
GNB	galacto-N-biose
GnT-I	N-acetylglucosaminyltransferase I
GST	glutathione S-transferase
E. coli	Escherichia coli
HMOS	human milk oligosaccharides
HPAEC-PAD	high-pH anion-exchange chromatography with pulsed amperometric detection
HPLC	high performance liquid chromatography
Lac	lactose
LacNAc	<i>N</i> -acetyllactosamine
LacY	β-galactoside permease
LDFT	lactodifucotetraose
Le	Lewis
LNB	lacto-N-biose
LNDFH	lacto-N-difuco-hexoase
LNFP	lacto-N-fucopentaose
LNnD	lacto-N-neodecaose
LNnDFH	lacto-N-neodifucohexaose
LNnFP	lacto-N-neofucopentaose
LNnH	lacto-N-neohexaose
LNnT	lacto-N-neotetraose
LNT	lacto-N-tetraose
LNT2	lacto- <i>N</i> -triose II
LPS	lipopolysaccharides
LST	sialyllacto-N-tetraose
MOS	milk oligosaccharides
MS	mass spectrometry

NanT	Neu5Ac permease
NEC	necrotizing enterocolitis
Neu5Ac	<i>N</i> -acetylneuraminic acid, the most abundant sialic acid form in nature
Neu4,5Ac ₂	4-O-acetyl-N-acetylneuraminic acid
NK	natural killer
Nma2–3ST	Neisseria meningitidis a.2–3-sialyltransferase
NmLgtA	<i>Neisseria meningitidis</i> β1–3- <i>N</i> -acetylglucosaminyltransferase
NmLgtB	Neisseria meningitidis \beta1-4-galactosyltransferase
NMR	nuclear magnetic resonance spectroscopy
OPME	one-pot multienzyme
Pd2,6ST	Photobacterium damselae a.2-6-sialyltransferase
Psp2,6ST	Photobacterium sp. JT-ISH-224 a2–6-sialyltransferase
UTP	uridine 5'-triphosphate
Se	Secretor
3'S-3FL	3'-sialyl-3-fucosyllactose
SiaT	sialyltransferase
3'SL	3'-sialyllactose
6'SL	6'-sialyllactose
3'SLN	3'-sialyl- <i>N</i> -acetyllactosamine
6'SLN	6'-sialyl- <i>N</i> -acetyllactosamine

References

- Smilowitz JT; Lebrilla CB; Mills DA; German JB; Freeman SL Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr 2014, 34, 143–169. [PubMed: 24850388]
- Newburg DS Oligosaccharides and glycoconjugates in human milk: their role in host defense. J Mammary Gland Biol Neoplasia 1996, 1, 271–283. [PubMed: 10887501]
- 3. Jenness R The composition of human milk. Semin Perinatol 1979, 3, 225-239. [PubMed: 392766]
- 4. Jensen RG; Blanc B; Patton S The structure of milk: Implications for sampling and storage. B. Particulate constituents in human and bovine milks. in Handbook of Milk Composition. Jensen Rorbert G. Ed. Academic Press, Inc. San Diego, California, USA 1995, 50–62.

- Zopf DA; Smith DF; Drzeniek Z; Tsai CM; Ginburg V Affinity purification of antibodies using oligosaccharide-phenethylamine derivaties coupled to Sepharose. Methods Enzymol 1978, 50, 171– 175. [PubMed: 661574]
- Smith DF; Prieto PA; Torres BV Rabbit antibodies against the human milk sialyloligosaccharide alditol of LS-tetrasaccharide a (NeuAc alpha 2–3Gal beta 1–3GlcNAc beta 1–3Gal beta 1– 4GlcOH). Arch Biochem Biophys 1985, 241, 298–303. [PubMed: 4026321]
- Prieto PA; Smith DF A new ganglioside in human meconium detected with antiserum against human milk sialyltetrasaccharide a. Arch Biochem Biophys 1986, 249, 243–253. [PubMed: 3527068]
- Coppa GV; Pierani P; Zampini L; Carloni I; Carlucci A; Gabrielli O Oligosaccharides in human milk during different phases of lactation. Acta Paediatr Suppl 1999, 88, 89–94.
- 9. Montreuil J; Mullet S Etude des variations des constituants glucidiques du lait de femme au cours de la lactation. Bulletin de la Societe de Chimie Biologique 1960, 42, 365–377. [PubMed: 14423784]
- Chaturvedi P; Warren CD; Altaye M; Morrow AL; Ruiz-Palacios G; Pickering LK; Newburg DS Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology 2001, 11, 365–372. [PubMed: 11425797]
- Gabrielli O; Zampini L; Galeazzi T; Padella L; Santoro L; Peila C; Giuliani F; Bertino E; Fabris C; Coppa GV Preterm milk oligosaccharides during the first month of lactation. Pediatrics 2011, 128, e1520–31. [PubMed: 22123889]
- 12. Viverge D; Grimmonprez L; Cassanas G; Bardet L; Bonnet H; Solere M Variations of lactose and oligosaccharides in milk from women of blood types secretor A or H, secretor Lewis, and secretor H/nonsecretor Lewis during the course of lactation. Ann Nutr Metab 1985, 29, 1–11.
- Kobata A; Yamashita K; Tachibana Y Oligosaccharides from human milk. Methods Enzymol 1978, 50, 216–220. [PubMed: 661578]
- Thurl S; Henker J; Siegel M; Tovar K; Sawatzki G Detection of four human milk groups with respect to Lewis blood group dependent oligosaccharides. Glycoconj J 1997, 14, 795–799. [PubMed: 9511984]
- Newburg DS; Ruiz-Palacios GM; Morrow AL Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr 2005, 25, 37–58. [PubMed: 16011458]
- Polonowski M; Lespagnol A Nouvelles acquisitions sur les composes glucidiques du lai de femme. Bull Soc Chim Biol (Paris) 1933, 15, 320–349.
- 17. Polonowski M; Lespagnol A Sur la nature glucidique de la substance levogyre du lait de femme. Bull Soc Biol 1929, 101, 61–63.
- Polonowski M; Montreuil J Etude chromatographique des polyosides du lai de femme. C. R. Acad. Sci 1954, 238, 2263–2264. [PubMed: 13172966]
- Schönfeld H Über die Beziehungen der einzelnen Bestandteile der Frauenmilch zur Bifidusflora. Jahrb. Kinderheilkd 1929, 113, 19–69.
- 20. Rose CS; Kuhn R; Zilliken F; Gyorgy P Bifidus factor. V. The activity of alpha- and-beta-methyl-*N*-acetyl-D-glucosaminides. Arch Biochem Biophys 1954, 49, 123–129. [PubMed: 13139677]
- 21. Gyorgy P; Norris RF; Rose CS Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch Biochem Biophys 1954, 48, 193–201. [PubMed: 13125589]
- Gyorgy P; Kuhn R; Rose CS; Zilliken F Bifidus factor. II. Its occurrence in milk from different species and in other natural products. Arch Biochem Biophys 1954, 48, 202–208. [PubMed: 13125590]
- Gauhe A; Gyorgy P; Hoover JR; Kuhn R; Rose CS; Ruelius HW; Zilliken F Bifidus factor. IV. Preparations obtained from human milk. Arch Biochem Biophys 1954, 48, 214–224. [PubMed: 13125592]
- 24. Kuhn R; Baer HH Die Konstitution der lacto-N-tetraose. Chem. Ber 1956, 89, 504-511.
- 25. Kuhn R; Baer HH; Gauhe A Kristallisierte fucosido-lactose. Chem. Ber 1956, 89, 2513.
- Kuhn R; Baer HH; Gauhe A Kristallisation und Konstituionsermittlung der lacto-*N*-fucopentaose I. Chem. Ber 1956, 89, 2514–2523.
- Montreuil J Structure de deux triholosides isoles du lai de femme. C. R. Hebd. Seances Acad. Sci 1956, 242, 192–193.

- Kobata A Structures and application of oligosaccharides in human milk. Proc Jpn Acad Ser B Phys Biol Sci 2010, 86, 731–747.
- 29. Egge H; Dell A; Von Nicolai H Fucose containing oligosaccharides from human milk. I.
 Separation and identification of new constituents. Arch Biochem Biophys 1983, 224, 235–253.
 [PubMed: 6870255]
- Ninonuevo MR; Park Y; Yin H; Zhang J; Ward RE; Clowers BH; German JB; Freeman SL; Killeen K; Grimm R; Lebrilla CB A strategy for annotating the human milk glycome. J Agric Food Chem 2006, 54, 7471–7480. [PubMed: 17002410]
- Dai D; Nanthkumar NN; Newburg DS; Walker WA Role of oligosaccharides and glycoconjugates in intestinal host defense. J Pediatr Gastroenterol Nutr 2000, 30 Suppl 2, S23–S33. [PubMed: 10749398]
- Newburg DS; Neubauer SH Carbohydrates in milks: Analysis, quantities, and significance. In: Handbooks of Milk Composition. Jensen Robert G. Ed., 1995, Academic Press, Inc. San Diego, California, USA 1995, 273–349.
- 33. Wu S; Tao N; German JB; Grimm R; Lebrilla CB Development of an annotated library of neutral human milk oligosaccharides. J Proteome Res 2010, 9, 4138–4151. [PubMed: 20578730]
- Wu S; Grimm R; German JB; Lebrilla CB Annotation and structural analysis of sialylated human milk oligosaccharides. J Proteome Res 2011, 10, 856–868. [PubMed: 21133381]
- 35. Newburg DS Glycobiology of human milk. Biochemistry (Mosc) 2013, 78, 771–785. [PubMed: 24010840]
- Engfer MB; Stahl B; Finke B; Sawatzki G; Daniel H Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr 2000, 71, 1589–1596. [PubMed: 10837303]
- Gnoth MJ; Kunz C; Kinne-Saffran E; Rudloff S Human milk oligosaccharides are minimally digested in vitro. J Nutr 2000, 130, 3014–3020. [PubMed: 11110861]
- Bode L Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 2012, 22, 1147–1162. [PubMed: 22513036]
- Hinde K; Lewis ZT MICROBIOTA. Mother's littlest helpers. Science 2015, 348, 1427–1428. [PubMed: 26113704]
- 40. Grulee C; Sanford H; Schwartz H Breast and artificially fed infants; study of the age incidence in morbidity and mortality in 20,000 cases. JAMA 1935, 104, 1986–1988.
- Morrow AL; Ruiz-Palacios GM; Jiang X; Newburg DS Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr 2005, 135, 1304–1307. [PubMed: 15867329]
- 42. Stepans MB; Wilhelm SL; Hertzog M; Rodehorst TK; Blaney S; Clemens B; Polak JJ; Newburg DS Early consumption of human milk oligosaccharides is inversely related to subsequent risk of respiratory and enteric disease in infants. Breastfeed Med 2006, 1, 207–215. [PubMed: 17661601]
- 43. Chichlowski M; De Lartigue G; German JB; Raybould HE; Mills DA Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J Pediatr Gastroenterol Nutr 2012, 55, 321–327. [PubMed: 22383026]
- 44. Etzold S; Bode L Glycan-dependent viral infection in infants and the role of human milk oligosaccharides. Curr Opin Virol 2014, 7, 101–107. [PubMed: 25047751]
- 45. Wang B Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv Nutr 2012, 3, 465S–472S. [PubMed: 22585926]
- 46. Yatsunenko T; Rey FE; Manary MJ; Trehan I; Dominguez-Bello MG; Contreras M; Magris M; Hidalgo G; Baldassano RN; Anokhin AP; Heath AC; Warner B; Reeder J; Kuczynski J; Caporaso JG; Lozupone CA; Lauber C; Clemente JC; Knights D; Knight R; Gordon JI Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [PubMed: 22699611]
- 47. Gibson GR; Wang X Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol 1994, 77, 412–20. [PubMed: 7989269]
- 48. Tao N; Wu S; Kim J; An HJ; Hinde K; Power ML; Gagneux P; German JB; Lebrilla CB Evolutionary glycomics: characterization of milk oligosaccharides in primates. J Proteome Res 2011, 10, 1548–1557. [PubMed: 21214271]

- 49. Levene PA; Sobotka H Lactone formation of lacto- and maltobionic acids and its bearing on the structure of lactose and maltose. J. Biol. Chem 1927, 71, 471–475.
- 50. Kuhn R; Gauhe A Die Konstitution der lacto-N-neotetraose. Chem. Ber 1962, 95, 518-522.
- 51. Kobata A; Ginsburg V Oligosaccharides of human milk. 3. Isolation and characterization of a new hexasaccharide, lacto-*N*-hexaose. J Biol Chem 1972, 247, 1525–1529. [PubMed: 5012321]
- Kobata A; Ginsburg V Oligosaccharides of human milk. IV. Isolation and characterization of a new hexasaccharide, lacto-*N*-neohexaose. Arch Biochem Biophys 1972, 150, 273–281. [PubMed: 4537310]
- Yamashita K; Tachibana Y; Kobata A Oligosaccharides of human milk. Structural studies of two new octasaccharides, difucosyl derivatives of *para*-lacto-*N*-hexaose and *para*-lacto-*N*-neohexaose. J Biol Chem 1977, 252, 5408–5411. [PubMed: 885859]
- Tachibana Y; Yamashita K; Kobata A Oligosaccharides of human milk: structural studies of di-and trifucosyl derivatives of lacto-*N*-octaose and lacto-*N*-neoctaose. Arch Biochem Biophys 1978, 188, 83–89. [PubMed: 677898]
- 55. Strecker G; Fievre S; Wieruszeski JM; Michalski JC; Montreuil J Primary structure of four human milk octa-, nona-, and undeca-saccharides established by 1H- and 13C-nuclear magnetic resonance spectroscopy. Carbohydr Res 1992, 226, 1–14. [PubMed: 1499015]
- 56. Haeuw-Fievre S; Wieruszeski JM; Plancke Y; Michalski JC; Montreuil J; Strecker G Primary structure of human milk octa-, dodeca- and tridecasaccharides determined by a combination of 1H-NMR spectroscopy and fast-atom-bombardment mass spectrometry. Evidence for a new core structure, the *para*-lacto-*N*-octaose. Eur J Biochem 1993, 215, 361–371. [PubMed: 8344303]
- 57. Kunz C; Rudloff S; Baier W; Klein N; Strobel S Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr 2000, 20, 699–722. [PubMed: 10940350]
- 58. Amano J; Osanai M; Orita T; Sugahara D; Osumi K Structural determination by negative-ion MALDI-QIT-TOFMSn after pyrene derivatization of variously fucosylated oligosaccharides with branched decaose cores from human milk. Glycobiology 2009, 19, 601–614. [PubMed: 19240274]
- Kobata A Possible application of milk oligosaccharides for drug development. Chang Gung Med. J 2003, 26, 620–636.
- Pfenninger A; Chan SY; Karas M; Finke B; Stahl B; Costello CE Mass spectrometric detection of multiple extended series of neutral highly fucosylated *N*-acetyllactosamine oligosaccharides in human milk. Int J Mass Spectrom 2008, 278, 129–136. [PubMed: 23538872]
- Urashima T; Kitaoka M; Terabayashi T; Fukuda K; Ohnishi M; Kobata A Milk oligosaccharides. In Oligosaccharides: Sources, Properties, and Applications. Gordon NG Ed. Nova Science Publishers, New York 2011, 1–58.
- Sabharwal H; Nilsson B; Chester MA; Sjoblad S; Lundblad A Blood group specific oligosaccharides from faeces of a blood group A breast-fed infant. Mol Immunol 1984, 21, 1105– 1112. [PubMed: 6513935]
- 63. Strecker G; Trentesaux-Chauvet C; Riazi-Farzad T; Fournet B; Bouquelet S; Montreuil J [Demonstration of oligosaccharidosuria associated with various meliturias, and determination of the structure of the oligosaccharides excreted. Hypothesis concerning the origins of oligosaccharides in biological fluids]. C R Acad Sci Hebd Seances Acad Sci D 1973, 277, 1569– 1572. [PubMed: 4204871]
- 64. Sturman JA; Lin YY; Higuchi T; Fellman JH *N*-Acetylneuramin lactose sulfate: a newly identified nutrient in milk. Pediatr Res 1985, 19, 216–219. [PubMed: 3982882]
- Guerardel Y; Morelle W; Plancke Y; Lemoine J; Strecker G Structural analysis of three sulfated oligosaccharides isolated from human milk. Carbohydr Res 1999, 320, 230–238. [PubMed: 10573860]
- 66. Kuhn R; Gauhe A Bestimmung der bindungsstelle von sialinsaureresten in oligosaccharides mit hilfe von periodat. Chem. Ber 1965, 98.
- 67. Donald AS; Feeney J Separation of human milk oligosaccharides by recycling chromatography. First isolation of lacto-*N*-neo-difucohexaose II and 3'-galactosyllactose from this source. Carbohydr Res 1988, 178, 79–91. [PubMed: 3274083]

- 68. Sugawara M; Idota T A new oligosaccharide 4'-galactosyllactose in human milk. Proceedings of the Annual Meeting of Japan Society for Bioscience, Biotechnology, and Agrochemistry. Sappro, Japan, p. 132. 1995.
- 69. Yamashita K; Kobata A Oligosaccharides of human milk V. Isolation and characterization of a new trisaccharide, 6'-galactosyllactose. Arch Biochem Biophys 1974, 161, 164–170.
- Erney R; Hilty M; Pickering L; Ruiz-Palacios G; Prieto P Human milk oligosaccharides: a novel method provides insight into human genetics. Adv Exp Med Biol 2001, 501, 285–297. [PubMed: 11787692]
- 71. Shen L; Grollman EF; Ginsburg V An enzymatic basis for secretor status and blood group substance specificity in humans. Proc Natl Acad Sci U S A 1968, 59, 224–230. [PubMed: 5242125]
- 72. Grollman EF; Ginsburg V Correlation between secretor status and the occurrence of 2'fucosyllactose in human milk. Biochem Biophys Res Commun 1967, 28, 50–53. [PubMed: 6049848]
- 73. Kobata A; Ginsburg V; Tsuda M Oligosaccharides of human milk. I. Isolation and characterization. Arch Biochem Biophys 1969, 130, 509–513. [PubMed: 5778662]
- 74. Grollman EF; Kobata A; Ginsburg V An enzymatic basis for Lewis blood types in man. J Clin Invest 1969, 48, 1489–94. [PubMed: 5796361]
- 75. Totten SM; Zivkovic AM; Wu S; Ngyuen U; Freeman SL; Ruhaak LR; Darboe MK; German JB; Prentice AM; Lebrilla CB Comprehensive profiles of human milk oligosaccharides yield highly sensitive and specific markers for determining secretor status in lactating mothers. J Proteome Res 2012, 11, 6124–6133. [PubMed: 23140396]
- 76. Dabrowski U; Egge H; Dabrowski J Proton-nuclear magnetic resonance study of peracetylated derivatives of ten oligosaccharides isolated from human milk. Arch Biochem Biophys 1983, 224, 254–260. [PubMed: 6307148]
- 77. Kuhn R; Gauhe A Uber die lacto-difuco-tetraose der Frauenmilch. Justus Liebigs Ann. Chem 1958, 611, 249–252.
- 78. Kuhn R; Brossmer R Uber das durch Viren der influenza-gruppe spaltbare trisaccharid der milch. Chem. Ber 1959, 92.
- 79. Kuhn R Biochemie der rezeptoren und resistenzfaktoren. Von der widerstandsfahigkeit der lebewesen gegen einwirkungen der umwelt. Naturwissenschaften 1959, 46, 43–50.
- Gronberg G; Lipniunas P; Lundgren T; Erlansson K; Lindh F; Nilsson B Isolation of monosialyated oligosaccharides from human milk and structural analysis of three new compounds. Carbohydr Res 1989, 191, 261–278. [PubMed: 2582462]
- Kuhn R; Baer HH; Gauhe A Die Konstitution der lacto-N-fucopentaose II. Chem. Ber 1958, 91, 364.
- Ginsburg V; Zopf DA; Yamashita K; Kobata A Oligosaccharides of human milk. Isolation of a new pentasaccharide, lacto-*N*-fucopentaose V. Arch Biochem Biophys 1976, 175, 565–568. [PubMed: 958318]
- Kuhn R; Baer HH; Gauhe A 2-alpha-L-Fucopyranosyl-D-galaktose und 2-alpha-L-fucopyranosyl-D-talose. Justus Liebigs Ann. Chem 1958, 611, 242–249.
- 84. Kuhn R; Gauhe A Uber ein kristallisiertes, Lea-aktives hexasaccharid aus frauenmilch. Chem. Ber 1960, 93, 647–651.
- Grimmonprez L; Montreuil J [Physico-chemical study of 6 new oligosides isolated from human milk]. Bull Soc Chim Biol (Paris) 1968, 50, 843–855. [PubMed: 5671594]
- 86. Wieruszeski JM; Chekkor A; Bouquelet S; Montreuil J; Strecker G; Peter-Katalinic J; Egge H Structure of two new oligosaccharides isolated from human milk: sialylated lacto-*N*-fucopentaoses I and II. Carbohydr Res 1985, 137, 127–138. [PubMed: 3986846]
- Gronberg G; Lipniunas P; Lundgren T; Lindh F; Nilsson B Isolation and structural analysis of three new disialylated oligosaccharides from human milk. Arch Biochem Biophys 1990, 278, 297–311. [PubMed: 2327786]
- Kobata A; Ginsburg V Oligosaccharides of human milk. II. Isolation and characterization of a new pentasaccharide, lacto-*N*-fucopentaose 3. J Biol Chem 1969, 244, 5496–5502. [PubMed: 5348597]

- Perret S; Sabin C; Dumon C; Pokorna M; Gautier C; Galanina O; Ilia S; Bovin N; Nicaise M; Desmadril M; Gilboa-Garber N; Wimmerova M; Mitchell EP; Imberty A Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa. Biochem J 2005, 389, 325–332. [PubMed: 15790314]
- 90. Kuhn R; Gauhe A Uber drei saure pentasaccharide aus frauenmilch. Chem. Ber 1962, 95, 513-517.
- 91. Smith DF; Prieto PA; McCrumb DK; Wang WC A novel sialylfucopentaose in human milk. Presence of this oligosaccharide is not dependent on expression of the secretor or Lewis fucosyltransferases. J Biol Chem 1987, 262, 12040–12047. [PubMed: 3624247]
- Yamashita K; Tachibana Y; Kobata A Oligosaccharides of human milk: structures of three lacto-N-hexaose derivatives with H-haptenic structure. Arch Biochem Biophys 1977, 182, 546–555. [PubMed: 900949]
- Dua VK; Goso K; Dube VE; Bush CA Characterization of lacto-*N*-hexaose and two fucosylated derivatives from human milk by high-performance liquid chromatography and proton NMR spectroscopy. J Chromatogr 1985, 328, 259–269. [PubMed: 3839799]
- 94. Kitagawa H; Takaoka M; Nakada H; Fukui S; Funakoshi I; Kawasaki T; Tate S; Inagaki F; Yamashina I Isolation and structural studies of human milk oligosaccharides that are reactive with a monoclonal antibody MSW 113. J Biochem 1991, 110, 598–604. [PubMed: 1778981]
- 95. Fievre S; Wieruszeski JM; Michalski JC; Lemoine J; Montreuil J; Strecker G Primary structure of a trisialylated oligosaccharide from human milk. Biochem Biophys Res Commun 1991, 177, 720–725. [PubMed: 2049094]
- 96. Gronberg G; Lipniunas P; Lundgren T; Lindh F; Nilsson B Structural analysis of five new monosialylated oligosaccharides from human milk. Arch Biochem Biophys 1992, 296, 597–610. [PubMed: 1632647]
- 97. Kitagawa H; Nakada H; Kurosaka A; Hiraiwa N; Numata Y; Fukui S; Funakoshi I; Kawasaki T; Yamashina I; Shimada I; et al. Three novel oligosaccharides with the sialyl-Lea structure in human milk: isolation by immunoaffinity chromatography. Biochemistry 1989, 28, 8891–8897. [PubMed: 2605230]
- Yamashita K; Tachibana Y; Kobata A Oligosaccharides of human milk. Isolation and characterization of three new disialyfucosyl hexasaccharides. Arch Biochem Biophys 1976, 174, 582–591. [PubMed: 1230009]
- 99. Pfenninger A; Karas M; Finke B; Stahl B Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MS(n) (part 2: application to isomeric mixtures). J Am Soc Mass Spectrom 2002, 13, 1341–1348. [PubMed: 12443025]
- 100. Bruntz R; Dabrowski U; Dabrowski J; Ebersold A; Peter-Katalinic J; Egge H Fucose-containing oligosaccharides from human milk from a donor of blood group 0 Le(a) nonsecretor. Biol Chem Hoppe Seyler 1988, 369, 257–273.
- Strecker G; Wieruszeski JM; Michalski JC; Montreuil J Structure of a new nonasaccharide isolated form human milk: VI²-Fuc, V⁴Fuc, III³Fuc-*p*-lacto-*N*-hexaose. . Glycoconj. J 1988, 5, 385–396.
- 102. Yamashita K; Tachibana Y; Kobata A Oligosaccharides of human milk: isolation and characterization of two new nonasaccharides, monofucosyllacto-*N*-octaose and monofucosyllacto-*N*-neooctaose. Biochemistry 1976, 15, 3950–3955. [PubMed: 963011]
- 103. Kitagawa H; Nakada H; Fukui S; Funakoshi I; Kawasaki T; Yamashina I; Tate S; Inagaki F Novel oligosaccharides with the sialyl-Le(a) structure in human milk. J Biochem 1993, 114, 504–508. [PubMed: 8276760]
- 104. Kitagawa H; Nakada H; Fukui S; Funakoshi I; Kawasaki T; Yamashina I; Tate S; Inagaki F Novel oligosaccharides with the sialyl-Lea structure in human milk. Biochemistry 1991, 30, 2869–2876. [PubMed: 2007125]
- 105. Kogelberg H; Piskarev VE; Zhang Y; Lawson AM; Chai W Determination by electrospray mass spectrometry and 1H-NMR spectroscopy of primary structures of variously fucosylated neutral oligosaccharides based on the iso-lacto-*N*-octaose core. Eur J Biochem 2004, 271, 1172–1186. [PubMed: 15009196]
- 106. Strecker G; Wieruszeski JM; Michalski JC; Montreuil J Primary structure of human milk nonaand decasaccharides determined by a combination of fast atom bombardment mass spectrometry

and 1H-/13C-nuclear magnetic resonance spectroscopy. Evidence for a new core structure, isolacto-*N*-octaose. Glycoconj J 1989, 6, 169–182. [PubMed: 2535482]

- 107. Chai W; Piskarev VE; Zhang Y; Lawson AM; Kogelberg H Structural determination of novel lacto-*N*-decaose and its monofucosylated analogue from human milk by electrospray tandem mass spectrometry and 1H NMR spectroscopy. Arch Biochem Biophys 2005, 434, 116–127. [PubMed: 15629115]
- 108. Lundblad A; Hallgren P; Rudmark A; Svensson S Structures and serological activities of three oligosaccharides isolated from urines of nonstarved secretors and from secretors on lactose diet. Biochemistry 1973, 12, 3341–3345. [PubMed: 4126062]
- 109. Strecker G; Montruil J [Isolation and structural study of 16 oligosaccharides isolated from human urine]. C R Acad Sci Hebd Seances Acad Sci D 1973, 277, 1393–1396. [PubMed: 4204040]
- 110. Lundblad A; Svensson S Letters: The structure of a urinary difucosyl pentasaccharide, characteristic of secretors with the blood-group A gene. Carbohydr Res 1973, 30, 187–189. [PubMed: 4755278]
- 111. Kitagawa H; Nakada H; Numata Y; Kurosaka A; Fukui S; Funakoshi I; Kawasaki T; Shimada I; Inagaki F; Yamashina I Occurrence of tetra- and pentasaccharides with the sialyl-Le(a) structure in human milk. J Biol Chem 1990, 265, 4859–4862. [PubMed: 2318868]
- 112. Stahl B; Thurl S; Zeng J; Karas M; Hillenkamp F; Steup M; Sawatzki G Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 1994, 223, 218–226. [PubMed: 7887467]
- Ballard O; Morrow AL Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am 2013, 60, 49–74. [PubMed: 23178060]
- 114. Boehm G; Stahl B Functional dairy products. Mattila-Sandholm T, Ed. Cambridge, UK. Woodhead Publishers, pp 203. 2003.
- 115. Thurl S; Muller-Werner B; Sawatzki G Quantification of individual oligosaccharide compounds from human milk using high-pH anion-exchange chromatography. Anal Biochem 1996, 235, 202–206. [PubMed: 8833329]
- 116. Asakuma S; Urashima T; Akahori M; Obayashi H; Nakamura T; Kimura K; Watanabe Y; Arai I; Sanai Y Variation of major neutral oligosaccharides levels in human colostrum. Eur J Clin Nutr 2008, 62, 488–494. [PubMed: 17375110]
- 117. Asakuma S; Akahori M; Kimura K; Watanabe Y; Nakamura T; Tsunemi M; Arai I; Sanai Y; Urashima T Sialyl oligosaccharides of human colostrum: changes in concentration during the first three days of lactation. Biosci Biotechnol Biochem 2007, 71, 1447–1451. [PubMed: 17587674]
- 118. Tao N; DePeters EJ; Freeman S; German JB; Grimm R; Lebrilla CB Bovine milk glycome. J Dairy Sci 2008, 91, 3768–3778. [PubMed: 18832198]
- 119. Tao N; DePeters EJ; German JB; Grimm R; Lebrilla CB Variations in bovine milk oligosaccharides during early and middle lactation stages analyzed by high-performance liquid chromatography-chip/mass spectrometry. J Dairy Sci 2009, 92, 2991–3001. [PubMed: 19528576]
- 120. Tao N; Ochonicky KL; German JB; Donovan SM; Lebrilla CB Structural determination and daily variations of porcine milk oligosaccharides. J Agric Food Chem 2010, 58, 4653–4659. [PubMed: 20369835]
- 121. Urashima T; Kawai Y; Nakamura T; Arai I; Saito T; Namiki M; Yamaoka K; Kawahawa K; Messer M Chemical characterisation of six oligosaccharides in a sample of colostrum of the brown capuchin, Cebus apella (Cebidae: primates). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1999, 124, 295–300. [PubMed: 10661722]
- 122. Oftedal OT; Nicol SC; Davies NW; Sekii N; Taufik E; Fukuda K; Saito T; Urashima T Can an ancestral condition for milk oligosaccharides be determined? Evidence from the Tasmanian echidna (Tachyglossus aculeatus setosus). Glycobiology 2014, 24, 826–839. [PubMed: 24811545]
- Messer M; Kerry KR Milk carbohydrates of the echidna and the platypus. Science 1973, 180, 201–203. [PubMed: 17811662]
- 124. Messer M; Gadiel PA; Ralston GB; Griffiths M Carbohydrates of the milk of the platypus. Aust J Biol Sci 1983, 36, 129–137. [PubMed: 6626045]

- 125. Amano J; Messer M; Kobata A Structures of the oligosaccharides isolated from milk of the platypus. Glycoconj. J 1985, 2, 121–135.
- 126. Urashima T; Inamori H; Fukuda K; Saito T; Messer M; Oftedal OT 4-O-Acetyl-sialic acid (Neu4,5Ac2) in acidic milk oligosaccharides of the platypus (*Ornithorhynchus anatinus*) and its evolutionary significance. Glycobiology 2015, 25, 683–697. [PubMed: 25601457]
- 127. Urashima T; Fujita S; Fukuda K; Nakamura T; Saito T; Cowan P; Messer M Chemical characterization of milk oligosaccharides of the common brushtail possum (*Trichosurus vulpecula*). Glycoconj J 2014, 31, 387–399. [PubMed: 24906475]
- 128. Anraku T; Fukuda K; Saito T; Messer M; Urashima T Chemical characterization of acidic oligosaccharides in milk of the red kangaroo (Macropus rufus). Glycoconj J 2012, 29, 147–156. [PubMed: 22415147]
- 129. Urashima T; Taufik E; Fukuda R; Nakamura T; Fukuda K; Saito T; Messer M Chemical characterization of milk oligosaccharides of the koala (Phascolarctos cinereus). Glycoconj J 2013, 30, 801–811. [PubMed: 23824565]
- Grollman EF; Kobata A; Ginsburg V Enzymatic basis of blood types in man. Ann N Y Acad Sci 1970, 169, 153–160. [PubMed: 5263839]
- 131. Grimmonprez L; Montreuil J [Isolation and physico-chemical properties of oligosaccharides of human milk]. Biochimie 1975, 57, 695–671. [PubMed: 1203318]
- 132. Newburg DS Human milk glycoconjugates that inhibit pathogens. Curr Med Chem 1999, 6, 117–127. [PubMed: 9927761]
- 133. Bertino E; Peila C; Giuliani F; Martano C; Cresi F; Di Nicola P; Occhi L; Sabatino G; Fabris C Metabolism and biological functions of human milk oligosaccharides. J Biol Regul Homeost Agents 2012, 26, 35–38.
- 134. Sunehag AL; Louie K; Bier JL; Tigas S; Haymond MW Hexoneogenesis in the human breast during lactation. J Clin Endocrinol Metab 2002, 87, 297–301. [PubMed: 11788663]
- 135. Mohammad MA; Maningat P; Sunehag AL; Haymond MW Precursors of hexoneogenesis within the human mammary gland. Am J Physiol Endocrinol Metab 2015, 308, E680–E687. [PubMed: 25670824]
- 136. Sasaki M; Eigel WN; Keenan TW Lactose and major milk proteins are present in secretory vesicle-rich fractions from lactating mammary gland. Proc Natl Acad Sci U S A 1978, 75, 5020– 5024. [PubMed: 105361]
- Ramakrishnan B; Qasba PK Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the beta1,4-galactosyltransferase-I. J Mol Biol 2001, 310, 205–218. [PubMed: 11419947]
- 138. Brodbeck U; Denton WL; Tanahashi N; Ebner KE The isolation and identification of the B protein of lactose synthetase as alpha-lactalbumin. J Biol Chem 1967, 242, 1391–1397. [PubMed: 6023212]
- Brew K; Hill RL Lactose biosynthesis. Rev Physiol Biochem Pharmacol 1975, 72, 105–158. [PubMed: 806951]
- 140. Kumazaki T; Yoshida A Biochemical evidence that secretor gene, Se, is a structural gene encoding a specific fucosyltransferase. Proc Natl Acad Sci U S A 1984, 81, 4193–4197. [PubMed: 6588382]
- 141. Ceppellini R On the genetics of secretor and Lewis characters: A family study. Proc. Fifth Congr. Intern. Soc. Blood Transfusion, Paris, 1954. 1955, 207–211.
- 142. Prieto PA; Mukerji P; Kelder B; Erney R; Gonzalez D; Yun JS; Smith DF; Moremen KW; Nardelli C; Pierce M; et al. Remodeling of mouse milk glycoconjugates by transgenic expression of a human glycosyltransferase. J Biol Chem 1995, 270, 29515–29519. [PubMed: 7493992]
- 143. Kelder B; Erney R; Kopchick J; Cummings R; Prieto P Glycoconjugates in human and transgenic animal milk. Adv Exp Med Biol 2001, 501, 269–278. [PubMed: 11787690]
- 144. Appert HE; Rutherford TJ; Tarr GE; Thomford NR; McCorquodale DJ Isolation of galactosyltransferase from human milk and the determination of its N-terminal amino acid sequence. Biochem Biophys Res Commun 1986, 138, 224–229. [PubMed: 3091013]

- 145. Endo T; Amano J; Berger EG; Kobata A Structure identification of the complex-type, asparaginelinked sugar chains of beta-D-galactosyl-transferase purified from human milk. Carbohydr Res 1986, 150, 241–263. [PubMed: 3093076]
- 146. Prieels JP; Monnom D; Dolmans M; Beyer TA; Hill RL Co-purification of the Lewis blood group *N*-acetylglucosaminide alpha 1 goes to 4 fucosyltransferase and an N-acetylglucosaminide alpha 1 goes to 3 fucosyltransferase from human milk. J Biol Chem 1981, 256, 10456–10463. [PubMed: 7287719]
- 147. Eppenberger-Castori S; Lotscher H; Finne J Purification of the N-acetylglucosaminide alpha(1– 3/4)fucosyltransferase of human milk. Glycoconj J 1989, 6, 101–114. [PubMed: 2535472]
- 148. Johnson PH; Watkins WM Purification of the Lewis blood-group gene associated alpha-3/4fucosyltransferase from human milk: an enzyme transferring fucose primarily to type 1 and lactose-based oligosaccharide chains. Glycoconj J 1992, 9, 241–249. [PubMed: 1490103]
- 149. Johnson PH; Donald AS; Feeney J; Watkins WM Reassessment of the acceptor specificity and general properties of the Lewis blood-group gene associated alpha-3/4-fucosyltransferase purified from human milk. Glycoconj J 1992, 9, 251–264. [PubMed: 1490104]
- 150. Hosomi O; Takeya A The relationship between the (beta 1–3) N-acetylglucosaminyltransferase and the presence of oligosaccharides containing lacto-*N*-triose II structure in bovine and human milk. Nihon Juigaku Zasshi 1989, 51, 1–6. [PubMed: 2522567]
- 151. Wiederschain GY; Newburg DS Compartmentalization of fucosyltransferase and alpha-Lfucosidase in human milk. Biochem Mol Med 1996, 58, 211–220. [PubMed: 8812742]
- 152. Palcic MM; Venot AP; Ratcliffe RM; Hindsgaul O Enzymic synthesis of oligosaccharides terminating in the tumor-associated sialyl-Lewis-a determinant. Carbohydr Res 1989, 190, 1–11. [PubMed: 2790838]
- 153. Stangier K; Palcic MM; Bundle DR; Hindsgaul O; Thiem J Fucosyltransferase-catalyzed formation of L-galactosylated Lewis structures. Carbohydr Res 1997, 305, 511–515. [PubMed: 9648268]
- 154. Du M; Hindsgaul O Recognition of beta-D-Gal p-(1-->3)-beta-D-Glc pNAc-OR acceptor analogues by the Lewis alpha-(1-->3/4)-fucosyltransferase from human milk. Carbohydr Res 1996, 286, 87–105. [PubMed: 8925514]
- 155. Lubineau A; Auge C; Le Goff N; Le Narvor C Chemoenzymatic synthesis of a 3IV,6III-disulfated Lewis(x) pentasaccharide, a candidate ligand for human L-selectin. Carbohydr Res 1997, 305, 501–509. [PubMed: 9648267]
- 156. Chiu MH; Thomas VH; Stubbs HJ; Rice KG Tissue targeting of multivalent Le(x)-terminated N-linked oligosaccharides in mice. J Biol Chem 1995, 270, 24024–24031. [PubMed: 7592600]
- 157. Thomas VH; Elhalabi J; Rice KG Enzymatic synthesis of N-linked oligosaccharides terminating in multiple sialyl-Lewis(x) and GalNAc-Lewis(x) determinants: clustered glycosides for studying selectin interactions. Carbohydr Res 1998, 306, 387–400. [PubMed: 9648247]
- 158. de Vries T; Norberg T; Lonn H; Van den Eijnden DH The use of human milk fucosyltransferase in the synthesis of tumor-associated trimeric X determinants. Eur J Biochem 1993, 216, 769–777. [PubMed: 8104788]
- 159. de Vries T; van den Eijnden DH Biosynthesis of sialyl-oligomeric-Lewisx and VIM-2 epitopes: site specificity of human milk fucosyltransferase. Biochemistry 1994, 33, 9937–9944. [PubMed: 8061002]
- 160. Nikrad PV; Kashem MA; Wlasichuk KB; Alton G; Venot AP Use of human-milk fucosyltransferase in the chemoenzymic synthesis of analogues of the sialyl Lewis(a) and sialyl Lewis(x) tetrasaccharides modified at the C-2 position of the reducing unit. Carbohydr Res 1993, 250, 145–160. [PubMed: 8143288]
- 161. Natunen J; Niemela R; Penttila L; Seppo A; Ruohtula T; Renkonen O Enzymatic synthesis of two lacto-*N*-neohexaose-related Lewis x heptasaccharides and their separation by chromatography on immobilized wheat germ agglutinin. Glycobiology 1994, 4, 577–583. [PubMed: 7881171]
- 162. Niemela R; Natunen J; Brotherus E; Saarikangas A; Renkonen O alpha 1,3-Fucosylation of branched blood group I-type oligo-(*N*-acetyllactosamino)glycans by human milk transferases is restricted to distal *N*-acetyllactosamine units: the resulting isomers are separated by WGAagarose chromatography. Glycoconj J 1995, 12, 36–44. [PubMed: 7795411]

- 163. Natunen J; Aitio O; Helin J; Maaheimo H; Niemela R; Heikkinen S; Renkonen O Human alpha3fucosyltransferases convert chitin oligosaccharides to products containing a GlcNAcbeta1– 4(Fucalpha1–3)GlcNAcbeta1–4R determinant at the nonreducing terminus. Glycobiology 2001, 11, 209–216. [PubMed: 11320059]
- 164. Zeng S; Gallego RG; Dinter A; Malissard M; Kamerling JP; Vliegenthart JF; Berger EG Complete enzymic synthesis of the mucin-type sialyl Lewis x epitope, involved in the interaction between PSGL-1 and P-selectin. Glycoconj J 1999, 16, 487–497. [PubMed: 10815985]
- 165. Di Virgilio S; Glushka J; Moremen K; Pierce M Enzymatic synthesis of natural and 13C enriched linear poly-*N*-acetyllactosamines as ligands for galectin-1. Glycobiology 1999, 9, 353–364. [PubMed: 10089209]
- 166. Srivastava G; Alton G; Hindsgaul O Combined chemical-enzymic synthesis of deoxygenated oligosaccharide analogs: transfer of deoxygenated D-GlcpNAc residues from their UDP-GlcpNAc derivatives using N-acetylglucosaminyltransferase I. Carbohydr Res 1990, 207, 259– 276. [PubMed: 2150183]
- 167. Alton G; Srivastava G; Kaur KJ; Hindsgaul O Use of N-acetylglucosaminyltransferases I and II in the synthesis of a dideoxypentasaccharide. Bioorg Med Chem 1994, 2, 675–680. [PubMed: 7858975]
- 168. Bode L; Jantscher-Krenn E Structure-function relationships of human milk oligosaccharides. Adv Nutr 2012, 3, 383S–391S. [PubMed: 22585916]
- 169. Jantscher-Krenn E; Bode L Human milk oligosaccharides and their potential benefits for the breast-fed neonate. Minerva Pediatr 2012, 64, 83–99. [PubMed: 22350049]
- 170. Newburg DS; Morelli L Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota. Pediatr Res 2015, 77, 115–120. [PubMed: 25356747]
- Rudloff S; Kunz C Milk oligosaccharides and metabolism in infants. Adv Nutr 2012, 3, 398S– 405S. [PubMed: 22585918]
- 172. Kunz C; Rudloff S Potential anti-inflammatory and anti-infectious effects of human milk oligosaccharides. Adv Exp Med Biol 2008, 606, 455–465. [PubMed: 18183941]
- 173. Zopf D; Roth S Oligosaccharide anti-infective agents. Lancet 1996, 347, 1017–1021. [PubMed: 8606566]
- 174. Harmsen HJ; Wildeboer-Veloo AC; Raangs GC; Wagendorp AA; Klijn N; Bindels JG; Welling GW Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 2000, 30, 61–67. [PubMed: 10630441]
- 175. Garrido D; Barile D; Mills DA A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv Nutr 2012, 3, 415S–421S. [PubMed: 22585920]
- 176. Bode L; Kunz C; Muhly-Reinholz M; Mayer K; Seeger W; Rudloff S Inhibition of monocyte, lymphocyte, and neutrophil adhesion to endothelial cells by human milk oligosaccharides. Thromb Haemost 2004, 92, 1402–1410. [PubMed: 15583750]
- 177. Chichlowski M; German JB; Lebrilla CB; Mills DA The influence of milk oligosaccharides on microbiota of infants: opportunities for formulas. Annu Rev Food Sci Technol 2011, 2, 331–351. [PubMed: 22129386]
- 178. Bienenstock J; Buck RH; Linke H; Forsythe P; Stanisz AM; Kunze WA Fucosylated but not sialylated milk oligosaccharides diminish colon motor contractions. PLoS One 2013, 8, e76236. [PubMed: 24098451]
- 179. Gyorgy P; Jeanloz RW; von Nicolai H; Zilliken F Undialyzable growth factors for Lactobacillus bifidus var. pennsylvanicus. Protective effect of sialic acid bound to glycoproteins and oligosaccharides against bacterial degradation. Eur J Biochem 1974, 43, 29–33. [PubMed: 4838871]
- 180. Xiao JZ; Takahashi S; Nishimoto M; Odamaki T; Yaeshima T; Iwatsuki K; Kitaoka M Distribution of in vitro fermentation ability of lacto-*N*-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol 2010, 76, 54–59. [PubMed: 19854932]

- 181. Kiyohara M; Tachizawa A; Nishimoto M; Kitaoka M; Ashida H; Yamamoto K Prebiotic effect of lacto-*N*-biose I on bifidobacterial growth. Biosci Biotechnol Biochem 2009, 73, 1175–1179. [PubMed: 19420691]
- 182. Asakuma S; Hatakeyama E; Urashima T; Yoshida E; Katayama T; Yamamoto K; Kumagai H; Ashida H; Hirose J; Kitaoka M Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 2011, 286, 34583–34592. [PubMed: 21832085]
- 183. Katayama T; Sakuma A; Kimura T; Makimura Y; Hiratake J; Sakata K; Yamanoi T; Kumagai H; Yamamoto K Molecular cloning and characterization of Bifidobacterium bifidum 1,2-alpha-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J Bacteriol 2004, 186, 4885–4893. [PubMed: 15262925]
- 184. Ashida H; Miyake A; Kiyohara M; Wada J; Yoshida E; Kumagai H; Katayama T; Yamamoto K Two distinct alpha-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 2009, 19, 1010–1017. [PubMed: 19520709]
- 185. Kiyohara M; Tanigawa K; Chaiwangsri T; Katayama T; Ashida H; Yamamoto K An exo-alphasialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology 2011, 21, 437–447. [PubMed: 21036948]
- 186. Wada J; Ando T; Kiyohara M; Ashida H; Kitaoka M; Yamaguchi M; Kumagai H; Katayama T; Yamamoto K Bifidobacterium bifidum lacto-*N*-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol 2008, 74, 3996– 4004. [PubMed: 18469123]
- 187. Suzuki R; Wada J; Katayama T; Fushinobu S; Wakagi T; Shoun H; Sugimoto H; Tanaka A; Kumagai H; Ashida H; Kitaoka M; Yamamoto K Structural and thermodynamic analyses of solute-binding Protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-*N*-biose I. J Biol Chem 2008, 283, 13165–13173. [PubMed: 18332142]
- 188. Miwa M; Horimoto T; Kiyohara M; Katayama T; Kitaoka M; Ashida H; Yamamoto K Cooperation of beta-galactosidase and beta-N-acetylhexosaminidase from bifidobacteria in assimilation of human milk oligosaccharides with type 2 structure. Glycobiology 2010, 20, 1402–1409. [PubMed: 20581010]
- 189. Marcobal A; Barboza M; Sonnenburg ED; Pudlo N; Martens EC; Desai P; Lebrilla CB; Weimer BC; Mills DA; German JB; Sonnenburg JL Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 2011, 10, 507–514. [PubMed: 22036470]
- 190. Sela DA; Garrido D; Lerno L; Wu S; Tan K; Eom HJ; Joachimiak A; Lebrilla CB; Mills DA Bifidobacterium longum subsp. infantis ATCC 15697 alpha-fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol 2012, 78, 795–803. [PubMed: 22138995]
- 191. Garrido D; Ruiz-Moyano S; Mills DA Release and utilization of *N*-acetyl-D-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis. Anaerobe 2012, 18, 430–5. [PubMed: 22579845]
- 192. Sela DA; Li Y; Lerno L; Wu S; Marcobal AM; German JB; Chen X; Lebrilla CB; Mills DA An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J Biol Chem 2011, 286, 11909–11918. [PubMed: 21288901]
- 193. Garrido D; Kim JH; German JB; Raybould HE; Mills DA Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS One 2011, 6, e17315. [PubMed: 21423604]
- 194. Jantscher-Krenn E; Lauwaet T; Bliss LA; Reed SL; Gillin FD; Bode L Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. Br J Nutr 2012, 108, 1839–1846. [PubMed: 22264879]
- 195. Terrazas LI; Walsh KL; Piskorska D; McGuire E; Harn DA Jr. The schistosome oligosaccharide lacto-*N*-neotetraose expands Gr1(+) cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4(+) cells: a potential mechanism for immune polarization in helminth infections. J Immunol 2001, 167, 5294–303. [PubMed: 11673545]
- 196. Tong HH; McIver MA; Fisher LM; DeMaria TF Effect of lacto-*N*-neotetraose, asialoganglioside-GM1 and neuraminidase on adherence of otitis media-associated serotypes of *Streptococcus*

pneumoniae to chinchilla tracheal epithelium. Microb Pathog 1999, 26, 111–119. [PubMed: 10090858]

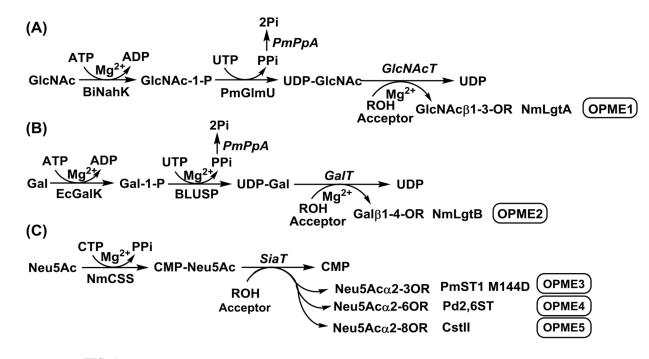
- 197. Bode L; Kuhn L; Kim HY; Hsiao L; Nissan C; Sinkala M; Kankasa C; Mwiya M; Thea DM; Aldrovandi GM Human milk oligosaccharide concentration and risk of postnatal transmission of HIV through breastfeeding. Am J Clin Nutr 2012, 96, 831–839. [PubMed: 22894939]
- 198. Idanpaan-Heikkila I; Simon PM; Zopf D; Vullo T; Cahill P; Sokol K; Tuomanen E Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J Infect Dis 1997, 176, 704–712. [PubMed: 9291319]
- 199. Yu ZT; Chen C; Kling DE; Liu B; McCoy JM; Merighi M; Heidtman M; Newburg DS The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology 2013, 23, 169–177. [PubMed: 23028202]
- 200. Huang P; Farkas T; Marionneau S; Zhong W; Ruvoen-Clouet N; Morrow AL; Altaye M; Pickering LK; Newburg DS; LePendu J; Jiang X Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J Infect Dis 2003, 188, 19–31. [PubMed: 12825167]
- 201. Cravioto A; Tello A; Villafan H; Ruiz J; del Vedovo S; Neeser JR Inhibition of localized adhesion of enteropathogenic *Escherichia coli* to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk. J Infect Dis 1991, 163, 1247–1255. [PubMed: 1903799]
- 202. Newburg DS; Pickering LK; McCluer RH; Cleary TG Fucosylated oligosaccharides of human milk protect suckling mice from heat-stabile enterotoxin of *Escherichia coli*. J Infect Dis 1990, 162, 1075–80. [PubMed: 2230234]
- 203. Chessa D; Winter MG; Jakomin M; Baumler AJ Salmonella enterica serotype Typhimurium Std fimbriae bind terminal alpha(1,2)fucose residues in the cecal mucosa. Mol Microbiol 2009, 71, 864–875. [PubMed: 19183274]
- 204. Ruiz-Palacios GM; Cervantes LE; Ramos P; Chavez-Munguia B; Newburg DS Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem 2003, 278, 14112–14120. [PubMed: 12562767]
- 205. Morrow AL; Ruiz-Palacios GM; Altaye M; Jiang X; Guerrero ML; Meinzen-Derr JK; Farkas T; Chaturvedi P; Pickering LK; Newburg DS Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J Pediatr 2004, 145, 297–303. [PubMed: 15343178]
- 206. Brassart D; Woltz A; Golliard M; Neeser JR In vitro inhibition of adhesion of *Candida albicans* clinical isolates to human buccal epithelial cells by Fuc alpha 1–2Gal beta-bearing complex carbohydrates. Infect Immun 1991, 59, 1605–1613. [PubMed: 2019432]
- 207. Hong P; Ninonuevo MR; Lee B; Lebrilla C; Bode L Human milk oligosaccharides reduce HIV-1-gp120 binding to dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN). Br J Nutr 2009, 101, 482–486. [PubMed: 19230080]
- 208. Kuhn L; Kim HY; Hsiao L; Nissan C; Kankasa C; Mwiya M; Thea DM; Aldrovandi GM; Bode L Oligosaccharide composition of breast milk influences survival of uninfected children born to HIV-infected mothers in Lusaka, Zambia. J Nutr 2015, 145, 66–72. [PubMed: 25527660]
- 209. Xu HT; Zhao YF; Lian ZX; Fan BL; Zhao ZH; Yu SY; Dai YP; Wang LL; Niu HL; Li N; Hammarstrom L; Boren T; Sjostrom R Effects of fucosylated milk of goat and mouse on *Helicobacter pylori* binding to Lewis b antigen. World J Gastroenterol 2004, 10, 2063–2066. [PubMed: 15237435]
- 210. Miyazaki T; Sato T; Furukawa K; Ajisaka K Enzymatic synthesis of lacto-N-difucohexaose I which binds to *Helicobacter pylori*. Methods Enzymol 2010, 480, 511–524. [PubMed: 20816225]
- 211. Atochina O; Harn D LNFPIII/LeX-stimulated macrophages activate natural killer cells via CD40-CD40L interaction. Clin Diagn Lab Immunol 2005, 12, 1041–1049. [PubMed: 16148169]
- 212. Bode L; Rudloff S; Kunz C; Strobel S; Klein N Human milk oligosaccharides reduce plateletneutrophil complex formation leading to a decrease in neutrophil beta 2 integrin expression. J Leukoc Biol 2004, 76, 820–826. [PubMed: 15240751]

- 213. Lewis ZT; Totten SM; Smilowitz JT; Popovic M; Parker E; Lemay DG; Van Tassell ML; Miller MJ; Jin YS; German JB; Lebrilla CB; Mills DA Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 2015, 3, 13. [PubMed: 25922665]
- 214. Newburg DS; Ruiz-Palacios GM; Altaye M; Chaturvedi P; Meinzen-Derr J; Guerrero Mde L; Morrow AL Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology 2004, 14, 253–263. [PubMed: 14638628]
- 215. Morrow AL; Meinzen-Derr J; Huang P; Schibler KR; Cahill T; Keddache M; Kallapur SG; Newburg DS; Tabangin M; Warner BB; Jiang X Fucosyltransferase 2 non-secretor and low secretor status predicts severe outcomes in premature infants. J Pediatr 2011, 158, 745–751. [PubMed: 21256510]
- 216. Coppa GV; Zampini L; Galeazzi T; Facinelli B; Ferrante L; Capretti R; Orazio G Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: *Escherichia coli*, Vibrio cholerae, and Salmonella fyris. Pediatr Res 2006, 59, 377–382. [PubMed: 16492975]
- 217. Matrosovich MN; Gambaryan AS; Tuzikov AB; Byramova NE; Mochalova LV; Golbraikh AA; Shenderovich MD; Finne J; Bovin NV Probing of the receptor-binding sites of the H1 and H3 influenza A and influenza B virus hemagglutinins by synthetic and natural sialosides. Virology 1993, 196, 111–121. [PubMed: 8356788]
- 218. Eiwegger T; Stahl B; Schmitt J; Boehm G; Gerstmayr M; Pichler J; Dehlink E; Loibichler C; Urbanek R; Szepfalusi Z Human milk--derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatr Res 2004, 56, 536–540. [PubMed: 15295093]
- 219. Idota T; Kawakami H; Murakami Y; Sugawara M Inhibition of cholera toxin by human milk fractions and sialyllactose. Biosci Biotechnol Biochem 1995, 59, 417–419. [PubMed: 7766178]
- 220. Bouchara JP; Sanchez M; Chevailler A; Marot-Leblond A; Lissitzky JC; Tronchin G; Chabasse D Sialic acid-dependent recognition of laminin and fibrinogen by *Aspergillus fumigatus conidia*. Infect Immun 1997, 65, 2717–2724. [PubMed: 9199441]
- 221. Devaraj N; Sheykhnazari M; Warren WS; Bhavanandan VP Differential binding of *Pseudomonas aeruginosa* to normal and cystic fibrosis tracheobronchial mucins. Glycobiology 1994, 4, 307–316. [PubMed: 7949656]
- 222. Kuntz S; Rudloff S; Kunz C Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. Br J Nutr 2008, 99, 462–471. [PubMed: 17925055]
- 223. Kavanaugh DW; O'Callaghan J; Butto LF; Slattery H; Lane J; Clyne M; Kane M; Joshi L; Hickey RM Exposure of subsp. to Milk Oligosaccharides Increases Adhesion to Epithelial Cells and Induces a Substantial Transcriptional Response. PLoS One 2013, 8, e67224. [PubMed: 23805302]
- 224. Stehle T; Yan Y; Benjamin TL; Harrison SC Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 1994, 369, 160–163. [PubMed: 8177322]
- 225. Stins MF; Prasadarao NV; Ibric L; Wass CA; Luckett P; Kim KS Binding characteristics of S fimbriated *Escherichia coli* to isolated brain microvascular endothelial cells. Am J Pathol 1994, 145, 1228–1236. [PubMed: 7977653]
- 226. Virkola R; Parkkinen J; Hacker J; Korhonen TK Sialyloligosaccharide chains of laminin as an extracellular matrix target for S fimbriae of *Escherichia coli*. Infect Immun 1993, 61, 4480–4484. [PubMed: 8104897]
- 227. Mysore JV; Wigginton T; Simon PM; Zopf D; Heman-Ackah LM; Dubois A Treatment of *Helicobacter pylori* infection in rhesus monkeys using a novel antiadhesion compound. Gastroenterology 1999, 117, 1316–1325. [PubMed: 10579973]
- 228. Evans DG; Evans DJ Jr.; Moulds JJ; Graham DY *N*-Acetylneuraminyllactose-binding fibrillar hemagglutinin of *Campylobacter pylori*: a putative colonization factor antigen. Infect Immun 1988, 56, 2896–2906. [PubMed: 2459065]
- 229. Korhonen TK; Valtonen MV; Parkkinen J; Vaisanen-Rhen V; Finne J; Orskov F; Orskov I; Svenson SB; Makela PH Serotypes, hemolysin production, and receptor recognition of

Escherichia coli strains associated with neonatal sepsis and meningitis. Infect Immun 1985, 48, 486–491. [PubMed: 2580792]

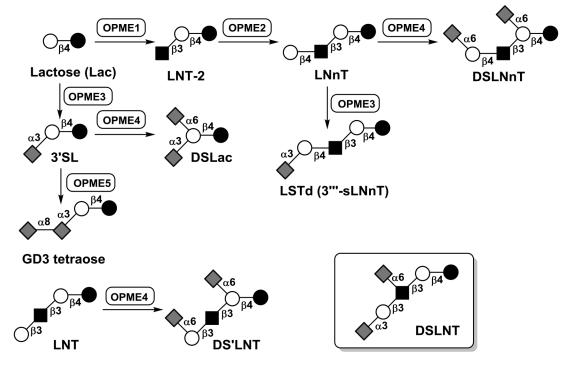
- 230. Van Niekerk E; Autran CA; Nel DG; Kirsten GF; Blaauw R; Bode L Human milk oligosaccharides differ between HIV-infected and HIV-uninfected mothers and are related to necrotizing enterocolitis incidence in their preterm very-low-birth-weight infants. J Nutr 2014, 144, 1227–1233. [PubMed: 24919691]
- 231. Neu J; Walker WA Necrotizing enterocolitis. N Engl J Med 2011, 364, 255–264. [PubMed: 21247316]
- 232. Holman RC; Stoll BJ; Clarke MJ; Glass RI The epidemiology of necrotizing enterocolitis infant mortality in the United States. Am J Public Health 1997, 87, 2026–2031. [PubMed: 9431297]
- 233. Dicken BJ; Sergi C; Rescorla FJ; Breckler F; Sigalet D Medical management of motility disorders in patients with intestinal failure: a focus on necrotizing enterocolitis, gastroschisis, and intestinal atresia. J Pediatr Surg 2011, 46, 1618–1630. [PubMed: 21843732]
- 234. Clark RH; Gordon P; Walker WM; Laughon M; Smith PB; Spitzer AR Characteristics of patients who die of necrotizing enterocolitis. J Perinatol 2012, 32, 199–204. [PubMed: 21593813]
- 235. Blakely ML; Lally KP; McDonald S; Brown RL; Barnhart DC; Ricketts RR; Thompson WR; Scherer LR; Klein MD; Letton RW; Chwals WJ; Touloukian RJ; Kurkchubasche AG; Skinner MA; Moss RL; Hilfiker ML; Network N. E. C. S. o. t. N. N. R. Postoperative outcomes of extremely low birth-weight infants with necrotizing enterocolitis or isolated intestinal perforation: a prospective cohort study by the NICHD Neonatal Research Network. Ann Surg 2005, 241, 984–989; discussion 989–994. [PubMed: 15912048]
- 236. Jantscher-Krenn E; Zherebtsov M; Nissan C; Goth K; Guner YS; Naidu N; Choudhury B; Grishin AV; Ford HR; Bode L The human milk oligosaccharide disialyllacto-*N*-tetraose prevents necrotising enterocolitis in neonatal rats. Gut 2012, 61, 1417–1425. [PubMed: 22138535]
- 237. Fernandez-Mayoralas A; Martin-Lomas M Synthesis of 3- and 2'-fucosyl-lactose and 3,2'difucosyl-lactose from partially benzylated lactose derivatives. Carbohydr Res 1986, 154, 93– 101.
- 238. Aly MR; Ibrahim el SI; Ashry el SH; Schmidt RR Synthesis of lacto-*N*-neotetraose and lacto-*N*-tetraose using the dimethylmaleoyl group as amino protective group. Carbohydr Res 1999, 316, 121–132. [PubMed: 10420591]
- 239. Hsu Y; Lu XA; Zulueta MM; Tsai CM; Lin KI; Hung SC; Wong CH Acyl and silyl group effects in reactivity-based one-pot glycosylation: synthesis of embryonic stem cell surface carbohydrates Lc4 and IV(2)Fuc-Lc4. J Am Chem Soc 2012, 134, 4549–4552. [PubMed: 22390569]
- 240. Takamura T; Chiba T; Ishihara H; Tejima S Chemical modification of lactose. XIII. Synthesis of lacto-*N*-tetraose. Chem. Pharm. Bull 1980, 28, 1804–1809.
- 241. Aly MRE; Ibrahim E-SI; El-Ashry E-SHE; Schmidt RR Synthesis of lacto-*N*-neohexaose and lacto-*N*-neooctaose using the dimethylmaleoyl moiety as an amino protective group. Eur J Org Chem 2000, 2000, 319–326.
- 242. Manzoni L; Lay L; Schmidt RR Synthesis of Lewis a and Lewis x pentasaccharides based on *N*-trichloroethoxycarbonyl protection. J. Carbohydr. Chem 1998, 17, 739–758.
- 243. Love KR; Seeberger PH Solution syntheses of protected type II Lewis blood group oligosaccharides: study for automated synthesis. J Org Chem 2005, 70, 3168–3177. [PubMed: 15822979]
- 244. Zhang Y-M; Esnault J; Mallet J-M; Sinay P Synthesis of the beta-methyl glycoside of lacto-*N*-fucopentaose III. J. Carbohydr. Chem 1999, 18, 419–427.
- 245. Lay L; Manzoni L; Schmidt RR Synthesis of *N*-acetylglucosamine containing Lewis A and Lewis X building blocks based on *N*-tetrachlorophthaloyl protection--synthesis of Lewis X pentasaccharide. Carbohydr Res 1998, 310, 157–171. [PubMed: 9809410]
- 246. Cao S; Gan Z; Roy R Active-latent glycosylation strategy toward Lewis X pentasaccharide in a form suitable for neoglycoconjugate syntheses. Carbohydr Res 1999, 318, 75–81. [PubMed: 10515050]
- 247. Sherman AA; Yudina ON; Mironov YV; Sukhova EV; Shashkov AS; Menshov VM; Nifantiev NE Study of glycosylation with *N*-trichloroacetyl-D-glucosamine derivatives in the syntheses of

the spacer-armed pentasaccharides sialyl lacto-*N*-neotetraose and sialyl lacto-*N*-tetraose, their fragments, and analogues. Carbohydr Res 2001, 336, 13–46. [PubMed: 11675024]


- Mandal PK; Misra AK Concise synthesis of two pentasaccharides corresponding to the alphachain oligosaccharides of *Neisseria gonorrhoeae* and *Neisseria meningitidis*. Tetrahedron 2008, 64, 8685–8691.
- 249. Chernyak A; Oscarson S; Turek D Synthesis of the Lewis b hexasaccharide and squarate acid-HSA conjugates thereof with various saccharide loadings. Carbohydr Res 2000, 329, 309–316. [PubMed: 11117314]
- 250. Shimizu H; Ito Y; Kanie O; Ogawa T Solid phase synthesif of polylactosamine oligosaccharide. Bioorg Med Chem Lett 1996, 6, 2841–2846.
- 251. Takamura T; Chiba T; Tejima S Chemical modification of lactose. XVI. Synthesis of lacto-*N*-neohexaose. Chem. Pharm. Bull 1981, 29, 2270–2276.
- 252. Roussel F; Takhi M; Schmidt RR Solid-phase synthesis of a branched hexasaccharide using a highly efficient synthetic strategy. J Org Chem 2001, 66, 8540–8548. [PubMed: 11735536]
- 253. Maranduba A; Veyrieres A Glycosylation of lactose: synthesis of branched oligosaccharides involved in the biosynthesis of glycolipids having blood-group I activity. Carbohydr Res 1986, 151, 105–119. [PubMed: 3768883]
- 254. Knuhr P; Castro-Palomino J; Grathwohl M; Schmidt RR Complex structures of antennary human milk oligosaccharides - Synthesis of a branched octasaccharide. Eur J Org Chem 2001, 2001, 4239–4246.
- 255. Broder W; Kunz H Glycosyl azides as building blocks in convergent syntheses of oligomeric lactosamine and Lewis(x) saccharides. Bioorg Med Chem 1997, 5, 1–19. [PubMed: 9043654]
- 256. Lee JC; Wu CY; Apon JV; Siuzdak G; Wong CH Reactivity-based one-pot synthesis of the tumor-associated antigen N3 minor octasaccharide for the development of a photocleavable DIOS-MS sugar array. Angew Chem Int Ed Engl 2006, 45, 2753–2757. [PubMed: 16548041]
- 257. Kim HM; Kim IJ; Danishefsky SJ Total syntheses of tumor-related antigens N3: probing the feasibility limits of the glycal assembly method. J Am Chem Soc 2001, 123, 35–48. [PubMed: 11273599]
- 258. Jennum CA; Fenger TH; Bruun LM; Madsen R One-pot glycosylations in the synthesis of human milk oligosaccharides. Eur. J. Org. Chem 2014, 2014, 3232–3241.
- 259. Han NS; Kim TJ; Park YC; Kim J; Seo JH Biotechnological production of human milk oligosaccharides. Biotechnol Adv 2012, 30, 1268–1278. [PubMed: 22119239]
- 260. Monteiro MA; Chan KH; Rasko DA; Taylor DE; Zheng PY; Appelmelk BJ; Wirth HP; Yang M; Blaser MJ; Hynes SO; Moran AP; Perry MB Simultaneous expression of type 1 and type 2 Lewis blood group antigens by *Helicobacter pylori* lipopolysaccharides. Molecular mimicry between *H. pylori* lipopolysaccharides and human gastric epithelial cell surface glycoforms. J Biol Chem 1998, 273, 11533–11543. [PubMed: 9565568]
- 261. Smith H; Parsons NJ; Cole JA Sialylation of neisserial lipopolysaccharide: a major influence on pathogenicity. Microb Pathog 1995, 19, 365–377. [PubMed: 8852278]
- 262. Chen X; Varki A Advances in the biology and chemistry of sialic acids. ACS Chem Biol 2010, 5, 163–176. [PubMed: 20020717]
- 263. Johnson KF Synthesis of oligosaccharides by bacterial enzymes. Glycoconj J 1999, 16, 141–146. [PubMed: 10612413]
- 264. Chen X Fermenting next generation glycosylated therapeutics. ACS Chem Biol 2011, 6, 14–17. [PubMed: 21250649]
- 265. Chen X; Kowal P; Wang PG Large-scale enzymatic synthesis of oligosaccharides. Curr Opin Drug Discov Devel 2000, 3, 756–763.
- 266. Ichikawa Y; Look GC; Wong CH Enzyme-catalyzed oligosaccharide synthesis. Anal Biochem 1992, 202, 215–238. [PubMed: 1519746]
- 267. Ichikawa Y; Wang R; Wong CH Regeneration of sugar nucleotide for enzymatic oligosaccharide synthesis. Methods Enzymol 1994, 247, 107–127. [PubMed: 7898347]
- 268. Tsai TI; Lee HY; Chang SH; Wang CH; Tu YC; Lin YC; Hwang DR; Wu CY; Wong CH Effective sugar nucleotide regeneration for the large-scale enzymatic synthesis of Globo H and SSEA4. J Am Chem Soc 2013, 135, 14831–14839. [PubMed: 24044869]

- 269. Yu H; Lau K; Thon V; Autran CA; Jantscher-Krenn E; Xue M; Li Y; Sugiarto G; Qu J; Mu S; Ding L; Bode L; Chen X Synthetic disialyl hexasaccharides protect neonatal rats from necrotizing enterocolitis. Angew Chem Int Ed Engl 2014, 53, 6687–6691. [PubMed: 24848971]
- 270. Yu H; Chokhawala HA; Huang S; Chen X One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nat Protoc 2006, 1, 2485–2492. [PubMed: 17406495]
- 271. Yu H; Lau K; Li Y; Sugiarto G; Chen X One-pot multienzyme synthesis of Lewis x and sialyl Lewis x antigens. Curr Protoc Chem Biol 2012, 4, 233–247. [PubMed: 25000293]
- 272. Lau K; Yu H; Thon V; Khedri Z; Leon ME; Tran BK; Chen X Sequential two-step multienzyme synthesis of tumor-associated sialyl T-antigens and derivatives. Org Biomol Chem 2011, 9, 2784– 2789. [PubMed: 21359399]
- 273. Li Y; Chen X Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl Microbiol Biotechnol 2012, 94, 887–905. [PubMed: 22526796]
- 274. Mehta S; Gilbert M; Wakarchuk WW; Whitfield DM Ready access to sialylated oligosaccharide donors. Org Lett 2000, 2, 751–753. [PubMed: 10754677]
- 275. Yan F; Mehta S; Eichler E; Wakarchuk WW; Gilbert M; Schur MJ; Whitfield DM Simplifying oligosaccharide synthesis: efficient synthesis of lactosamine and siaylated lactosamine oligosaccharide donors. J Org Chem 2003, 68, 2426–2431. [PubMed: 12636412]
- 276. Hayashi M; Tanaka M; Itoh M; Miyauchi H A convenient and efficient synthesis of SLeX analogs. J Org Chem 1996, 61, 2938–2945. [PubMed: 11667151]
- 277. Cao H; Huang S; Cheng J; Li Y; Muthana S; Son B; Chen X Chemical preparation of sialyl Lewis x using an enzymatically synthesized sialoside building block. Carbohydr Res 2008, 343, 2863–2869. [PubMed: 18639240]
- 278. Schmidt D; Thiem J Chemical synthesis using enzymatically generated building units for construction of the human milk pentasaccharides sialyllacto-*N*-tetraose and sialyllacto-*N*-neotetraose epimer. Beilstein J Org Chem 2010, 6, 18. [PubMed: 20485600]
- 279. Yao W; Yan J; Chen X; Wang F; Cao H Chemoenzymatic synthesis of lacto-*N*-tetrasaccharide and sialyl lacto-*N*-tetrasaccharides. Carbohydr Res 2015, 401, 5–10. [PubMed: 25464075]
- 280. Shaikh FA; Withers SG Teaching old enzymes new tricks: engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis. Biochem Cell Biol 2008, 86, 169–177. [PubMed: 18443630]
- Williams SJ; Withers SG Glycosyl fluorides in enzymatic reactions. Carbohydr Res 2000, 327, 27–46. [PubMed: 10968675]
- 282. Albert M; Repetschnigg W; Ortner J; Gomes J; Paul BJ; Illaszewicz C; Weber H; Steiner W; Dax K Simultaneous detection of different glycosidase activities by 19F NMR spectroscopy. Carbohydr Res 2000, 327, 395–400. [PubMed: 10990024]
- 283. Zeuner B; Jers C; Mikkelsen JD; Meyer AS Methods for improving enzymatic transglycosylation for synthesis of human milk oligosaccharide biomimetics. J Agric Food Chem 2014, 62, 9615–9631. [PubMed: 25208138]
- 284. Albermann C; Piepersberg W; Wehmeier UF Synthesis of the milk oligosaccharide 2'fucosyllactose using recombinant bacterial enzymes. Carbohydr Res 2001, 334, 97–103. [PubMed: 11502265]
- 285. Albermann C; Distler J; Piepersberg W Preparative synthesis of GDP-beta-L-fucose by recombinant enzymes from enterobacterial sources. Glycobiology 2000, 10, 875–881. [PubMed: 10988249]
- 286. Wang G; Boulton PG; Chan NW; Palcic MM; Taylor DE Novel *Helicobacter pylori* alpha1,2-fucosyltransferase, a key enzyme in the synthesis of Lewis antigens. Microbiology 1999, 145 (Pt 11), 3245–3253. [PubMed: 10589734]
- 287. Lee WH; Pathanibul P; Quarterman J; Jo JH; Han NS; Miller MJ; Jin YS; Seo JH Whole cell biosynthesis of a functional oligosaccharide, 2'-fucosyllactose, using engineered *Escherichia coli*. Microb Cell Fact 2012, 11, 48. [PubMed: 22545760]
- 288. Chin YW; Kim JY; Lee WH; Seo JH Enhanced production of 2'-fucosyllactose in engineered *Escherichia coli* BL21star(DE3) by modulation of lactose metabolism and fucosyltransferase. J Biotechnol 2015, 210, 107–115. [PubMed: 26193630]

- Baumgartner F; Seitz L; Sprenger GA; Albermann C Construction of *Escherichia coli* strains with chromosomally integrated expression cassettes for the synthesis of 2'-fucosyllactose. Microb Cell Fact 2013, 12, 40. [PubMed: 23635327]
- 290. Prieto PA Profiles of human milk oligosaccharides and production of some human milk oligosaccharides in transgenic animals. Adv Nutr 2012, 3, 456S–464S. [PubMed: 22585925]
- 291. Nagae M; Tsuchiya A; Katayama T; Yamamoto K; Wakatsuki S; Kato R Structural basis of the catalytic reaction mechanism of novel 1,2-alpha-L-fucosidase from *Bifidobacterium bifidum*. J Biol Chem 2007, 282, 18497–18509. [PubMed: 17459873]
- 292. Wada J; Honda Y; Nagae M; Kato R; Wakatsuki S; Katayama T; Taniguchi H; Kumagai H; Kitaoka M; Yamamoto K 1,2-alpha-l-Fucosynthase: a glycosynthase derived from an inverting alpha-glycosidase with an unusual reaction mechanism. FEBS Lett 2008, 582, 3739–3743. [PubMed: 18845150]
- 293. Yu H; Yu H; Karpel R; Chen X Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Bioorg Med Chem 2004, 12, 6427–6435. [PubMed: 15556760]
- 294. Yu H; Chokhawala H; Karpel R; Yu H; Wu B; Zhang J; Zhang Y; Jia Q; Chen X A multifunctional *Pasteurella multocida* sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J Am Chem Soc 2005, 127, 17618–17619. [PubMed: 16351087]
- 295. Sugiarto G; Lau K; Li Y; Khedri Z; Yu H; Le DT; Chen X Decreasing the sialidase activity of multifunctional *Pasteurella multocida* alpha2–3-sialyltransferase 1 (PmST1) by site-directed mutagenesis. Mol Biosyst 2011, 7, 3021–3027. [PubMed: 21858283]
- 296. Sugiarto G; Lau K; Qu J; Li Y; Lim S; Mu S; Ames JB; Fisher AJ; Chen X A sialyltransferase mutant with decreased donor hydrolysis and reduced sialidase activities for directly sialylating LewisX. ACS Chem Biol 2012, 7, 1232–1240. [PubMed: 22583967]
- 297. Endo T; Koizumi S Process for producing alpha2,3/alpha2,8-sialyltransferase and sialic acidcontainign complex sugar. Patent WO 2003027297 A1, April 3. 2004.
- 298. Schmolzer K; Czabany T; Luley-Goedl C; Pavkov-Keller T; Ribitsch D; Schwab H; Gruber K; Weber H; Nidetzky B Complete switch from alpha-2,3- to alpha-2,6-regioselectivity in Pasteurella dagmatis beta-D-galactoside sialyltransferase by active-site redesign. Chem Commun 2015, 51, 3083–3086.
- 299. Schmolzer K; Ribitsch D; Czabany T; Luley-Goedl C; Kokot D; Lyskowski A; Zitzenbacher S; Schwab H; Nidetzky B Characterization of a multifunctional alpha2,3-sialyltransferase from *Pasteurella dagmatis*. Glycobiology 2013, 23, 1293–1304. [PubMed: 23969291]
- 300. Guo Y; Jers C; Meyer AS; Arnous A; Li H; Kirpekar F; Mikkelsen JD A Pasteurella multocida sialyltransferase displaying dual trans-sialidase activities for production of 3'-sialyl and 6'-sialyl glycans. J Biotechnol 2014, 170, 60–67. [PubMed: 24291191]
- 301. Tanaka H; Ito F; Iwasaki T A system for sialic acid transfer by colominic acid and a sialidase that preferentially hydrolyzes sialyl alpha-2,8 linkages. Biosci Biotechnol Biochem 1995, 59, 638–643. [PubMed: 7772829]
- 302. Mcjarrow P; Garman J; Harvey S; Van Amelsfort A Diary process and product. Patent WO 2003049547 A2, June 19. 2003.
- 303. Pelletier M; Barker WA; Hakes DJ; Zopf DA Methods for producing sialyloligosaccharides in a dairy source. Patent US 6706492 B2, March 16. 2004.
- 304. Sallomons E; Wilbrink MH; Sanders P; Kamerling JP; Van Vuure CA; Hage JA Methods for providing sialylated oligosaccharides. Patent WO 2013085384 A1, June 13. 2013.
- 305. Gilbert M; Bayer R; Cunningham AM; DeFrees S; Gao Y; Watson DC; Young NM; Wakarchuk WW The synthesis of sialylated oligosaccharides using a CMP-Neu5Ac synthetase/ sialyltransferase fusion. Nat Biotechnol 1998, 16, 769–772. [PubMed: 9702777]
- 306. Endo T; Koizumi S; Tabata K; Ozaki A Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling. Appl Microbiol Biotechnol 2000, 53, 257–261. [PubMed: 10772462]
- 307. Priem B; Gilbert M; Wakarchuk WW; Heyraud A; Samain E A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria. Glycobiology 2002, 12, 235–240. [PubMed: 12042246]


- 308. Fierfort N; Samain E Genetic engineering of *Escherichia coli* for the economical production of sialylated oligosaccharides. J Biotechnol 2008, 134, 261–265. [PubMed: 18378033]
- 309. Yu H; Huang S; Chokhawala H; Sun M; Zheng H; Chen X Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-linked sialosides: a *P. damsela* alpha-2,6-sialyltransferase with extremely flexible donor-substrate specificity. Angew Chem Int Ed Engl 2006, 45, 3938–3944. [PubMed: 16721893]
- 310. Tsukamoto H; Takakura Y; Mine T; Yamamoto T Photobacterium sp. JT-ISH-224 produces two sialyltransferases, alpha-/beta-galactoside alpha2,3-sialyltransferase and beta-galactoside alpha2,6-sialyltransferase. J Biochem 2008, 143, 187–197. [PubMed: 17984122]
- 311. Drouillard S; Mine T; Kajiwara H; Yamamoto T; Samain E Efficient synthesis of 6'-sialyllactose, 6,6'-disialyllactose, and 6'-KDO-lactose by metabolically engineered *E. coli* expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224. Carbohydr Res 2010, 345, 1394–1399. [PubMed: 20231015]
- 312. Nyffenegger C; Nordvang RT; Zeuner B; Lezyk M; Difilippo E; Logtenberg MJ; Schols HA; Meyer AS; Mikkelsen JD Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic beta-N-acetylhexosaminidases. Appl Microbiol Biotechnol 2015, 99, 7997–8009. [PubMed: 25843303]
- 313. Murata T; Inukai T; Suzuki M; Yamagishi M; Usui AT Facile enzymatic conversion of lactose into lacto-*N*-tetraose and lacto-*N*-neotetraose. Glycoconj J 1999, 16, 189–195. [PubMed: 10596893]
- 314. Prieto PA; Kleman-Leyer KM; inventors; Abbott Laboratories, a. Process for synthesizing oligosaccharides. United States 5,945,314. 1999, August 31.
- 315. Prieto PA In vitro and clinical experiences with a human milk oligosaccharide, lacto-Nneotetraose, and fructooligosaccharides. Foods Food Ingredients J Jpn 2005, 210, 1018–1030.
- 316. Renaudie L; Daniellou R; Auge C; Le Narvor C Enzymatic supported synthesis of lacto-*N*-neotetraose using dendrimeric polyethylene glycol. Carbohydr Res 2004, 339, 693–698. [PubMed: 15013407]
- 317. Li Y; Yu H; Chen Y; Lau K; Cai L; Cao H; Tiwari VK; Qu J; Thon V; Wang PG; Chen X Substrate promiscuity of N-acetylhexosamine 1-kinases. Molecules 2011, 16, 6396–6407. [PubMed: 21799473]
- 318. Chen Y; Thon V; Li Y; Yu H; Ding L; Lau K; Qu J; Hie L; Chen X One-pot three-enzyme synthesis of UDP-GlcNAc derivatives. Chem Commun 2011, 47, 10815–10817.
- 319. Guan W; Ban L; Cai L; Li L; Chen W; Liu X; Mrksich M; Wang PG Combining carbochips and mass spectrometry to study the donor specificity for the *Neisseria meningitidis* beta1,3-Nacetylglucosaminyltransferase LgtA. Bioorg Med Chem Lett 2011, 21, 5025–5028. [PubMed: 21704524]
- 320. Muthana MM; Qu J; Li Y; Zhang L; Yu H; Ding L; Malekan H; Chen X Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chem Commun 2012, 48, 2728–2730.
- 321. Lau K; Thon V; Yu H; Ding L; Chen Y; Muthana MM; Wong D; Huang R; Chen X Highly efficient chemoenzymatic synthesis of beta1–4-linked galactosides with promiscuous bacterial beta1–4-galactosyltransferases. Chem Commun 2010, 46, 6066–6068.
- 322. Sun M; Li Y; Chokhawala HA; Henning R; Chen X N-Terminal 112 amino acid residues are not required for the sialyltransferase activity of *Photobacterium damsela* alpha2,6-sialyltransferase. Biotechnol Lett 2008, 30, 671–676. [PubMed: 17989925]
- 323. Cheng J; Yu H; Lau K; Huang S; Chokhawala HA; Li Y; Tiwari VK; Chen X Multifunctionality of *Campylobacter jejuni* sialyltransferase CstII: characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology 2008, 18, 686–697. [PubMed: 18509108]
- 324. Yu H; Cheng J; Ding L; Khedri Z; Chen Y; Chin S; Lau K; Tiwari VK; Chen X Chemoenzymatic synthesis of GD3 oligosaccharides and other disialyl glycans containing natural and non-natural sialic acids. J Am Chem Soc 2009, 131, 18467–18477. [PubMed: 19947630]

- 325. Dumon C; Priem B; Martin SL; Heyraud A; Bosso C; Samain E In vivo fucosylation of lacto-*N*-neotetraose and lacto-*N*-neohexaose by heterologous expression of *Helicobacter pylori* alpha1,3-fucosyltransferase in engineered *Escherichia coli*. Glycoconjugate J. 2001, 18, 465–474.
- 326. Drouillard S; Driguez H; Samain E Large-scale synthesis of H-antigen oligosaccharides by expressing *Helicobacter pylori* alpha1,2-fucosyltransferase in metabolically engineered Escherichia coli cells. Angew Chem Int Ed Engl 2006, 45, 1778–1780. [PubMed: 16477664]
- 327. Dumon C; Samain E; Priem B Assessment of the two *Helicobacter pylori* alpha-1,3fucosyltransferase ortholog genes for the large-scale synthesis of LewisX human milk oligosaccharides by metabolically engineered *Escherichia coli*. Biotechnol Prog 2004, 20, 412– 419. [PubMed: 15058985]
- 328. Baumgartner F; Conrad J; Sprenger GA; Albermann C Synthesis of the human milk oligosaccharide lacto-*N*-tetraose in metabolically engineered, plasmid-free *E. coli*. Chembiochem 2014, 15, 1896–1900. [PubMed: 25044565]
- Baumgartner F; Sprenger GA; Albermann C Galactose-limited fed-batch cultivation of *Escherichia coli* for the production of lacto-*N*-tetraose. Enzyme Microb Technol 2015, 75–76, 37–43.
- 330. Sakurama H; Fushinobu S; Hidaka M; Yoshida E; Honda Y; Ashida H; Kitaoka M; Kumagai H; Yamamoto K; Katayama T 1,3–1,4-alpha-L-fucosynthase that specifically introduces Lewis a/x antigens into type-1/2 chains. J Biol Chem 2012, 287, 16709–16719. [PubMed: 22451675]
- 331. Koizumi S; Endo T; Tabata K; Ozaki A Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat Biotechnol 1998, 16, 847–850. [PubMed: 9743118]
- 332. Koizumi S; Endo T; Tabata K; Nagano H; Ohnishi J; Ozaki A Large-scale production of GDPfucose and Lewis x by bacterial coupling. J. Ind. Microbiol. Biotechnol 2000, 25, 213–217.
- 333. Dumon C; Bosso C; Utille JP; Heyraud A; Samain E Production of Lewis x tetrasaccharides by metabolically engineered *Escherichia coli*. Chembiochem 2006, 7, 359–365. [PubMed: 16381046]
- 334. Antoine T; Priem B; Heyraud A; Greffe L; Gilbert M; Wakarchuk WW; Lam JS; Samain E Large-scale in vivo synthesis of the carbohydrate moieties of gangliosides GM1 and GM2 by metabolically engineered *Escherichia coli*. Chembiochem 2003, 4, 406–12. [PubMed: 12740812]
- 335. Wang Z; Chinoy ZS; Ambre SG; Peng W; McBride R; de Vries RP; Glushka J; Paulson JC; Boons GJ A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans. Science 2013, 341, 379–383. [PubMed: 23888036]
- 336. Li L; Liu Y; Ma C; Qu J; Calderon AD; Wu B; Wei N; Wang X; Guo Y; Xiao Z; Song J; Sugiarto G; Li Y; Yu H; Chen X; Wang PG Efficient chemoenzymatic synthesis of an N-glycan isoer library. Chem. Sci 2015, 6, 5652–5661. [PubMed: 26417422]

FIG. 1.

One-pot multienzyme (OPME) GlcNAc (**A**), Gal (**B**), and Neu5Ac (**C**) activation and transfer systems.^{269, 270} Enzyme abbreviations: BiNahK, *B. infantis N*-acetylhexosamine-1-kinase;³¹⁷ PmGlmU, *P. multocida N*-acetylglucosamine 1-phosphate uridylyltransferase;³¹⁸ PmPpA, *P. multocida* inorganic pyrophosphatase;³¹⁸ GlcNAcT, *N*-acetylglucosaminyltransferase; NmLgtA, *Neisseria meningitidis* β 1–3-*N*acetylglucosaminyltransferase;³¹⁹ EcGalK, *E. coli* K-12 galactose kinase;³²⁰ BLUSP: *B. longum* UDP-sugar synthase;³²⁰ GalT, galactosyltransferase; NmLgtB, *Neisseria meningitidis* β 1–4-galactosyltransferases;³²¹ NmCSS, *Neisseria meningitidis* CMP-sialic acid synthetase;²⁹³ SiaT, sialyltransferases; PmST1 M144D, *Pasteurella multocida* α 2–3-sialyltransferase 1 M144D mutant;²⁹⁶ Pd2,6ST, *Photobacterium damselae* α 2–6sialyltransferase;^{309, 322} CstII, *Campylobacter jejuni* α 2–8-sialyltransferase II.^{323, 324}

FIG. 2.

OPME and sequential OPME systems for the synthesis of disialyl oligosaccharides including DSLNnT, GD3 tetraose, DSLac, DS'LNT, and a monosialylpentaose LSTd (3"-sLNnT).²⁶⁹ The structure of DSLNT found in human milk is shown for comparison purpose.

TABLE I.

Major monosaccharide building blocks for HMOS.

HMOS monosaccharide building blocks	Abbreviations	Symbols	Structures	Glycosidic Linkages in HMOS
N-Acetylneuraminic acid	Neu5Ac	\diamondsuit	$\begin{array}{c} HO & OH & CO,H \\ \Psi & 0 & C,H \\ \Psi & 0 & 0 \\ \Psi & 0 & 0 \\ \Psi & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	α-linkages
Fucose	Fuc	\triangle	6 5 0 1 4 73 2 0H	α-linkages
Galactose	Gal	Ο	ОН_ОН Н0 4 3 2 он 0 −}-	β-linkages
<i>N</i> -Acetylglucosamine	GlcNAc		HO HO 3 2 ² NH 0 =	β-linkages
Glucose	Glc		HO 4 5 0 HO 3 2 0H	None (at the reducing end, a mix of α and β configurations at the anomeric carbon)

TABLE II.

Lactose and neutral non-fucosylated HMOS that can serve as the core structures for other HMOS.^{28, 32–34}

Core #	Lactose and HMOS core structures	Abbreviations	Symbols	Ref.
I	Lactose (not considered an HMOS itself)	Lac	O ^{<u>β4</u>} ●	49
п	Lacto-N-tetraose	LNT	^{β3} ^{β3} ^{β4}	24
Ш	Lacto-N-neotetraose	LNnT	$\bigcirc_{\overline{\beta4}} \blacksquare^{\beta3} \overline{\beta4} \blacksquare$	50
IV	Lacto-N-hexaose	LNH	$\bigcirc_{\beta 4} \blacksquare_{\beta 6} \\ \bigcirc_{\beta 3} \\ \bigcirc_{\beta 3} \\ \bigcirc_{\beta 3} \\ \bigcirc_{\beta 3} \\ \bigcirc_{\beta 4} \\ \bigcirc_{\beta 3} \\ \bigcirc_{\beta 4} \\ \bigcirc_{\beta 3} \\ \bigcirc_{\beta 4} \\ 0 \\ \\ \\ \bigcirc_{\beta 4} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	51
v	Lacto-N-neohexaose	LNnH	$\bigcirc_{\overline{\beta4}} \blacksquare_{\beta6} \\ \bigcirc_{\overline{\beta4}} \blacksquare_{\beta3} \\ \bigcirc_{\overline{\beta4}} \blacksquare_{\beta3} \\ \bigcirc_{\overline{\beta4}} \blacksquare_{\beta3} \\ \bigcirc_{\overline{\beta4}} \blacksquare_{\beta3} \\ \bigcirc_{\overline{\beta4}} \blacksquare_{\beta5} \\ \bigcirc_{\overline{\beta4}} \blacksquare_{\beta5} \\ \bigcirc_{\overline{\beta4}} \\ \\ \\ \bigcirc_{\overline{\beta4}} \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \\ \hline \\$	52
VI	para-Lacto-N-hexaose	<i>p</i> LNH	0 ₆₃ 0 ⁶³ 0 ⁶⁴ 0 ⁶⁴ 0 ⁶⁴ 0 ⁶⁴	53
VII	para-Lacto-N-neohexaose	<i>p</i> LNnH		53
VIII	Lacto-N-octaose	LNO		54
IX	Lacto-N-neooctaose	LNnO	β ^{β4} β ^{β4} β ^{β6} β ^{β6}	54
X	<i>iso</i> -Lacto- <i>N</i> -octaose	<i>i</i> LNO	β3 β3 β3 β3 β3 β3 β3 β6 β6 β6 β6 β6 β6 β6 β6 β6 β6 β6 β6 β6	55
XI	para-Lacto-N-octaose	<i>p</i> LNO		56
XII	para-Lacto-N-neooctaose	<i>p</i> LNnO		57
XIII	Lacto-N-decaose	LND	$\begin{array}{c} \bigcirc_{\beta 4} \blacksquare_{\beta 6} \\ \blacksquare_{\beta 3} \blacksquare_{\beta 6} \blacksquare_{\beta 6} \\ \bigcirc_{\beta 3} \blacksquare_{\beta 3} \blacksquare_{\beta 6} \\ \blacksquare_{\beta 3} \blacksquare_{\beta 7} \blacksquare_{\beta 6} \\ \blacksquare_{\beta 7} \blacksquare_{\beta 7} \blacksquare_{\beta 6} \\ \frown_{\beta 7} \blacksquare_{\beta 7} \blacksquare_{\beta 6} \\ \blacksquare_{\beta 7} \blacksquare_{\beta 6} \blacksquare_{\beta 7} \\ \blacksquare_{\beta 7} \blacksquare_{\beta 6} \\ \blacksquare_{\beta 7} \blacksquare_{\beta 7} \blacksquare_{\beta 7}$	58
XIV	Lacto-N-neodecaose	LNnD	$\begin{array}{c} \bigcirc_{\overline{p4}} \blacksquare_{p5} \\ \bigcirc_{\overline{p4}} \blacksquare_{p3} & \bigcirc_{\overline{p4}} \blacksquare_{p5} \\ \bigcirc_{\overline{p4}} \blacksquare_{p3} & \bigcirc_{\overline{p4}} \blacksquare_{p5} \\ & \bigcirc_{\overline{p3}} & \bigcirc_{\overline{p3}} \blacksquare_{p5} \\ & \bigcirc_{\overline{p3}} & \bigcirc_{\overline{p3}} \blacksquare_{p5} \\ & \bigcirc_{\overline{p3}} & \bigcirc_{\overline{p3}} \blacksquare_{p5} \\ & \bigcirc_{\overline{p3}} \blacksquare_{p5} & \bigcirc_{\overline{p4}} \blacksquare_{p5} \\ & \bigcirc_{\overline{p4}} \blacksquare_{p5} & \bigcirc_{\overline{p4}} \blacksquare_{p5} \\ & \bigcirc_{\overline{p3}} \blacksquare_{p5} & \bigcirc_{\overline{p4}} \blacksquare_{p5} \\ & \bigcirc_{\overline{p4}} \blacksquare_{p5} \blacksquare_{p5} & \bigcirc_{\overline{p4}} \blacksquare_{p5} \blacksquare_{p5} \\ & \bigcirc_{\overline{p4}} \blacksquare_{p5} \blacksquare_{p5} \blacksquare_{p5} \blacksquare_{p5} \\ & \bigcirc_{\overline{p4}} \blacksquare_{p5} \blacksquare_{p$	58
XV			$\bigcirc_{\beta4} \blacksquare_{\beta3} \blacksquare_{\beta4} \blacksquare_{\beta5} \blacksquare_{\beta4} \blacksquare_{\beta5} \blacksquare_{\beta4} \blacksquare_{\beta5} $	33

Core #	Lactose and HMOS core structures	Abbreviations	Symbols	Ref.
XVI			ρ4 ρ6 ρ3 ρ3	59

Symbols and abbreviations: O galactose (Gal), N-acetylglucosamine (GlcNAc), O glucose (Glc).

TABLE III.

Twelve glycosidic linkages that constitute diverse HMOS.^{33, 34}

Glycosidic linkages	Abbreviations	Symbol
Galactosidic bonds	Galβ1–4Glc	O ^{<u>β4</u>} ●
	Galβ1–3GlcNAc	β3
	Galβ1–4GlcNAc	Ο _{β4}
N-acetyl-glucosaminidic bond	GlcNAcβ1–3Gal	■ ^{β3}
	GlcNAcβ1–6Gal	β 6
Fucosidic bond	Fuca1–2Gal	Ο α 2
	Fuca.1–3Glc	α3
	Fuca1–3GlcNAc	Δα3
	Fuca1-4GlcNAc	α ⁴
Sialidic bond	Neu5Aca2-3Gal	¢~3
	Neu5Aca2–6Gal	♦ _α 6

\geq
Ē
5
0
<u> </u>
\leq
<u>m</u>
2
เร
<u>Ω</u>
- 7 7
¥

Glycosidic linkages	Abbreviations	Symbol
	Neu5Aca2–6GlcNAc	Φ α6

Symbols and abbreviations: \clubsuit *N*-acetylneuraminic acid (Neu5Ac), \blacktriangle fucose (Fuc), \bigcirc galactose (Gal), \blacksquare *N*-acetylglucosamine (GlcNAc), \bigcirc glucose (Glc).

TABLE IV.

Structures of HMOS grouped by their core structures.^{28, 32–34, 61}

Core #	Lactose and HMOS	Abbreviations	Symbols	Ref.
I	Lactose (not considered as HMOS itself)	Lac		49
		LNTri II	B ^{β3} β4●	76
	^a 2'-Fucosyllactose	2'FL	$\mathbf{\mathbf{A}}^{\underline{\mathbf{\beta}4}} \mathbf{\mathbf{\Phi}}$	25
	3-Fucosyllactose	3FL		27
	^a Lactodifucotetraose	LDFT	$\begin{array}{c} & \beta 4 \\ & \alpha 2 \\ & \alpha 3 \end{array}$	77
	3'-Sialyllactose	3'SL	$\mathbf{A}^{\alpha}^{\alpha}^{\beta}$	78
	6'-Sulfo-3'-sialyllactose	6'-Sulfo-3'SL	6S Φ ^{α3} β4Φ	64
	6'-Sialyllactose	6'SL		79
	3'-Sialyl-3-fucosyllactose	3'S3FL		80
п	Lacto-N-tetraose	LNT	^{β3} ^{β3} ^{β4}	24
	^a Lacto-N-fucopentaose I	LNFP I	$\begin{bmatrix} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	26
	^b Lacto-N-fucopentaose II	LNFP II	$ \begin{array}{c} \underline{A}^{\alpha 4} \\ 0 \\ \beta 3 \end{array} \begin{array}{c} \beta 3 \\ \beta 3 \end{array} $	81
	Lacto-N-fucopentaose V	LNFP V	β ^{β4} β ^{β4} β ^{β4} φ ^{α3}	82

Core #	Lactose and HMOS	Abbreviations	Symbols	Ref.
	a. b _{Lacto-N} -difuco-hexaose I	LNDFH I	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	83
	^b Lacto- <i>N</i> -difuco-hexaose II	LNDFH II	$ \begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ $	84
	Sialyllacto- <i>N</i> -tetraose a	LSTa	Φ ^{β3} Φ ^{β3} Φ ^{β3}	66
	Sialyllacto-N-tetraose b	LSTb	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	66
	Disialyllacto-N-tetraose	DSLNT	φα6 β3 φα3 φα6 β3 β4 Φ β4 Φ β4 Φ β4 Φ β4 Φ β4 Φ β4 Φ β4 Φ β4 Φ β4 Φ β4 Φ β4 Φ β4 Φ β4 Φ β4 Φ β4 β4 β4 β4 β4 β4 β4 β4 β4 β4	85
	Sialylfucosyllacto-N-tetraose	S-LNF II or F-LSTa	$\mathbf{A}_{\alpha 4}^{\alpha 4} \mathbf{A}_{\beta 3}^{\beta 3} \mathbf{A}_{\beta 3}^{\beta 4} \mathbf{A}_{\alpha 3}^{\beta 3}$	86
	Fucosylsialyllacto-N-tetraose	S-LNF I or F-LSTb	$ \begin{array}{c} $	86
	Fucosyldisialyllacto-N-tetraose	DS-LNF II or FDS-LNT I	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	87
	Disialylfucosyllacto-N-tetraose	DS-LNF V or FDS-LNT II	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	87
Ш	Lacto-N-neotetraose	LNnT	$\bigcirc_{\overline{\beta4}} \blacksquare^{\beta3} \blacksquare^{\beta3}$	50
	Lacto-N-fucopentaose III	LNFP III	$O_{\underline{A}^{\alpha 3}}^{\underline{\beta 4}} O_{\underline{\beta 4}}^{\underline{\beta 4}} \bullet$	88
	Lacto-N-neofucopentaose V	LNnFP V		89
	Lacto-N-neodifucohexaose II	LNnDFH II (LNDFH III)	$O_{\underline{\beta}}^{\underline{\beta}4}\underline{\beta}^{\underline{\beta}4}\underline{\delta}^{\underline{\beta}4}$	67
	Sialyllacto- <i>N</i> -neotetraose c	LSTc	$ \bigoplus_{\substack{\alpha 6 \\ \beta 4} \blacksquare^{\beta 3}} \bigcirc_{\beta 4} \bigoplus $	90
	Fucosylsialyllacto-N-neotetroase	F-LSTc		91

Core #	Lactose and HMOS	Abbreviations	Symbols	Ref.
IV	Lacto- <i>N</i> -hexaose	LNH	β4 β3 β4 β3	51
	Fucosyllacto- <i>N</i> -hexaose I	FLNH I	$ \begin{array}{c} \beta^{\beta 4} \\ \beta^{\beta 3} \\ \beta^{\beta 3} \\ \alpha^{2} \end{array} $	92
	Fucosyllacto- <i>N</i> -hexaose II	FLNH II	$ \begin{array}{c} \beta^{\beta 4} \\ $	93
	^c 4120a		$\beta^{\beta 4} = \beta^{\beta} \beta^{\beta} \beta^{\beta} \beta^{\beta} \phi^{\beta} $	33
	Difucosyllacto- <i>N</i> -hexaose a	DF-LNH a	$ \begin{array}{c} \beta^{4} \\ \alpha^{\alpha 3} \\ \beta^{\beta 3} \\ \beta^{\beta 3} \\ \alpha^{2} \alpha^{\beta 3} \alpha^{\beta 3} $	92
	Difucosyllacto- <i>N</i> -hexaose b	DF-LNH b	$\beta^{\beta 4} \qquad \beta^{\beta 6} \qquad \beta^{\alpha 3} \qquad \beta^{\alpha 4} \qquad \beta^{\alpha 4} \qquad \beta^{\beta 3} \qquad \beta^{\beta 4} \qquad \beta^{\beta 3} \qquad \beta^{\beta 4} \qquad \beta^{\beta 3} \qquad \beta^{\beta 4} \qquad \beta^{\beta$	51
	Difucosyllacto- <i>N</i> -hexaose c	DF-LNH c	$ \begin{array}{c} \overset{\beta 4}{\longrightarrow} & \\ \overset{\alpha 4}{\longrightarrow} & \\ \overset{\beta 3}{\longrightarrow} & \\ \overset{\beta 4}{\longrightarrow} & \\ \overset{\beta 3}{\longrightarrow} & \\ \overset{\beta 4}{\longrightarrow} & \\ \overset$	33
	Trifucosyllacto- <i>N</i> -hexaose	TF-LNH	$\beta^{\beta 4}_{\alpha 3} \beta^{\beta 6}_{\beta 3}$	55
	Sialyllacto- <i>N</i> -hexaose	S-LNH		51
	^c 4021a		$ \begin{array}{c} \beta^{\beta 4} \\ \phi_{\alpha 6} \\ \beta^{\beta 3} \\ \delta^{\beta 3} \end{array} $	34
	Disialyllacto- <i>N</i> -hexaose I	DS-LNH I	€ α6 β4 ββ3 ββ3 Φα3	94

Disialyllacto- <i>N</i> -hexaose II	DS-LNH II	$ \begin{array}{c} \beta^{\beta 4} \blacksquare \beta^{\beta} \\ \Phi_{\alpha 6} & \beta^{\beta} \\ \phi_{\alpha 3} & \beta^{\beta} \\ \phi_{\alpha 3} & \phi^{\alpha} \\ \end{array} $	94
Trisialyllacto-N-hexaose	TS-LNH		95
Fucosylsialyllacto-N-hexaose	FS-LNH	€ ^{α6} ^{β4} _{β6} _{β3} _{β4} ^{β3} _{β4}	92
Fucosylsialyllacto- <i>N</i> -hexaose I	FS-LNH I	$ \begin{array}{c} \beta^{4} \\ 4 \\ 4 \\ \alpha^{3} \\ 6 \\ \beta^{3} \\ \beta^{4} \\ \delta^{4} \\ $	96
Fucosylsialyllacto- <i>N</i> -hexaose II	FS-LNH II	$ \begin{array}{c} \beta^{4} \blacksquare \beta^{6} \\ \beta^{\alpha 3} \\ \beta^{\beta 3} \\ \phi^{\alpha 3} \end{array} $	96
Fucosylsialyllacto- <i>N</i> -hexaose III	FS-LNH III	Φ ^{α6} _β 4 ββ ββ ββ	96
Fucosylsialyllacto- <i>N</i> -hexaose IV	FS-LNH IV	$ \begin{array}{c} $	97
Difucosylsialyllacto- <i>N</i> -hexaose I	DFS-LNH I	α ⁶ β ⁴ β ⁶ β ⁴ β ⁶ β ⁴ β ⁶ β ⁴ β ⁶ β ⁴ β ⁶ β ⁴	96
Difucosylsialyllacto- <i>N</i> -hexaose II	DFS-LNH II	$ \begin{array}{c} \beta^{4} & \beta \\ $	97
Fucosyldisialyllacto- <i>N</i> -hexaose I	FDS-LNH I	² ² ² ^{β4} ^{β6} ^{β6} ^{β6} ^{β4} ^{β4}	98
Fucosyldisialyllacto-N-hexaose II	FDS-LNH II	$ \begin{array}{c} \beta^{4} \\ $	98

Abbreviations

Symbols

Ref.

Adv Carbohydr Chem Biochem. Author manuscript; available in PMC 2022 June 27.

Core #

Lactose and HMOS

Core #	Lactose and HMOS	Abbreviations	Symbols	Ref.
	Fucosyldisialyllacto- <i>N</i> -hexaose III	FDS-LNH III		97
V	Lacto-N-neohexaose	LNnH	$\bigcap_{\overline{\beta4}} \bigcap_{\beta4} \bigcap_{\beta3} \bigcap_{\overline{\beta4}} \bigoplus_{\beta3} \bigcap_{\beta4} \bigoplus_{\beta4} \bigcap_{\beta4} \bigcap$	52
	Fucosyllacto-N-neohexaose	F-LNnH	$\mathbf{A}^{\alpha} \Big\{ \bigcirc_{\overline{\beta4}} \mathbf{H}_{\beta6} \\ \bigcirc_{\overline{\beta4}} \mathbf{H}_{\beta3}^{\overline{\beta4}} \mathbf{\Phi} \Big\}$	52
	Difucosyllacto-N-neohexaose	DF-LNnH	$ \begin{array}{c} \beta^{4} & \beta^{6} \\ $	56
	Sialyllacto-N-neohexaose I	S-LNnH I	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	51
	Sialyllacto-N-neohexaose II	S-LNnH II	$ \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	80
	Disialyllacto-N-neohexaose	DS-LNnH	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	87
	Fucosylsialyllacto- <i>N</i> -neohexaose I	FS-LNnH I	$ \begin{array}{c} \beta^{4} \blacksquare \beta 6 \\ $	80
	Fucosylsialyllacto-N-neohexaose II	FS-LNnH II	$\mathbf{A}^{\alpha} \begin{cases} \mathbf{\Phi}_{\alpha 5} \\ \mathbf{O}_{\overline{p4}} \mathbf{H}_{\beta 5} \\ \mathbf{O}_{\overline{p4}} \mathbf{H}_{\beta 3} \\ \mathbf{O}_{\overline{p4}} \mathbf{H}_{\beta 3} \end{cases} \mathbf{\Phi}$	52
	Difucosylsialyllacto-N-neohexaose	DFS-LNnH	$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	80
	Fucosyldisialyllacto- <i>N</i> -neohexaose	FDS-LNnH	$Or \\ \bigcirc \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix} \xrightarrow{\beta 4} \begin{bmatrix} 6 \\ 0 & 0 \end{bmatrix} \xrightarrow{\beta 4} \begin{bmatrix} 6 \\ 0 & 0 \end{bmatrix} \xrightarrow{\beta 4} \begin{bmatrix} 6 \\ 0 & 0 \end{bmatrix} \xrightarrow{\beta 4} \begin{bmatrix} 6 \\ 0 & 0 \end{bmatrix} \xrightarrow{\beta 4} \begin{bmatrix} 6 \\ 0 & 0 \end{bmatrix} \xrightarrow{\beta 4} \begin{bmatrix} 6 \\ 0 & 0 \end{bmatrix} \xrightarrow{\beta 4} \xrightarrow{\beta 4} \begin{bmatrix} 6 \\ 0 & 0 \end{bmatrix} \xrightarrow{\beta 4} \beta$	98
VI	para-Lacto-N-hexaose	<i>p</i> LNH	0 B3 B3 B4 B B3 B4	53
	Fucosyl- <i>para</i> -lacto- <i>N</i> -hexaose I	F- <i>p</i> LNH I	p3 ○ ^{p4} p3 ^{p4}	99

Core #	Lactose and HMOS	Abbreviations	Symbols	Ref.
	Fucosyl-para-lacto-N-hexaose II	F-pLNH II	▲ ^{c4} ^{β3} ^{β3} ^{β3} ^{β4} ^{β3} ^{β4}	100
	Fucosyl-para-lacto-N-hexaose IV	F- <i>p</i> LNH IV	β3 β3 β4 β3 β4	100
	Difucosyl-para-lacto-N-hexaose	DF- <i>p</i> LNH	▲ ^{α4} → ^{β3} → ^{β4} → ^{β3} → ^{β3} → ^{β4} → ^{β4} → ^{β4} → ^{β3} → ^{β4} → ^{β3} → ^{β4}	53
	Trifucosyl- <i>para</i> -lacto- <i>N</i> -hexaose I	TF- <i>p</i> LNH I	A ^{ad} ^{β3} ^{βd} ^{β3} ^{βd} ^{β3}	101
	Trifucosyl- <i>para</i> -lacto- <i>N</i> -hexaose II	TF- <i>p</i> LNH II	A ^{a4} ^{β3} ^{β4} ^{β3} ^{βa}	100
	Difucosyl- <i>para</i> -lacto- <i>N</i> -hexaose sulfate I	DF- <i>p</i> LNH sulfate I		65
	Difucosyl-para-lacto-N-hexaose sulfate II	DF- <i>p</i> LNH sulfate II	▲ ^{α4} ^{β3} ○ ^{μ4} ⁶⁵ _{β3} → ^{β3}	65
	Difucosyl- <i>para</i> -lacto- <i>N</i> -hexaose sulfate III	DF- <i>p</i> LNH sulfate III	(13) (13)	65
VII	para-Lacto-N-neohexaose	<i>p</i> LNnH	O _{β4} ■ ^{β3} ^{β4} ■ ^{Oβ4}	53
	Fucosyl-para-lacto-N-neohexaose	F- <i>p</i> LNnH or IFLNH III		99
	Difucosyl-para-lacto-N-neohexaose	DF- <i>p</i> LNnH		53
	Trifucosyl-para-lacto-N-neohexaose	TF- <i>p</i> LNnH		100
	^c 4021b			34
	^c 4121a			34
	^c 4121b		€ ⁰⁵ µ ^H ^{B3} ^M ^D p4	34
VIII	Lacto-N-octaose	LNO	O _{β4} □ ^[13] ^[13] ^[14] ^[16]	54

Core #	Lactose and HMOS	Abbreviations	Symbols	Ref.
	c _{5130c}		^M ^{β3} ^{β4} ^{β6} ^{β6} ^{β3} ^{β3}	33
	^с 5130b		$ \overset{\beta 4}{\longrightarrow} \overset{\beta 3}{\longrightarrow} \overset{\beta 3}{\longrightarrow} \overset{\beta 4}{\longrightarrow} \overset{\beta 6}{\longrightarrow} \beta$	33
	Fucosyllacto-N-octaose	F-LNO	6 ^{β4} ^{β4} ^{β4} ^{β5} ^{β6}	102
	Difucosyllacto-N-octaose I	DF-LNO I	0 ⁶⁴ ▲(x3) (p3) (p3) (p4) (p3) (p4	54
	Difucosyllacto-N-octaose II	DF-LNO II		54
	Trifucosyllacto-N-octaose	TF-LNO		54
	^c 5031a			34
	Fucosylsialyllacto-N-octaose	FS-LNO		103
	^c 5131a			34
	^c 5231a			34
	^c 5231b			34
	Difucosylsialyllacto-N-octaose	DFS-LNO		104
	c _{5331a}			34
IX	Lacto-N-neooctaose	LNnO	$ \begin{array}{c} \bigcirc & \beta \\ \beta$	54
	Fucosyllacto-N-neooctaose	F-LNnO	$ \begin{array}{c} \beta 3 \\ \beta 4 $	54

Author Manuscript

Core #	Lactose and HMOS	Abbreviations	Symbols	Ref.
	Difucosyllacto-N-neooctaose I	DF-LNnO I	$ \underbrace{\mathbb{A}^{\alpha 4}}_{[13]} \underbrace{\mathbb{A}^{\alpha 3}}_{[14]} \underbrace{\mathbb{A}$	54
	Difucosyllacto-N-neooctaose II	DF-LNnO II		54
	Trifucosyllacto-N-neooctaose I	TF-LNnO I		54, 55
	Trifucosyllacto-N-neooctaose II	TF-LNnO II		55
X	iso-Lacto-N-octaose	<i>i</i> LNO		55
	^C 5130a Fucosyl- <i>iso</i> -Lacto- <i>N</i> -octaose	F- <i>i</i> LNO	$\bigcap_{\substack{\mu \in \mathcal{M} \\ \mu \in \mathcal{M}}} \prod_{\substack{\mu \in \mathcal{M} \\ \mu \in$	33, 105
	Difucosyl- <i>iso</i> -lacto-N-octaose I	DF- <i>i</i> LNO I		106
	Difucosyl- <i>iso</i> -lacto-N-octaose II	DF- <i>i</i> LNO II	^{β3} ^{β3} ^{β3} ^{β3} ^{β3} ^{β3} ^{β3} ^{β3} ^{β4} ^{β6} ^{β5} ^{β6}	106
	^c 5230a			33
	Trifucosyl- <i>iso</i> -lacto-N-octaose I	TF- <i>i</i> LNO I		55
	Trifucosyl-iso-lacto-N-octaose II	TF- <i>i</i> LNO II		56, 105
	^c 5330a			33
	Tetrafucosyl-iso-lacto-N-octaose	TetraF- <i>I</i> LNO		56
	pentafucosyl-iso-lacto-N-octaose	PentaF- <i>i</i> LNO		56
	Fucosylsialyl- <i>iso</i> -lacto-N-octaose	FS- <i>i</i> LNO	β3	104

Core #	Lactose and HMOS	Abbreviations	Symbols	Ref.
	Difucosylsialyl- <i>iso</i> -lacto-N-octaose I	DFS- <i>i</i> LNO I	p3)	104
	Difucosylsialyl- <i>iso</i> -lacto-N-octaose II	DFS- <i>I</i> LNO II		104
	Trifucosylsialyl- <i>iso</i> -lacto-N-octaose	TFS-LNO		94
XI	para-Lacto-N-octaose	<i>p</i> LNO		56
	Tetrafucosyl- <i>para</i> -lacto-N-octaose	TetraF- <i>p</i> LNO		56
XII	para-Lacto-N-neooctaose	<i>p</i> LNnO		57
XIII	Lacto-N-decaose	LND	0 _{µ4} ■ p6 0 _{µ3} ■ p6 0 _{µ3} ■ p8 0 _{µ3} ■ p8 0 _{µ3}	58, 107
	Fucosyl-lacto-N-decaose I	F-LND I		107
	Difucosyl-lacto-N-decaose I	DF-LND I	$\begin{array}{c} \bigcirc \overset{[64]}{\underset{(a)}{\overset{(a)}}}}{\overset{(a)}{\overset{(a)}}}}}}}}}}}}}}}}}}}}} } } } } \\ \\ $	58
	Difucosyl-lacto-N-decaose II	DF-LND II	$ \begin{array}{c} \bigcirc \overset{\beta 4}{\underset{\beta 3}{\overset{\alpha 4}{\overset{\beta 6}{\overset{\beta 7}{\overset{\beta 7}{\overset{1}}{\overset{\beta 7}{\overset{\beta 7}{\overset{\beta 7}{\overset{\beta 7}{\overset{1}}{\overset{\beta 7}{\overset{\beta 7}{\overset{\beta 7}{\overset{\beta 7}{\overset{\beta 7}{\overset{\beta 7}{\overset{1}{\overset{1}}{\overset{1}}}}{\overset{1}}}{\overset{1}}}}}}}}}$	58
	Difucosyl-lacto- <i>N</i> -decaose III	DF-LND III		58
	Difucosyl-lacto- <i>N</i> -decaose IV	DF-LND IV	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	58
	Difucosyl-lacto-N-decaose V	DF-LND V		58
	Difucosyl-lacto-N-decaose VI	DF-LND VI	O ^M 66 A ^{ad} 63 63 63 63 63 63 63 63 63 63	58

Core #	Lactose and HMOS	Abbreviations	Symbols	Ref.
				58
				58
	Trifucosyl-lacto-N-decaose I	TriF-LND I		58
	Trifucosyl-lacto-N-decaose II	TriF-LND II		58
	Trifucosyl-lacto-N-decaose III	TriF-LND III		58
	Trifucosyl-lacto- <i>N</i> -decaose IV	TriF-LND IV		58
				58
			0 ⁴⁴ 6 ⁶ ▲ ^{c3} 6 ⁴ 6 ³ 6 ⁴ 6 ³ 6 ⁴ 6 ³ 6 ³ 6 ³ 6 ³ 6 ³ 6 ³	58
	c _{6340a}		○ ^{β4} ^{β6} ^{β4} ^{β2} ^{β3} ^{β4} ^{β3} ^{β3} ^{β3}	33
	Tetrafucosyl-lacto-N-decaose I	TetraF-LND I		58
	Tetrafucosyl-lacto-N-decaose II	TetraF-LND II		58
	Tetrafucosyl-lacto- <i>N</i> -decaose III	TetraF-LND III		58
				58

Core #	Lactose and HMOS	Abbreviations	Symbols	Ref.
XIV	Lacto-N-neodecaose	LNnD		58
	Fucosyllacto-N-neodecaose I	F-LNnD I	$\bigcirc_{\overline{p_4}}^{\underline{p_4}} \bigcirc_{\overline{p_4}}^{\overline{p_4}} \odot_{\overline{p_4}}^{\overline{p_4}} \odot_{\overline$	58
	Fucosyllacto- <i>N</i> -neodecaose II	F-LNnD II	$\bigcirc_{\mu4}^{[\mu4]} \blacksquare_{\mu4}^{\mu6} \bigcirc_{\mu4}^{\mu6} \blacksquare_{\mu4}^{\mu6} \bigcirc_{\mu4}^{\mu6} \bigcirc_{\mu4}^{\mu6} \bigcirc_{\mu4}^{\mu6} \bigcirc_{\mu4}^{\mu6} \bigcirc_{\mu4}^{\mu6} \bigcirc_{\mu4}^{\mu6} \bigcirc_{\mu4}^{\mu6} \bigcirc_{\mu4}^{\mu6} \odot_{\mu4}^{\mu6} \odot_$	58
	Difucosyllacto-N-neodecaose	DF-LNnD		58
	^c _{6041a}			34
XV				33
XVI			0 1 1 1 1 1 1 1 1 1 1 1 1 1	59
			$\overbrace{ja}^{[a]} \blacksquare ja \\ \overbrace{ja}^{[a]} Ia Ia \\ \overbrace{ja}^{[a]} Ia \\ \overbrace{ja}^{[a]} Ia Ia Ia \\ \overbrace{ja}^{[a]} Ia Ia Ia Ia Ia Ia Ia Ia Ia Ia Ia Ia $	59
				59
XVII Devia nt structu res	A antigen-tetrasaccharide	A-Tri	$\Box^{\alpha3} \Box^{\beta4} \bullet$	62, 108
	A antigen-pentasaccharide	A-Penta	$\Box^{\alpha 3} \overset{\beta 4}{\Box^{\alpha 2}} \overset{\alpha 3}{\overset{\alpha 2}{}} \overset{\alpha 3}{\overset{\alpha 3}{}}$	62, 108–11
	A antigen-hexasaccharide	A-Hexa		62
	A antigen-heptasaccharide	A-Hepta	a3 (p3) (p3) (p3) (p2)	62, 108, 10

\geq
Ĺ,
÷
ō
\leq
ພ
5
S
4
D.
Ť.

Core #	Lactose and HMOS	Abbreviations	Symbols	Ref.
			$ \begin{array}{c} \alpha 4 \\ \beta 3 \\ \alpha 3 \\ \alpha 3 \end{array} $	111
	3'-Sialyl Lewis a	3'SLe ^a	$\mathbf{a}^{\alpha 4}$	111
	3'-Sialyl-N-acetyllactosamine	3'SLN	φ ^{β3}	34
	6'-Sialyl- <i>N</i> -acetyllactosamine	6'SLN	Φ _{α6} Ο _{β4} ■	66
	Fucosylsialyl-novo-lacto-N-pentaose I	FS- <i>novo</i> -LNP I		96
	3'-Galactosyllactose	β3'GL	О ^{β4} О ^{β3}	67
	4'-Galactosyllactose	β4'GL	$\bigcirc^{\underline{\beta4}}\bigcirc^{\underline{\beta4}} \bullet$	68
	6'-Galactosyllactose	β6'GL		69

Symbols and abbreviations: \clubsuit *N*-acetylneuraminic acid (Neu5Ac), \blacktriangle fucose (Fuc), \bigcirc galactose (Gal), \blacksquare *N*-acetylglucosamine (GlcNAc), \blacksquare glucose (Glc), \square *N*-acetylgalactosamine (GalNAc).

 a Missing in the milk of Le $^{a+b-}$ non-secretors.⁷³

 b Missing in the milk of Lewis negative (Le^{a-b-}) individuals.⁷⁴

^cIndicate the number of Hexose, Fucose, HexNAc, and Neu5Ac in the oligosaccharide.^{33, 34}