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Abstract

The important roles of human milk oligosaccharides (HMOS), the third major component of 

human milk, in the health of breast-fed infants have been increasingly recognized. Structures 

of more than 100 different HMOS have now been elucidated. Despite the recognition of the 

various functions of HMOS as prebiotics, antiadhesive antimicrobials, and immunomodulators, 

the roles and the applications of individual HMOS species are less clear. This is mainly due 

to the limited accessibility to large amounts of individual HMOS in their pure forms. Current 

advance on the development of enzymatic, chemoenzymatic, whole cell, and living cell systems 

allows for the production of a growing numbers of HMOS in increasing amounts. This effort 

will greatly facilitate the elucidation of the important roles and exploring the applications of 

HMOS as individual compounds and as a mixture of defined structures with desired functions. 

The structures, functions, and enzyme-catalyzed synthesis of HMOS are briefly surveyed to 

provide a general picture about the current progress on these aspects. Future efforts should 

be devoted to elucidating the structures of more complex HMOS, synthesizing more complex 

HMOS including those with branched structures, and to develop HMOS-based or HMOS-inspired 

prebiotics, additives, and therapeutics.
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1. Introduction

Carbohydrates in human milk are presented in diverse forms including monosaccharides 

such as glucose and galactose, lactose (a disaccharide), oligosaccharides, glycoproteins, 

glycopeptides, and glycolipids.1 Human milk oligosaccharides (HMOS) containing a diverse 

array of oligosaccharides with three or more monosaccharide units are the subject of 

investigation here.

HMOS are the third major component of human milk after lactose (55–70 g/L) and lipids 

(16–39 g/L).2–4 Historically, purified HMOS were used to synthesize glycan antigens to 

obtain antibodies5, 6 which was later used as important bioreagents to identify novel glycans 
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and detect glycoconjugates.7 The amounts of HMOS vary in lactation stages with 12–14 

g/L in mature milk and 20–24 g/L in colostrum.8–10 HMOS were found to be presented in 

higher concentrations in preterm human milk than those in term human milk.11 The presence 

and the quantity of HMOS also vary among individuals and are related to the secretor 

status and the Lewis group type of the nursing mothers.10–13 Four human milk groups 

have been classified based on the HMOS profiles controlled by the Secretor (Se) status 

and the Lewis (Le) blood type of the nursing mother.11 Individuals (Se+/Le+) with both α1–

2-fucosyltransferase FUT2 encoded by the Secretor (Se) gene and α1–3/4-fucosyltransferase 

FUT3 encoded by the Lewis (Le) gene represent about 70% of the European population 

and contain all types of fucosylated HMOS with α1–2/3/4-fucosyl linkages. Those (Se−/

Le+) with no FUT2 but with FUT3 represent 20% of the population and do not have 

α1–2-fucosylated HMOS. Those (Se+/Le−) with FUT2 but no FUT3 represent 9% of the 

general population and do not have α1–4-fucosyl oligosaccharides. Finally, those (Se−/Le−) 

without FUT2 nor FUT3 represent 1% of the general population contains α1–3-fucosylated 

HMOS but not other fucosylated HMOS due to the expression of a Lewis-independent α1–

3-fucosyltransferase.11, 14

Due to its structure complexity and the lack of efficient analytic methods, the presence 

and the functions of HMOS were unaware of in early time. For example, lactose was first 

isolated from milk in 1633.15 In comparison, three centuries years later in the early 1930, 

Polonowski and Lespagnol found and named nitrogen-containing “gynolactose”16, 17 which 

was confirmed two decades later to be a mixture of more than ten oligosaccharides by two-

dimensional paper chromatography separation.18 In 1954, György, Kuhn, and et al. reported 

β-linked N-acetylglucosamine (GlcNAc)-containing oligosaccharides and polysaccharides in 

human milk as “bifidus factors”19 that promote the growth of Lactobacillus bifidus var. Penn 
(now Bifidobacterium bifidum).20–23 This ignited the efforts on elucidating the structures of 

HMOS. Several papers published in 1956 reported the structures of lacto-N-tetraose (LNT), 

2’-fucosyllactose (2’FL), lacto-N-fucopentaose I (LNFP I), and 3-fucosyllactose (3FL).24–27 

By 1965, 14 HMOS structures have been reported, mainly by the groups of Kuhn and 

Montreuil.28 Additional structures were soon elucidated by the efforts of Ginsburg, Kobata, 

and others. The introduction of mass spectrometry to the identification of HMOS29 further 

speeds up the progress. Modern advance on the separation and analysis method development 

allows fast profiling of HMOS and the structure identification of additional HMOS. More 

than 200 HMOS species have now been observed30, 31 and more than 100 HMOS structures 

have been elucidated.28, 32–34

Unlike lactose, the primary component and the principle carbohydrate of human milk which 

is digestible by infants and provides them nutritional needs,35 HMOS are not digestible 

by the infant.1, 36, 37 Therefore, the direct physiological roles of HMOS are not clear. 

Accumulating evidence has shown that HMOS can survive the obstacles encountered upon 

suckling and reach the infant gut where they regulate the microbiota population which 

in turn can affect the health of breastfed infants.36–39 HMOS are believed to contribute 

significantly to the health of breast-fed infants in lowering their risk of diarrheal disease, 

respiratory infections, allergy, and other infectious diseases including otitis media.15, 40–42 

The prebiotic (stimulating the growth and colonization of beneficial bacteria, mainly 

bifidobacteria, in the gut), antiadhesive antimicrobial (acting as decoys to inhibit specific 
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pathogenic bacteria, viruses, or parasites binding to epithelial surface and translocation), 

immunomodulating, and brain development nutritional functions of HMOS have also been 

reported.1, 15, 38, 43–46 The enrichment of bifidobacteria in the gut also leads to the increased 

production of lactate and short-chain fatty acids thus the decrease of pH, worsening the 

environment for the growth and colonization of some pathogens.1 Additional mechanism 

of pathogen inhibition may include the release of other anti-microbial substances by 

bifidobacteria.47

The functions of individual structures, however, are less clear. Only a handful of HMOS 

have known specific roles, and only a limited number of HMOS have been synthesized. The 

current knowledge about the structures, functions, and production of HMOS by enzyme-

catalyzed processes is presented here.

2. Structures Of HMOS

2.1 HMOS monosaccharide building blocks, core structures, and glycosidic linkages.

Human milk is unique in containing a large number of oligosaccharides compared to 

the milk of other mammals.48 Five monosaccharides have been found to be major 

building blocks for HMOS which include D-glucose (Glc), D-galactose (Gal), N-acetyl-

D-glucosamine (GlcNAc), L-fucose (Fuc), and N-acetylneuraminic acid (Neu5Ac). These 

monosaccharide building blocks in HMOS are presented in the six-membered ring pyranose 

(for Glc) or pyranoside (for Gal, GlcNAc, Fuc, and Neu5Ac) structures. HMOS are extended 

from lactose (Galβ1–4Glc with Glc at the reducing end) by N-acetylglucosaminylation 

and/or galactosylation with or without fucosylation and/or sialylation. Among the five major 

HMOS monosaccharide building blocks (TABLE I), the glucose (Glc) is at the reducing end 

with a mix of α- and β- configuration at the anomeric carbon. While Gal and GlcNAc are 

always presented with β-glycosidic linkages, Fuc and Neu5Ac are always presented with 

α-glycosidic linkages.

Other than lactose (which itself is not considered an HMOS), at least fifteen neutral 

oligosaccharides (TABLE II), including linear and branched structures, have been identified 

to be able to serve as the core structures of other HMOS.32–34 It is interesting to observe that 

these structures rarely have GlcNAc as the terminal unit at the non-reducing end, indicating 

the high efficiency of galactosyltransferases (either β1–3- or β1–4-galactosyltransferase) 

in capping the GlcNAc residues in these HMOS. In addition, unlike N-acetyllactosamine 

(LacNAc, Galβ1–4GlcNAc) which can serve as both internal and non-reducing-end terminal 

disaccharide units, lacto-N-biose (LNB, Galβ1–3GlcNAc) can only serve as the non-

reducing-end terminal disaccharide. Linear structures only contain β1–3-linked GlcNAc 

residue, while any β1–6-linked GlcNAc generates branching.38

Other than the exceptions mentioned above, twelve glycosidic linkages constitute the 

structures of HMOS and the list is shown in TABLE III which include three types of 

galactosidic, two types of N-acetyl-glucosaminidic, four types of fucosidic, and three types 

of sialidic linkages.
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2.2 HMOS structures

Over 200 individual HMOS molecular species have been found30, 31 and the structures 

of more than 100 HMOS have been successfully elucidated (see TABLE IV).28, 32–34 

These were achieved using chromatography separation, tritium labeling, derivatization 

with a chromophore or fluorophore, methylation analysis, glycosidase digestion, 1H and 
13C nuclear magnetic resonance spectroscopy (NMR) characterization, high performance 

liquid chromatography (HPLC), high-pH anion-exchange chromatography with pulsed 

amperometric detection (HPAEC-PAD), capillary electrophoresis, and various mass 

spectrometry (MS) techniques.8, 11, 30, 58, 60, 61 Diversity of HMOS comes from five 

different monosaccharide building blocks (TABLE I), the length, the size, the sequence 

(TABLE II), and twelve glycosidic linkages (TABLE III) of the glycans.15 TABLE IV lists 

144 structures (lactose is not counted) in the I–XVI categories based on the differences of 

core structures and 12 structures in the XVII category of deviant structures.

Several exceptions have been found to the general structure featured described above for 

HMOS. For example, a few HMOS containing a terminal N-acetylgalactosamine (GalNAc) 

such as A antigen-tetrasaccharide, pentasaccharide, hexasaccharide,62 and heptasaccharide63 

were isolated from urine or feces of blood group A breast-fed infants. In addition, several 

HMOS containing 6-O-sulfated monosaccharides have been identified.64, 65 Several HMOS 

missing the glucose59 or lactose34, 59, 66 at the reducing end have been identified. In 

addition, an unusually Galβ1–3Gal,59, 67 Galβ1–4Gal,68 or Galβ1–6Gal69 component has 

been found in several HMOS (see XVII Deviant structures in TABLE IV).

The presence of some HMOS is related to the secretor status and the Lewis blood 

type of the mother.70 The milk produced by Lea+b+ secretors, presenting in 70% of the 

general population, has the highest diversity of HMOS.14 Fucα1–2Gal-containing HMOS 

such as 2’-fucosyllactose (2’FL),71, 72 lactodifucotetraose (LDFT), lacto-N-fucopentaose 

I (LNFP I), and lacto-N-difuco-hexoase I (LNDFH I) are missing in the milk of Lea+b− 

non-secretors.73 Fucα1–4GlcNAc-containing HMOS including LNFP II, LNDFH I, and 

LNDFH II are missing in the milk of Lewis negative (Lea−b−) individuals74 (TABLE IV). It 

has been shown that in the absence of blood samples, the ratios of 2’FL versus 3’FL; LNFP 

I, LDFT, and LNDFH I versus LNT; and 6’SL versus 3’SL in human milk can be used as 

specific and sensitive markers for determining the secretor status of individuals.75

High molecular weight HMOS (Mr 2242–8000),112 complex neutral HMOS with up to 10 

fucose residues on a core structure containing 7 LacNAc units,60 HMOS with up to 32 

monosaccharide units,113 neutral HMOS with up to 35 monosaccharides and HMOS with 

more than 50 monosaccharide units114 have been observed. Nevertheless, the identified of 

HMOS containing more than 14 monosaccharide units have not been elucidated and are not 

presented in TABLE IV.

Overall, about 70% of HMOS in pooled milk are fucosylated and about 20% are 

sialylated.30 The major components of HMOS are lacto-N-tetraose (LNT), lacto-N-

neotetraose (LNnT), as well as monofucosylated, monosialylated, difucosylated, and 

disialylated lactose, LNT, and LNnT (TABLE IV).57 Oligosaccharides with both sialic acid 

and fucose are also presented in HMOS. The top 10 most abundant HMOS species are 
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responsible for about 46% of the HMOS mass. The top 50 most abundant HMOS species in 

the pooled human milk sample account for 83% of the total intensity and the least abundant 

half of the total constitute only 8% of the entire intensities.30 Among HMOS, 20–25 of them 

are considered to be the major components.11 Most of them contain 3–9 monosaccharide 

units.8 2’FL, LNFP I, LNDFH I, and LNT were shown to be the most abundant HMOS in 

the colostra of Japanese Women (85% are secretors) and in mature human milk.10, 61, 115–117 

The most abundant acidic HMOS were LSTc, DSLNT, 6’SL, 3’SL and LSTa.61, 115

Compared to the milk oligosaccharides (MOS) characterized for some domestic 

animals118–120 and other primates,48, 121 HMOS are higher in quantities and complexity 

with more diversity and longer structures. In general, HMOS are high in fucosylation 

which is rare in the MOS of cows and pigs. In comparison, sialylation is more abundant 

in the MOS of cows and pigs.118–120 Furthermore, N-glycolylneuraminic acid (Neu5Gc)-

containing MOS found in the milk of cows, pigs, and primates48, 118–121 and 4-O-acetyl-

N-acetylneuraminic acid (Neu4,5Ac2)-containing MOS found in the milk of monotremes 

including echidna122, 123 and platypus124–126 have not been observed in human milk. Except 

for 3’-galactosyllactose (3’GL), other oligo-β1–3-galactoside structures abundant in the milk 

of metatheria (marsupials)127–129 such as common brushtail possum, tammar wallaby, red 

kangaroo, and koala, have not been found in HMOS.

3. Biosynthesis Of HMOS

Our understanding on the biosynthesis of HMOS is limited. Most, if not all, HMOS 

are extended from lactose at the non-reducing ends and are believed to be catalyzed 

by glycosyltransferases in the mammary gland.130–133 Glucose and galactose can be de 
novo synthesized in the mammary gland by a process named hexoneogenesis although 

plasma glucose is the major carbon source of milk lactose.134, 135 Lactose and other 

MOS are most likely accumulated in the secretory vesicle and secreted by exocytotic 

fusion with the apical plasma membrane.136 Lactose itself is produced in the mammary 

gland by β1–4-galactosyltransferase 1 (β1–4GalT1) bound to α-lactalbumin in a lactose 

synthase complex.137–139 However, most of the specific glycosyltransferases that are 

responsible for the formation of HMOS structures with specific glycosidic linkages have 

not been identified. The best understood examples are human α1–2-fucosyltransferase 

FUT2 encoded by the secretor (Se) gene71, 140 and α1–3/4-fucosyltransferase FUT3 

encoded by the Lewis (Le) gene74 that are responsible for the formation of α1–2- and 

α1–3/4-linked fucosides, respectively, in human mammary glands.130, 141 Lewis (Le) gene-

independent α1–3-fucosyltransferase presented in all women has also been described.11, 14 

Transgenic introduction of a human α1–2-fucosyltransferase gene to mice was shown 

to allow the mice to express large quantities of 2’-fucosyllactose142 which is a good 

indication of the ability of the mammary gland in producing corresponding oligosaccharides 

in the presence of suitable glycosyltransferases. Similar success was achieved for the 

transgenic manipulation of mice, but not rabbit, using other glycosyltransferases including a 

homologous galactosyltransferase and different fucosyltransferases.143

The presence of several glycosyltransferases in human milk has been confirmed. For 

example, β1–4GalT1,144, 145 α1–3- and α1–4-fucosyltransferases,146 as well as an 
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α1–3/4-fucosyltransferase147–149 have been purified from human milk. The activity of 

β1–3-N-acetylglucosaminyltransferase was identified in human colostrums but not in 

bovine (Holstein and Jersey cow) colostrums studied.150 In addition to the presence of 

fucosyltransferase activity in human milk, α-fucosidase activity has also been identified.151

Enzymes purified from human milk have been used for the synthesis. For example, 

partially purified α1–3/4-fucosyltransferase from human milk was used for synthesizing 

sialyl Lewis a,152 Lewis a and Lewis x153 including their deoxy analogs,154 sulfated 

Lewis x,155 and multivalent tyrosinamide-tagged Lewis x structures.156, 157 Purified human 

milk fucosyltransferase preparation was also used for the synthesis of tumor-associated 

trimeric Lewis x158 and its sialylated structures,159 sialyl Lewis a and sialyl Lewis x 

tetrasaccharide structures modified at the C-2 position of the glucose residue at the 

reducing end.160 Fucosylation of lacto-N-neohexaose (LNnH) by a partially purified 

human milk α1–3-fucosyltransferase was found to add fucose at the LacNAc units 

of LNnH in the non-reducing end.161, 162 Human milk α1–3FucTs were also shown 

to fucosylate chitin oligosaccharides containing 2–4 GlcNAc units.163 Purified human 

milk β1–4GalT was used together with a partially purified rat liver β1–3GalT, a 

recombinant core 2 β1–6GlcNAcT, and a recombinant human α1–3FucT in synthesizing 

a sialyl Lewis x hexasaccharide.164 Carbon 13-labeled linear N-acetylpolylactosamines 

(LacNAc)n were enzymatically synthesized at 10–100 μmol scale using the partially 

purified and immobilized bovine milk β1–4GalT and human serum β1–3GlcNAcT.165 N-

Acetylglucosaminyltransferase I (GnT-I) purified from human milk was shown to be able to 

catalyze the transfer of deoxy derivatives of GlcNAc.166, 167 These synthetic applications of 

human milk enzymes provide important information about their properties. Nevertheless, the 

syntheses were limited to small scales and were mostly used for HMOS derivatives instead 

of natural HMOS structures with a free reducing end.

4. Functions Of HMOS

The functional studies of HMOS were usually carried out using mixtures of HMOS that 

were isolated from human milk pools. The benefits of breast-feeding was observed as early 

as the end of the 19th century.38 Increasing evidence has now shown that HMOS contribute 

significantly to the health of breast-fed infants via several mechanisms by serving as listed in 

the following:1, 2, 15, 35, 38, 44, 45, 57, 133, 168–177

1. Prebiotics: HMOS are carbon and energy sources preferably used by beneficial 

bacteria such as probiotic bifidobacteria, thus promoting their growth, which in 

turn produce lactic acid and short chain fatty acid to decrease the pH of the gut, 

making it less desirable for the growth of pathogens. The predominant growth 

and colonization of bifidobacteria allow them to compete well pathogens for 

the limited nutrient available in the gut. Bifidobacteria also occupy the epithelia 

binding sites and make them less available for the binding of pathogens. Some 

antimicrobial substances released by bifidobacteria also generate an unfavorable 

environment for pathogens.47

2. Antiadhesive antimicrobials: HMOS mimic the glycan structures presented on 

the surface of gut epithelium and serve as soluble decoy receptors to pathogenic 
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bacteria to decrease their binding to infant gut surface for colonization, thus 

lowering the risk for viral, bacterial and protozoan parasite infections. HMOS 

can also serve as inhibitors for toxins released by pathogenic bacteria.

3. Immunomodulators: Evidence has shown that HMOS can modulate epithelial 

and immune cell responses. Some HMOS can directly influence the gut 

epithelium functions,178 reduce excessive mucosal leukocyte infiltration and 

activation which can lower the risk for necrotizing enterocolitis (NEC), 

one of the most common and fatal intestinal disorders in preterm infants. 

Bifidobacterium infantis grown on HMOS can also change the functions of 

intestinal cells.43

4. Nutrient providers for brain: Some HMOS, mainly sialylated ones, may also 

be providers of sialic acid for the synthesis of sialic acid-containing glycolipids 

(gangliosides) and glycoproteins important for the development of brain and 

cognition of infants.

These functions have been discussed quite thoroughly in several excellent reviews published 

recently.1, 35, 38, 44, 45, 61, 133, 168–172 The functional roles of individual HMOS species, 

however, are less clear. This is mainly due to the unavailability of sufficient amounts of pure 

HMOS for detailed functional studies. Only a handful examples have been shown. These are 

discussed briefly in the sections below as three categories.

4.1 Neutral non-fucosylated HMOS

Neutral non-fucosylated HMOS constitute the core structures or the backbones of all 

HMOS. Despite earlier studies on identifying β-GlcNAc-containing oligosaccharides and 

polysaccharides in human milk as “bifidus factors”,19, 179 their identities have not been 

elucidated conclusively. The discovery of a novel galactose operon responsible for the 

assembly of GNB/LNB pathway in Bifidobacterium longum JCM1217 for galacto-N-biose 

(GNB) and lacto-N-biose (LNB) consumption 10 years ago pointed to lacto-N-biose (LNB, 

Galβ1–3GlcNAc) presented at the non-reducing end of many neutral non-fucosylated 

HMOS as a potential “bifidus factor”.9 This was further supported by the property of 

LNB in selective stimulating the growth of bifidobacteria, but not Clostridia, Enterococci, 
and Lactobacillus.180–182 The extracellular lacto-N-biosidase, α1–2-fucosidase, α1–3/4-

fucosidase, and sialidase of B. bifidum183–185 can de-cap fucosylated and/or sialylated 

HMOS to release their core structures which can then be used by its extracellular lacto-N-

biosidase to produce LNB.186 LNB can be transported into the bacterium by the GNB/LNB 

transporter in the GNB/LNB pathway and be metabolized by other enzymes involved in the 

GNB/LNB pathway.187 On the other hand, LacNAc-terminated core HMOS can be broken 

down by extracellular β-galactosidase and β-N-acetylhexosaminidase of B. bifidum.188

Among bifidobacteria species commonly found in breast-fed infant such as B. longum 
subsp. longum, B. longum subsp. infantis, B. bifidum, and B. breve175 B. longum subsp. 

infantis (e.g. JCM1222) and B. bifidum (e.g. JCM1254) were both found to consume 

both type I and type II HMOS core structures equally well. The other two species tested 

had preference towards LNT, but not LNnT. The B. longum subsp. infantis strain tested 

also consume mono- and di-fucosylated LNT/LNnT, disaccharides and monosaccharides 
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monitored in the experiment quite well.182 LNnT was further confirmed to provide 

advantages for B. infantis versus B. thetaiotaomicron in both in vitro growth studies and 

germ-free mice studies.189

Different from B. bifidum which express extracellular glycosidases, B. longum subsp. 

infantis express internal glycosidases190–192 and rely on their glycan ABC transporters193 

for internalization of the corresponding HMOS.175 The extracellular glycosidases on some 

bacteria such as B. bifidum could be used as a mechanism to release components from 

HMOS which can be readily transported into B. longum subsp. infantis or other bacteria 

for consumption. The symbiotic sharing of HMOS and components could be one of the 

mechanisms used to shape the gut microbiota. The enrichment of bifidobacteria in infant 

gut could be the result of coevolution of the bacteria and milk ingredients including 

HMOS.175, 182

LNT is a carbon source that can be used by most bifidobacteria.182 LNT in HMOS, and 

may be other HMOS with Gal at the non-reducing end, was shown to reduce Entamoeba 
histolytica (a protozoan parasite infecting ~ 50 million people and causing ~100,000 deaths 

per year194) attachment and its cytotoxicity towards human intestinal epithelia HT-29 cells 

in a dose-dependent manner.194 Further in vivo studies are needed to show the prebiotic and 

antimicrobial potentials of LNT.

In comparison, LNnT was shown to be a selective carbon source for certain bifidobacteria 

such as B. longum subsp. infantis and B. bifidum. LNnT was also shown to have 

immunosuppressive functions195 and can inhibit the binding of Streptococcus pneumoniae 
to ciliated chinchilla tracheal epithelium.196 Higher concentrations of LNnT in the milk of 

HIV-infected women was found to be associated with reduced postnatal transmission via 

breastfeeding.197 Therefore, LNnT is a potential candidate for developing prebiotics and 

therapeutics against infectious disease.198

4.2 Fucosylated HMOS

Fucosylated HMOS are the most abundant HMOS species.33 Their prebiotic, antiadhesive 

antimicrobial, and immunomodulation activities have been shown.

2’FL, 3FL, and LDFT were shown to selectively promotes the growth of bifidobacteria.199 

Fucosylated HMOS including 2’FL, 3FL, LDFT, LNFP I/II/III, LNDFH I, and LNDFHII 

showed preferred consumption by B. longum subsp. infantis and B. bifidum compared to 

B. longum subsp. longum or B. breve.182 In fact, five fucosidases have been identified 

from B. longum subsp. infantis strain ATCC 15697 and characterized. Their ability in using 

fucosylated HMOS was confirmed.190

Several examples have been shown for the antiadhesive antimicrobial functions of 

fucosylated HMOS including antibacterial, antiyeast, and antiviral activities. Fucosylated 

HMOS were also found to bind norovirus200 and inhibit the adhesion of an enteropathogenic 

Escherichia coli (EPEC) to HEp-2 cells.201 A minor neutral fucosylated HMOS component 

was shown to protect suckling mice from the diarrheagenic effects caused by heat-stable 

enterotoxin of E. coli.202 α1–2-Fucosylated HMOS were shown to inhibit the adherence 
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of Std fimbriated Salmonella enterica serotype Typhimurium to Caco-2 cells.203 They also 

inhibit the binding of Campylobacter jejuni to intestinal H(O) antigen and lower the chance 

of infection204 and potentially protect infants against diarrhea caused by Campylobacter 

or calicivirus.205 More specifically, high levels of 2’FL in mother’s milk corresponded 

to lower occurrences of Campylobacter diarrhea of the infants. LDFH I was also shown 

to correlated to lower incidences of calicivirus diarrhea.205 In addition, α1–2-fucosylated 

HMOS, but not those of Lewis blood group-type, were found to inhibit the binding of 

Candida albicans yeasts to human buccal epithelia cells.206 On the other hand, Lewis 

blood group antigen-containing HMOS bind well to dendritic cell-specific ICAM3-grabbing 

non-integrin (DC-SIGN), competing against human immunodeficiency virus (HIV) surface 

glycoprotein gp120 binding to DC-SIGN in vitro.207 Indeed, breastfeeding with human 

milk with high concentrations of α1–2-fucosylated HMOS and α1–3-fucosylated was 

found to be protective against mortality for HIV-exposed uninfected (HEU) children during 

breastfeeding.208 Lewis b (Leb) antigens including Leb-terminated LNDFH I that was 

synthesized enzymatically were shown to bind to Helicobacter pylori.209, 210

The immunomodulating function of fucosylated HMOS was represented by Lewis x-type 

LNFP III which was shown to have immunosuppressive functions.195 It was able to 

activate macrophages in vitro which can further activate natural killer (NK) cells.211 HMOS 

containing Lewis blood group antigens were also shown to reduce selectin-mediated cell-cell 

interactions.176, 212 2’FL and 3FL were shown to decrease colon motor contractions in a 

dose-dependent fashion with a better activity observed for 3FL than for 2’FL.178

The understanding of the important roles of α1–2- and α1–3/4-fucosylated HMOS for 

infant health is greatly facilitated by the presence of nursing mothers with differences 

on the secretor status (determined by α1–2-fucosyltransferase FUT2) and Lewis blood 

type (determined by α1–3/4-fucosyltransferase FUT3). Bifidobacteria were shown to be 

established earlier and more often in infants fed by secretor mothers.213 Mother’s milk 

with a higher ratio of α1–2-fucosylated versus non-α1–2-fucosylated HMOS was shown to 

provide protection of breast-fed infants against diarrhea.214

The secretor status of premature infants was also shown to be a predictor for the outcome 

of infants on their survival or susceptibility to diseases. Low or non-secretor status was 

associated with a higher death rate, higher incident of necrotizing enterocolitis (NEC) and 

Gram-negative sepsis.215

4.3 Sialylated HMOS

Sialylated HMOS are charged species and represent about 20% of HMOS.30 Their prebiotic, 

antiadhesive antimicrobial, and immunomodulating activities as well as their nutritional 

value for infant brain development have been shown.

A sialylated HMOS fraction was shown to inhibit the adhesion of Escherichia coli 
serotype O119, Vibrio cholerae, and Salmonella fyris to differentiated Caco-2 cells.216 As 

hemagglutinins on the surface of influenza viruses bind to sialylated glycans on host cell 

surface, it is not a surprise that sialylated HMOS bind to influenza virus or inhibit the viral 

hemagglutinin binding to its ligand.217
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Sialylated HMOS have been shown to influence lymphocyte maturation218 and have 

anti-infective and immunomodulating effects.38 Sialylated HMOS, but not non-sialylated 

HMOS, reduce leukocyte rolling and adhesion in a dose-dependent manner.176 In fact, 

sialylated HMOS fraction in a physiological range (12.5–125 μg/mL) was shown to be even 

better than soluble sialyl Lewis x in inhibiting leukocyte rolling and adhesion. 3’SL and 

3’S-3FL were further identified to be the key ingredients and were suggested to contribute 

to the lower incidence of inflammatory diseases in breast-fed infants.176 Similarly, sialylated 

HMOS reduce platelet-neutrophil complex formation and subsequent neutrophil activation 

in an ex vivo model with whole human blood.212

Sialylated HMOS may also be used as source of sialic acid for the synthesis of sialic 

acid-containing glycolipids (gangliosides) and glycoproteins important for the development 

of brain and cognition of infants.45

The simplest and the most well studied sialylated HMOS are sialyllactose including 6’SL 

and 3’SL. Sialyllactose inhibited cholera toxin induced fluid accumulation in a rabbit 

intestinal loop model. These effects are believed to be responsible for the activity of human 

milk and its low molecular weight fraction in inhibiting cholera toxin B subunit binding 

to monosialoganglioside (GM1).219 Sialyllactose was also shown to inhibit the binding of 

Aspergillus fumigatus conidia to laminin extracted from mouse sarcoma tumor220 and the 

binding of Pseudomonas aeruginosa 8830 to immobilized asialo GM1 in a microtiter plate 

assay221 although the mechanism for the latter is unknown. Sialyllactoses were also shown 

to induce differentiation in transformed human intestinal cells HT-29 and human intestinal 

epithelial cells HIEC.222 6’SL alone or with 3’SL, but not 3’SL alone or oligofructose 

alone, was shown to enhance the adhesion of B. longum subsp. infantis strain ATCC15697 

to HT-29 human intestinal cells.223 3’SL was shown to bind to polyomarvirus.224 It 

inhibited the binding of S fimbriated E. coli to endothelial and epithelial.225, 226 It also 

inhibited the adhesion of Helicobacter pylori binding to human epithelial cells in vitro and 

was shown to decrease Helicobacter pylori colonization in a rhesus monkey antiadhesive 

therapy model.227 3’SL was shown to inhibit the binding of some sialyl oligosaccharides to 

Helicobacter pylori,228 E. coli S-fimbriate,229 and influenza viruses.173

The 3’SL level in human milk, however, can also be an indicator of HIV infection. Higher 

relative abundances of 3’SL were shown in the milk of HIV-infected mothers230 and in the 

milk of mothers who transmit HIV to their babies via breastfeeding.197

Another exiting example about the potential use of sialylated HMOS is their application 

in treating necrotizing enterocolitis, one of the most common and fatal intestinal disorders 

in preterm infants231, 232 that does not currently have an ideal therapeutic outcome.233–235 

A single sialylated HMOS, disialyllacto-N-tetraose (DSLNT), but not its non-sialylated or 

mono-sialylated analog, was identified as a specific HMOS component that is effective for 

preventing necrotizing enterocolitis (NEC) in a neonatal rat model.236 Low concentrations 

of DSLNT in mother’s milk are corresponding to an increased risk of NEC in the preterm 

very-low-birth weight infants.230
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5. Production Of HMOS By Enzyme-Catalyzed Processes

Chemical synthesis of more than 15 different HMOS and derivative (2’FL,237 3FL,237 

LDFT,237 LNT,238–240 LNnT,238, 241 LNFP I,239, 242 LNFP III242–245 and its protected 

form,246 LSTa and LSTd (Neu5Acα2–3LNnT, not found in human milk) with an 

aglycon,247, 248 LNDFH I with a β-linked aglycone,249 pLNnH,241, 250 LNnH251 and 

its protected forms,252, 253 iLNO,254 pLNnO241 and its protected form,255 trifucosylated 

pLNnO in its protected form,255 DF-LNH II,256, 257 and DF-LNnH256, 257) with 3–11 

monosaccharide units have been reported including recent successes in the synthesis of 

LNFP I and its α1–2-fucosylated LNnT analog using one-pot glycosylation approaches.258 

These chemical synthetic efforts are out of the scope of this review. The focus of this section 

will be a survey on enzyme-catalyzed processes for the production of HMOS.

The production of only a handful of HMOS has been reported using enzyme-catalyzed 

processes259 and the synthesized HMOS are limited to those with relatively simple 

structures. Despite the success on the characterization of mammalian enzymes and 

purification of several glycosyltransferases from human milk, their application in synthesis 

has been limited due to the difficulties in obtaining them in large amounts and 

in an economically efficient manner. On the other hand, bacteria express a wide 

array of glycosyltransferases which are responsible for the construction of diverse 

lipopolysaccharides (LPS) and capsular polysaccharide structures. Some of these glycan 

structures mimic those found on human cell surfaces and those in HMOS.260, 261 Therefore, 

bacteria are a rich source of glycosyltransferases that can be used for the synthesis of 

HMOS as well as the glycans and glycoconjugates presented on human surface.262–265 

Recombinant bacterial glycosyltransferases have been increasingly used for the synthesis 

of several HMOS structures in enzymatic, chemoenzymatic, whole cell, and living cell 

approaches.

Early enzymatic methods used expensive sugar nucleotides as donor substrates for 

glycosyltransferases for the production of HMOS. Glycosyltransferase-catalyzed reactions 

with in situ donor regeneration cycles that applied for preparative-scale synthesis of 

oligosaccharides266–268 can also be used for the synthesis of HMOS. Recently, highly 

efficient one-pot multienzyme (OPME) systems have been established for the synthesis 

of HMOS.264, 269–271 These systems use inexpensive, free monosaccharides as starting 

materials, which are enzymatically converted to sugar nucleotides with or without the 

formation of sugar-1-phosphate intermediates. The activated sugars in the forms of sugar 

nucleotides are supplied to the corresponding glycosyltransferases in one-pot for the 

formation of the corresponding oligosaccharides. Multiple OPME systems can be used 

in sequential to build up more complex oligosaccharides.269, 272 The high efficiency 

of the systems is facilitated by the elucidation of novel salvage pathways of sugar 

nucleotide biosynthesis as well as the identification and characterization of new bacterial 

glycosyltransferases and mutants with high expression levels in E. coli, good solubility and 

stability, and high activity.

Much progress has been made recently in identifying glycosyltransferase mutants with 

improved functions and many of these successes are based on protein crystal structure-
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based rational design and some are from directed evolution coupled with high-throughput 

screening methods.262, 273 These are effective approaches for obtaining additional or better 

catalysts that are not readily available from nature.

If not all glycosyltransferases that are responsible for formation of desired HMOS are 

available, enzymatically synthesized oligosaccharide derivatives can be as building blocks 

(or synthons) for chemical synthesis of more complex HMOS and derivatives. Such 

chemoenzymatic methods have been explored for the synthesis of sialyl galactosides,274, 275 

sialyl Lewis x tetrasaccharides,276, 277 protected sialyllacto-N-tetraose a (LSTa, Neu5Acα2–

3LNT) and LSTd (Neu5Acα2–3LNnT,126, 263 has not been found in human milk),278 and an 

LNT derivative279. The obtained LNT derivative was further used as a glycosyltransferase 

acceptor for the production of LSTa derivatives by OPME enzymatic sialylation.279

A limited number of HMOS have also been synthesized by whole cell synthesis and 

engineered E. coli living cell fermentation approaches. Both approaches take a good use 

of microorganisms’ own metabolic machinery for the production of some components (such 

as nucleotides, monosaccharides, and/or or sugar nucleotides) from less expensive materials 

(simple carbon and energy source such as glycerol or glucose). One of the limitations of the 

living cell system is the restriction of the oligosaccharide transporter systems for transfer 

acceptors from external sources into the cells for the product formation.262

Alternative enzymatic synthetic strategies using glycosidases, trans-glycosidases, and 

glycosidase mutants designed for synthesizing carbohydrates (e.g. glycosynthase280) have 

also been developed for obtaining HMOS. These methods require the use of glycosylated 

donors which may not be readily available. The synthetic donors used have to be 

chemically synthesized and may not be stable.281, 282 Low yields and poor regioselectivity 

are also common problems for glycosidase-catalyzed reactions. Strategies to improve the 

trans-glycosylation reactions of glycosidases including controlling acceptor/donor ratio and 

reaction time, removing product continuously, enzyme immobilization and recycling, using 

cosolvents, and enzyme engineering have been reviewed recently.283

Examples of HMOS that have been synthesized as their natural oligosaccharide forms with 

a free reducing end using enzymatic, whole cell, and living cell approaches are shown in the 

following sections.

5.1 2’FL

Enzymatic production of 2’FL (18 mg, 65% yield) from lactose was achieved using a 

reaction catalyzed by Helicobacter pylori NCTC 364 α1–2-fucosyltransferase (glutathione 

S-transferase or GST fusion was shown to improve the expression of soluble protein)284 

using GDP-L-fucose (78 mg, 78% yield) produced from GDP-D-mannose by enzymatic 

reactions catalyzed by E. coli K-12 GDP-D-mannose 4,6-dehydratase and GDP-4-keto-6-

deoxy-D-mannose 3,5-epimerase-4-reductase.285

Living cell biosynthesis of 2’FL (1.23 g/L, 20% yield) from lactose (14.5 g/L) 

in batch fermentation was achieved using E. coli JM109(DE3) cells engineered to 

overexpress Helicobacter pylori 26695 strain (ATCC 700392) α1–2-fucosyltransferase286 
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and overproduce GDP-fucose.287 The production of 2’FL (6.4 g/L) was further improved 

using an engineered Helicobacter pylori α1–2-fucosyltransferase by adding three aspartate 

residues at its N-terminus in an alternative expression host obtained by engineering E. coli 
BL21star(DE) strain to delete its endogenous lactose operon and to introduce a lacZΔM15-

containing modified lactose operon from E. coli K-12.288

An improved large-scale production of 2’FL (20 g/L) from lactose and glycerol was 

achieved using an antibiotic-free fed batch fermentation (13 L) of engineered E. coli JM109 

(lacY+, lacZ−) cells. The cells were engineered by chromosome incorporation of genes 

involved in the de novo GDP-L-fucose biosynthetic pathway, two copies of Helicobacter 
pylori α1–2-fucosyltransferase futC gene, and Bacteroides fragilis bifunctional fucokinase 

and GDP-fucose pyrophosphorylase fkp gene involved in the salvage pathway of GDP-

fucose formation to the chromosome.289

2’FL production was also achieved in the milk of transgenic mice by introducing to mice 

a fusion gene containing a human α1–2-fucosyltransferase gene downstream of a murine 

whey acidic protein promoter and upstream of a polyadenylation signal.142 The same 

transgenic manipulation on rabbits seemed to interfere with their lactation process.290 The 

presence of glycoconjugates containing Fucα1–2Gal epitope reduces the rate and duration 

of pathogen colonization in pups inoculated with pathogenic strains of Campylobacter 
jejuni.204

Several α1–2-fucosynthases were obtained from Bifidobacterium bifidum α1–2-fuocisdase 

(AfcA), an inverting glycosidase, by mutating the amino acid residues involved in catalysis 

(N421G, N423G, or D766G).183, 291 The D766G mutant was found to be the most effective 

enzyme in catalyzing the synthesis of 2’FL from β-L-fucosyl fluoride (10 mM) and lactose 

(30 mM). A 6% yield was obtained based on the β-L-fucosyl fluoride donor substrate 

used.292

5.2 3’SL and 3’SLN

Neu5Acα2–3Lac (3’SL) and Neu5Acα2–3LacNAc (3’SLN) were synthesized using a one-

pot three-enzyme (OP3E) system containing an E. coli sialic acid aldolase (EcNanA),262, 293 

Neisseria meningitidis CMP-sialic acid synthetase (NmCSS),293 and a multifunctional 

Pasteurella multocida α2–3-sialyltransferase 1 (PmST1).294 The amount of the enzyme 

used and the reaction time needed to be controlled to allow the optimal production of 

the product due to the multi-functionality of PmST1. The synthesis can be improved by 

replacing the wild-type PmST1 with a PmST1 E271F/R313Y double mutant which has 

retained α2–3-sialyltransferase activity while with >6000-fold decreased α2–3-sialidase 

activity.295 PmST1 M144D mutant with decreased donor hydrolysis and lowered α2–3-

sialidase activities296 can also be used for high efficient synthesis of 3’SL and 3’SLN. The 

sialosides can also be synthesized from Neu5Ac and a suitable acceptor using a one-pot 

two-enzyme system containing NmCSS and a sialyltransferase.

Production of 3’SL and 3’SLN has also been reported from CMP-Neu5Ac and lactose 

by catalyzed a Pasteurella multocida α2–3-sialyltransferase297 or Pasteurella dagmatis α2–

3-sialyltransferase.298, 299
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The α2–3-trans-sialidase activity of Pasteurella multocida α2–3-sialyltransferase (GenBank 

accession number AAK02272) (PmST) which differs from PmST1 protein sequence by 

three amino acid residues (N105D, Q135R, and E295G) and has α2–3- and α2–6- dual 

trans-sialidase activities was used for the synthesis of 3’SL from lactose and casein 

glycomacropeptide (whey protein). The product 3’SL was accumulated up to 2.75 mM from 

lactose (100 mM) and 5% (w/v) casein glycomacropeptide (containing 9 mM bound sialic 

acid) under an optimal condition at pH 6.4 and 40 °C for 6 hours.300

The trans-sialidase activities of Bacteroides fragilis sialidase,301 Arthrobacter ureafaciens or 

Bifidobacterium infantis sialidase,302 and Trypanosoma cruzi α2–3-trans-sialidase have also 

been explored for the synthesis of 3’SL.303, 304 Low or moderate yields were achieved.

A fusion protein of NmCSS and Neisseria meningitidis α2–3-sialyltransferase (Nmα2–3ST) 

was used in a sugar nucleotide regeneration reaction for the synthesis of 3’SL (68 g in 

a partial purified solid form, 68% yield) at the 100 gram scale from lactose, Neu5Ac, 

phosphoenolpyruvate, and catalytic amounts of ATP and CMP.305

Large-scale production of 3’SL was also achieved using a whole cell approach.306 In this 

process, Corynebacterium ammoniagenes DN510 cells (for the production of UTP from 

inexpensive orotic acid and converting CMP to CDP) and three recombinant E. coli strains 

(containing E. coli K12 CTP synthetase, E. coli K1 CMP-Neu5Ac synthetase, and Neisseria 
gonorrhoeae α2–3-sialyltransferase respectively) were permeabilized by treating cell pellets 

with polyoxyethylene octadecylamine (Nymeen S-215) and dimethylbenzenes (xylene). 

Multiple grams of 3’SL (0.99 g, 36% yield and 72 g, 44% yield) were synthesized from 

lactose, Neu5Ac, and orotic acid at 32 °C for 11 h.306

3’SL (2.6 g/L, 49% yield) has also been produced from Neu5Ac and lactose fed to living 

E. coli (lacY+, lacZ−, nanT+, nanA−) cells engineered to express N. meningitidis CMP-

Neu5Ac synthetase (NmCSS) and an N. meningitidis L3 strain MC58 α2–3-sialyltransferase 

(Nm2–3ST). The knockout of lacZ− and nanA− genes was to ensure that the lactose and 

Neu5Ac fed to the cells were not broken down by the β-galactosidase and sialic acid 

aldolase, respectively. Neu5Ac was transported into the cells by Neu5Ac permease NanT 

and β-galactoside permease LacY endogenous to the E. coli host cells were responsible 

for transporting exogenous Neu5Ac and lactose, respectively, into E. coli cells for the 

production of 3’SL.307

To decrease the cost for 3’SL production, the engineered 3’SL biosynthetic E. coli K12 cells 

were modified further by deleting ManNAc kinase nanK gene and incorporating plasmids 

for the expression of Campylobacter jejuni strain ATCC43438 neuABC genes encoding 

GlcNAc-6-phosphate 2-epimerse, sialic acid synthase, and CMP-Neu5Ac synthetase to 

produce CMP-Neu5Ac from endogenous UDP-GlcNAc and avoid the need of exogenous 

Neu5Ac. Using this improved engineered bacterial strain, a higher concentration (25 g/L) of 

3’SL was obtained.308

Chen Page 14

Adv Carbohydr Chem Biochem. Author manuscript; available in PMC 2022 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.3 6’SL and 6’SLN

Neu5Acα2–6LacNAc (6’SLN) was synthesized using a similarly OP3E sialylation system 

as described above for the synthesis of 3’SL and 3’SLN except for replacing the PmST1 

by Photobacterium damselae α2–6-sialyltransferase (Pd2,6ST).309 Neu5Acα2–6Lac (6’SL) 

can also be synthesized similarly using the same OP3E system as shown for the synthesis of 

6’SL derivatives.

Both 6’SL and 6’SLN have been synthesized from CMP-Neu5Ac and lactose using 

Pasteurella dagmatis α2–3-sialyltransferase P7H/M117A double mutant which was 

completely switched to an α2–6-sialyltransferase.298

More recently, 6’SL (3.33 mM) was synthesized from lactose (100 mM) and casein 

glycomacropeptide (containing 9 mM bound sialic acid) at pH 5.4 and 40 °C for 8 hours 

using the α2–6-trans-sialidase activity of PmST (GenBank accession number AAK02272) 

which has the dual α2–3- and α2–6-trans-sialidase activities.300 PmST1 P34H mutant with 

α2–6-trans-sialidase activity was used to further improve the regio-selective production of 

6’SL versus 3’SL.

6’SL was also produced together with its disialylated derivative, 6,6’-disialyllactose, 

using a living cell system engineered to overexpress Photobacterium sp. JT-ISH-224 α2–6-

sialyltransferase (Psp2,6ST)304, 310 with Campylobacter jejuni strain ATCC43438 neuABC 
genes encoding GlcNAc-6-phosphate 2-epimerse, sialic acid synthase, and CMP-Neu5Ac 

synthetase.311 A 6’SL derivative Kdoα2–6Lac was also able to be produced using a similar 

system with Psp2,6ST gene under the control of a strong Ptrc promoter and neuABC genes 

under the control of a weaker Plac promoter.311

5.4 LNT2, LNnT, LNnH, LNnO, LNnD, LSTd, and disialyl oligosaccharides

Recently, two β-N-acetylhexosaminidases HEX1 and HEX2 identified from soil-derived 

metagenomic library screening were found to be able to catalyze trans-glycosylation 

reactions using chitin oligosaccharides as donor substrates and lactose as the acceptor for the 

formation of lacto-N-triose II (LNT2, GlcNAcβ1–3Lac),312 the precursor for the synthesis 

of LNT and LNnT. Although the yields are low (2% and 8% respectively), they have the 

potential for improvement by mutagenesis.

LNT2 (106.3 mg) was also synthesized from lactose and UDP-GlcNAc catalyzed by bovine 

serum β1–3-N-acetylglucosaminyltransferase. LNnT (12 mg) was subsequently produced 

from LNT2 and ortho-nitrophenyl β-galactoside by a commercially available Bacillus 
circulans β-D-galactosidase.313

Large-scale production of LNT2 trisaccharide and LNnT in several hundred grams in a 100 

L reactor has been reported. LNT2 trisaccharide (250 grams) was synthesized from lactose 

and UDP-GlcNAc using E. coli cells expressing β1–3-N-acetylglucosaminyltransferase 

(LgtA). LNnT (300 grams, >85% yield) was subsequently synthesized from LNT2 and 

UDP-galactose using E. coli cells expressing β1–4GalT (LgtB). Sialyllacto-N-tetraose d 

(LSTd, Neu5Acα2–3LNnT, has not been identified in human milk) was further produced 

Chen Page 15

Adv Carbohydr Chem Biochem. Author manuscript; available in PMC 2022 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in 50 grams with a 90% yield from LNnT and Neu5Acα2–3Lac using a recombinant 

Trypanosoma cruzi α2–3-trans-sialidase expressed in E. coli.263

LNT2 and LNnT were reported to be produced in kilograms in a fermentation-based 

system to allow the conduct of clinical trials.290, 314 At the tested concentration, LNnT 

was proven to be stable and safe to use as a component of infant formula although it did not 

reduce oropharyngeal colonization of Streptococcus pneumoniae in children of 6 months or 

older.315

LNnT was also synthesized from 1-thio-β-LNT2 conjugated to a polyethylene glycol (PEG)-

based dendrimeric support and UDP-Glc using reactions catalyzed by UDP-Gal 4-epimerase 

and bovine milk β1–4GalT. In this system, the UDP-Gal 4-epimerase was responsible for 

the formation of UDP-Gal from less expensive UDP-Glc, thus providing donor substrate 

for the bovine milk β1–4GalT for the formation of LNnT. The thio-linked PEG-support 

was readily cleaved off using mercuric (II) trifluoroacetate (CF3CO2)2Hg (2 equivalents) in 

acetic acid (0.05 M) at room temperature to release free LNnT (18 mg).316

Large-scale production of LNT2 (6 g/L, 73% yield) and LNnT (> 5 g/L), and lower 

level formation of lacto-N-neohexaose (LNnH), lacto-N-neooctaose (LNnO), and even 

lacto-N-neodecaose (LNnD) were reported using living E. coli JM109 cells (lacY+ lacZ−) 

engineered to overexpress Neisseria meningitidis β1–3-N-acetylglucosaminyltransferase 

(NmLgtA) and Neisseria meningitidis β1–4GalT (NmLgtB).307

Enzymatic synthesis of LNT2 (1.36 g, 95% yield), LNnT (1.19 g, 92% yield) and disialyl 

glycans was successfully achieved using sequential one-pot multienzyme (OPME) systems 

as shown in FIG. 1 and FIG. 2.269 In these systems, free monosaccharides were added 

one-by-one at each one-pot systems containing multiple enzymes responsible for catalyzing 

monosaccharide activating followed by transfer processes. Multiple OMPE systems were 

used sequentially for building up complex HMOS structures. The combination of several 

OPME systems were used for the synthesis of disialyl oligosaccharides milk including 

DSLNnT (236 mg, 99% yield), GD3 tetraose (239 mg, 82% yield), DSLac (112 mg, 93% 

yield), and DS’LNT (268 mg, 98% yield) which are analogs of disialyl lacto-N-tetraose 

(DSLNT), a hexaose commonly found in human. A monosialylpentaose LSTd (or 3”’-

sLNnT) (138 mg, 98% yield) was synthesized similarly using sequential OPME systems.269 

Similar to DSLNT and HMOS pool,236 both synthetic DSLNnT and DS’LNT were shown to 

protect neonatal rats from necrotizing enterocolitis.269

5.5 Fucα1–2LNnT

Fucα1–2LNnT, a monofucosylated pentaose that has not been identified from human milk, 

was produced together with 2’FL using E. coli living cells engineered to overproduce 

GDP-fucose325 and LNnT307 with an additional introduction of a modified H. pylori strain 

26695 α1–2-fucosyltransferase.326

5.6 LNFP III, LNnFP V, and LNnDFH

Lacto-N-neofucopentaose (LNnFP V), lacto-N-neodifucohexaose (LNnDFH), and 

a lacto-N-neodifucooctaose [Galβ1–4GlcNAcβ1–3Galβ1–4(Fucα1–3)GlcNAcβ1–3Galβ1–
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4(Fucα1–3)Glc] have been synthesized from lactose using living E. coli cells engineered 

to inactivate genomic wcaJ gene involved in colanic acid synthesis and to express NmLgtA, 

NmLgtB, Helicobacter pylori strain 26695 α1–3-fucosyltransferase FutA (encoded by 

HP0379 gene), and RcsA (a positive regulator of the colanic acid operon). Glucose was 

used as a carbon source.325 The construct was further modified to improve the yield for 

the synthesis of LNnDFH (1.7 g/L). In addition, the living cell system containing another 

Helicobacter pylori strain 26695 α1–3-fucosyltransferase futB gene (HP0651) was shown 

to produce both lacto-N-neofucopentaose III (LNFP III) (260 mg/L) and LNnFP V (280 

mg/L).327

5.7 LNT

LNT was enzymatically synthesized from LNT2 and ortho-nitrophenyl β-D-galactoside 

using a Bacillus circulans ATCC31382 β-galactosidase-catalyzed transglycosylation 

reaction. Alternatively, LNT (7.1 mg) was able to be synthesized from lactose 

and Galβ1–3GlcNAcβpNP using Aureobacterium sp. L-101 lacto-N-biosidase-catalyzed 

transglycosylation reaction.313 Inherent low yields (19–26%) were observed for typical 

glycosidase-catalyzed trans-glycosylation reactions.

An LNT benzyl glycoside was efficiently produced from LNT2 benzyl glycoside 

(synthesized by NmLgtA-catalyzed glycosylation reaction from lactose benzyl glycoside 

and UDP-GlcNAc) and UDP-Gal using a GST-tagged Escherichia coli O55:H7 β1–3-N-

acetylglucosaminyltransferase WbgO fusion protein.313

Large-scale production of LNT was not achieved until recently using E. coli strain LJ110 

(with intact LacY but with lacZ knockout) chromosomally integrated with Neisseria 
meningitidis β1–3-N-acetylglucosaminyltransferase lgtA and Escherichia coli O55:H7 β1–

3-N-acetylglucosaminyltransferase wbgO genes.328 Nevertheless, when glucose was used 

as the carbon source, LNT2 was the major product and only about 5% of the lactose was 

converted to LNT (219 mg/L).328 By substituting the glucose with galactose, the yield of 

LNT production (811 mg/L) was improved by 3.6-fold. Fed-batch cultivation with galactose 

further improved the efficiency and produced LNT in 173 grams (12.72 g/L).329

5.8 3FL, LDFT, LNFP II, Lea tetrasaccharide, and Lex tetrasaccharide

Several α1–3/4-fucosynthases were obtained from Bifidobacterium bifidum α1–3/4-

fuocisdase (BbAfcB), a retaining glycosidase, by mutating the amino acid residue that was 

predicted to serve as a nucleophile (D703). Among the D703A, D703C, D703G, and D703S 

four mutants, D703S mutant was found to be the best α1–3/4-fucosynthase and was used for 

the production of several fucosylated HMOS and derivatives using β-L-fucosyl fluoride (40 

mM) and a suitable acceptor (100 mM) such as Lac, 2’FL, LNT, LNB, and LacNAc. HMOS 

and derivatives 3FL, LDFT, LNFP II, Lea tetrasaccharide, and Lex tetrasaccharide were 

obtained in 13%, 5.5%, 41%, 47%, and 55% yields, respectively, based on the β-L-fucosyl 

fluoride donor substrate used. Increasing the LNB concentration to 200 mM was able to 

improve the yield to 56%.330
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5.9 LNFP I and LNDFH I

LNFP I (7% yield) and LNDFH I (6% yield) was synthesized from lactose using several 

glycosyltransferase-catalyzed reactions with the corresponding sugar nucleotides and a 

galactosidase-catalyzed reaction with a corresponding synthetic donor. LNT2 (44% yield) 

was initially synthesized from lactose and UDP-GlcNAc catalyzed by a β1–3GlcNAcT that 

was partially purified from bovine blood. LNT (22% yield) was then produced from LNT2 

and ortho-nitrophenyl-β-galactoside (GalβoNP) using a recombinant Bacillus circulans β1–

3-galactosidase. The production of LNFP I (71% yield) was achieved from LNT and 

GDP-Fuc using a recombinant human α1–2-fucosyltransferase 1 (FUT1) expressed in a 

baculovirus system. Finally, LNDFH I (85% yield) was produced from LNFP I and GDP-

Fuc by a FUT3-catalyzed reaction using a commercial enzyme.210

5.10 Other oligosaccharides

Gram-scale production of globotriose (Gb3) and globotetraose (Gb4) oligosaccharides was 

achieved using bacterial glycosyltransferases and sugar-nucleotides. Gb3 trisaccharide (5 

grams, 75% yield) was synthesized from lactose and UDP-galactose using Neisseria 
gonorrhoeae α1–4-galactosyltransferase (NgLgtC). Gb4 tetrasaccharide (1.5 grams, 60% 

yield) was synthesized from Gb3 trisaccharide and UDP-GalNAc using Neisseria 
gonorrhoeae β1–3-N-acetylgalactosaminyltransferase (NgLgtD).263

UDP-galactose (44 g/L) and globotriose Galα1–4Lac (188 g/L) were also produced 

using permeabilized Corynebacterium ammoniagenes cells (for the production of UTP 

from orotic acid) and E. coli cells engineered to overexpress UDP-Gal biosynthetic 

genes with or without Neisseria gonorrhoeae α1–4-galactosyltransferase.331 A whole cell 

approach using permeabilized Corynebacterium ammoniagenes cells (for the production 

of GTP from GMP) and E. coli cells engineered to overexpress de novo GDP-Fuc 

biosynthetic enzymes, phosphoglucomutase, phosphofructokinase, and Helicobacter pylori 
α1–3-fucosyltransferase was also developed for the production of Lewis x trisaccharide (21 

g/L in a 30 mL scale, purification yield 32%) from GMP, mannose, and N-acetyllactosamine 

(LacNAc).332

The engineered E. coli living cell strategy can be used for the synthesis of other 

HMOS by introducing plasmids for the expression of necessary glycosyltransferases 

and sugar nucleotide biosynthetic enzymes. For example, gram-scale synthesis of Lewis 

x tetrasaccharides Galβ1–4(Fucα1–3)GlcNAcβ1–4GlcNAc (0.62 g) and Galβ1–4(Fucα1–

3)GlcNAcβ1–3Gal (1.84 g) was achieved by placing four de novo GDP-Fuc biosynthetic 

gene under Plac promoter without knocking out wcaJ involved in colanic acid synthesis or 

introducing RcsA (a positive regulator of the colanic acid operon).333 The engineered living 

cells strategy was also used to produce the oligosaccharide components of gangliosides 

GM2 and GM1, GalNAcβ1–4(Neu5Acα2–3)Lac and Galβ1–3GalNAcβ1–4(Neu5Acα2–

3)Lac,334 has been achieved.
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6. Perspectives

Future efforts on HMOS analysis should be focused on elucidating the structures of more 

complex and longer chain HMOS including those with more than 14 monosaccharide 

residues that are not currently presented in TABLE IV. These more complex structures are 

unlikely the byproducts of biosynthesis of HMOS. Although less abundant, they could have 

significant biological functions. Profiling HMOS in a high-throughput format will also help 

to find correlation of disease states and the roles of certain populations of HMOS. Various 

enzyme-catalyzed synthetic methods that have been successfully used in production of 

relatively simple HMOS include glycosyltransferase-catalyzed reactions with or without co-

factor recycling, sialidase and trans-glycosidase-catalyzed reactions, one-pot multienzyme 

(OPME) and sequential OPME systems, whole cell approaches, and living cell strategies. 

Such efforts, however, have not been applied for the production of more complex structures, 

especially the ones with branches. With the limited access to all enzymes needed, especially 

essential glycosyltransferases, the combination of chemical and enzymatic methods can be 

used. Such methods have been developed but have not been broadly used for the synthesis 

of HMOS. The strategy of chemoenzymatic synthesis of asymmetrically branched N-glycan 

structures335, 336 can be readily applicable for the synthesis of branched HMOS structures. 

Efficient purification methods for large scale production of HMOS either by chemical, 

enzymatic, or cell-based systems are also in a great demand. The availability of structurally 

defined more complex individual HMOS species will greatly facilitate their function studies 

and to explore their prebiotic and therapeutic potentials. Other than functional studies using 

pooled HMOS and individual pure synthetic HMOS, the synergistic effect of a mixture of 

two or more structurally defined HMOS should also be investigated as, most likely, a single 

compound will not provide the desired protection against multiple pathogens.15
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Abbreviations

ATP adenine 5’-triphoaphate

B. breve Bifidobacterium breve

B. bifidum Bifidobacterium bifidum

B. infantis Bifidobacterium longum subsp. infantis

BiNahK B. infantis N-acetylhexosamine-1-kinase

B. longum Bifidobacterium longum subsp. longum

BLUSP B. longum UDP-sugar synthase

CDP cytidine 5’-diphoaphate
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CMP cytidine 5’-monophoaphate

CMP-Neu5Ac cytidine 5’-monophoaphate-N-acetylneuraminic acid

CstII Campylobacter jejuni α2–8-sialyltransferase II

CTP cytidine 5’-triphoaphate

DSLNT disialyllacto-N-tetraose

EcGalK E. coli K-12 galactose kinase

EcNanA E. coli sialic acid aldolase

NmCSS Neisseria meningitidis CMP-sialic acid synthetase

PmGlmU P. multocida N-acetylglucosamine 1-phosphate 

uridylyltransferase

PmPpA P. multocida inorganic pyrophosphatase

PmST Pasteurella multocida α2–3-sialyltransferase (GenBank 

accession number AAK02272)

PmST1 multifunctional Pasteurella multocida α2–3-

sialyltransferase 1

2’FL 2’-fucosyllactose

3FL 3-fucosyllactose

Fuc fucose

FucT fucosyltransferase

FUT2 human α1–2-fucosyltransferase encoded by the Secretor 

(Se) gene

FUT3 human α1–3/4-fucosyltransferase encoded by the Lewis 

(Le) gene

FutA Helicobacter pylori strain 26695 α1–3-fucosyltransferase

Gal galactose

GalT galactosyltransferase

GalNAc N-acetylgalactosamine

GDP guanidine 5’-diphosphate

GMP guanidine 5’-monophosphate

GTP guanidine 5’-triphosphate

Glc glucose
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GlcNAc N-acetylglucosamine

GlcNAcT N-acetylglucosaminyltransferase

GNB galacto-N-biose

GnT-I N-acetylglucosaminyltransferase I

GST glutathione S-transferase

E. coli Escherichia coli

HMOS human milk oligosaccharides

HPAEC-PAD high-pH anion-exchange chromatography with pulsed 

amperometric detection

HPLC high performance liquid chromatography

Lac lactose

LacNAc N-acetyllactosamine

LacY β-galactoside permease

LDFT lactodifucotetraose

Le Lewis

LNB lacto-N-biose

LNDFH lacto-N-difuco-hexoase

LNFP lacto-N-fucopentaose

LNnD lacto-N-neodecaose

LNnDFH lacto-N-neodifucohexaose

LNnFP lacto-N-neofucopentaose

LNnH lacto-N-neohexaose

LNnT lacto-N-neotetraose

LNT lacto-N-tetraose

LNT2 lacto-N-triose II

LPS lipopolysaccharides

LST sialyllacto-N-tetraose

MOS milk oligosaccharides

MS mass spectrometry
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NanT Neu5Ac permease

NEC necrotizing enterocolitis

Neu5Ac N-acetylneuraminic acid, the most abundant sialic acid 

form in nature

Neu4,5Ac2 4-O-acetyl-N-acetylneuraminic acid

NK natural killer

Nmα2–3ST Neisseria meningitidis α2–3-sialyltransferase

NmLgtA Neisseria meningitidis β1–3-N-

acetylglucosaminyltransferase

NmLgtB Neisseria meningitidis β1–4-galactosyltransferase

NMR nuclear magnetic resonance spectroscopy

OPME one-pot multienzyme

Pd2,6ST Photobacterium damselae α2–6-sialyltransferase

Psp2,6ST Photobacterium sp. JT-ISH-224 α2–6-sialyltransferase

UTP uridine 5’-triphosphate

Se Secretor

3’S-3FL 3’-sialyl-3-fucosyllactose

SiaT sialyltransferase

3’SL 3’-sialyllactose

6’SL 6’-sialyllactose

3’SLN 3’-sialyl-N-acetyllactosamine

6’SLN 6’-sialyl-N-acetyllactosamine
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FIG. 1. 
One-pot multienzyme (OPME) GlcNAc (A), Gal (B), and Neu5Ac (C) 

activation and transfer systems.269, 270 Enzyme abbreviations: BiNahK, B. 
infantis N-acetylhexosamine-1-kinase;317 PmGlmU, P. multocida N-acetylglucosamine 

1-phosphate uridylyltransferase;318 PmPpA, P. multocida inorganic pyrophosphatase;318 

GlcNAcT, N-acetylglucosaminyltransferase; NmLgtA, Neisseria meningitidis β1–3-N-

acetylglucosaminyltransferase;319 EcGalK, E. coli K-12 galactose kinase;320 BLUSP: 

B. longum UDP-sugar synthase;320 GalT, galactosyltransferase; NmLgtB, Neisseria 
meningitidis β1–4-galactosyltransferase;321 NmCSS, Neisseria meningitidis CMP-sialic 

acid synthetase;293 SiaT, sialyltransferases; PmST1 M144D, Pasteurella multocida 
α2–3-sialyltransferase 1 M144D mutant;296 Pd2,6ST, Photobacterium damselae α2–6-

sialyltransferase;309, 322 CstII, Campylobacter jejuni α2–8-sialyltransferase II.323, 324
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FIG. 2. 
OPME and sequential OPME systems for the synthesis of disialyl oligosaccharides 

including DSLNnT, GD3 tetraose, DSLac, DS’LNT, and a monosialylpentaose LSTd (3”’-

sLNnT).269 The structure of DSLNT found in human milk is shown for comparison purpose.
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TABLE I.

Major monosaccharide building blocks for HMOS.

HMOS monosaccharide building 
blocks

Abbreviations Symbols Structures Glycosidic Linkages in HMOS

N-Acetylneuraminic acid Neu5Ac α-linkages

Fucose Fuc α-linkages

Galactose Gal β-linkages

N-Acetylglucosamine GlcNAc β-linkages

Glucose Glc None (at the reducing end, a mix of α and β 
configurations at the anomeric carbon)
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TABLE II.

Lactose and neutral non-fucosylated HMOS that can serve as the core structures for other HMOS.28, 32–34

Core # Lactose and HMOS core structures Abbreviations Symbols Ref.

I Lactose (not considered an HMOS itself) Lac 49 

II Lacto-N-tetraose LNT 24 

III Lacto-N-neotetraose LNnT 50 

IV Lacto-N-hexaose LNH 51 

V Lacto-N-neohexaose LNnH 52 

VI para-Lacto-N-hexaose pLNH 53 

VII para-Lacto-N-neohexaose pLNnH 53 

VIII Lacto-N-octaose LNO 54 

IX Lacto-N-neooctaose LNnO 54 

X iso-Lacto-N-octaose iLNO 55 

XI para-Lacto-N-octaose pLNO 56 

XII para-Lacto-N-neooctaose pLNnO 57 

XIII Lacto-N-decaose LND 58 

XIV Lacto-N-neodecaose LNnD 58 

XV 33 
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Core # Lactose and HMOS core structures Abbreviations Symbols Ref.

XVI 59 

Symbols and abbreviations:  galactose (Gal),  N-acetylglucosamine (GlcNAc),  glucose (Glc).
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TABLE III.

Twelve glycosidic linkages that constitute diverse HMOS.33, 34

Glycosidic linkages Abbreviations Symbol

Galactosidic bonds Galβ1–4Glc

Galβ1–3GlcNAc

Galβ1–4GlcNAc

N-acetyl-glucosaminidic bond GlcNAcβ1–3Gal

GlcNAcβ1–6Gal

Fucosidic bond Fucα1–2Gal

Fucα1–3Glc

Fucα1–3GlcNAc

Fucα1–4GlcNAc

Sialidic bond Neu5Acα2–3Gal

Neu5Acα2–6Gal
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Glycosidic linkages Abbreviations Symbol

Neu5Acα2–6GlcNAc

Symbols and abbreviations:  N-acetylneuraminic acid (Neu5Ac),  fucose (Fuc),  galactose (Gal),  N-acetylglucosamine (GlcNAc), 
glucose (Glc).
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TABLE IV.

Structures of HMOS grouped by their core structures.28, 32–34, 61

Core # Lactose and HMOS Abbreviations Symbols Ref.

I Lactose (not considered as HMOS itself) Lac 49 

LNTri II 76 

a
2’-Fucosyllactose

2’FL 25 

3-Fucosyllactose 3FL 27 

a
Lactodifucotetraose

LDFT 77 

3’-Sialyllactose 3’SL 78 

6’-Sulfo-3’-sialyllactose 6’-Sulfo-3’SL 64 

6’-Sialyllactose 6’SL 79 

3’-Sialyl-3-fucosyllactose 3’S3FL 80 

II Lacto-N-tetraose LNT 24 

a
Lacto-N-fucopentaose I

LNFP I 26 

b
Lacto-N-fucopentaose II

LNFP II 81 

Lacto-N-fucopentaose V LNFP V 82 
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Core # Lactose and HMOS Abbreviations Symbols Ref.

a, b
Lacto-N-difuco-hexaose I

LNDFH I 83 

b
Lacto-N-difuco-hexaose II

LNDFH II 84 

Sialyllacto-N-tetraose a LSTa 66 

Sialyllacto-N-tetraose b LSTb 66 

Disialyllacto-N-tetraose DSLNT 85 

Sialylfucosyllacto-N-tetraose S-LNF II or F-LSTa 86 

Fucosylsialyllacto-N-tetraose S-LNF I or F-LSTb 86 

Fucosyldisialyllacto-N-tetraose DS-LNF II or FDS-LNT I 87 

Disialylfucosyllacto-N-tetraose DS-LNF V or FDS-LNT II 87 

III Lacto-N-neotetraose LNnT 50 

Lacto-N-fucopentaose III LNFP III 88 

Lacto-N-neofucopentaose V LNnFP V 89 

Lacto-N-neodifucohexaose II LNnDFH II (LNDFH III) 67 

Sialyllacto-N-neotetraose c LSTc 90 

Fucosylsialyllacto-N-neotetroase F-LSTc 91 
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Core # Lactose and HMOS Abbreviations Symbols Ref.

IV Lacto-N-hexaose LNH 51 

Fucosyllacto-N-hexaose I FLNH I 92 

Fucosyllacto-N-hexaose II FLNH II 93 

c
4120a

33 

Difucosyllacto-N-hexaose a DF-LNH a 92 

Difucosyllacto-N-hexaose b DF-LNH b 51 

Difucosyllacto-N-hexaose c DF-LNH c 33 

Trifucosyllacto-N-hexaose TF-LNH 55 

Sialyllacto-N-hexaose S-LNH 51 

c
4021a

34 

Disialyllacto-N-hexaose I DS-LNH I 94 
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Core # Lactose and HMOS Abbreviations Symbols Ref.

Disialyllacto-N-hexaose II DS-LNH II 94 

Trisialyllacto-N-hexaose TS-LNH 95 

Fucosylsialyllacto-N-hexaose FS-LNH 92 

Fucosylsialyllacto-N-hexaose I FS-LNH I 96 

Fucosylsialyllacto-N-hexaose II FS-LNH II 96 

Fucosylsialyllacto-N-hexaose III FS-LNH III 96 

Fucosylsialyllacto-N-hexaose IV FS-LNH IV 97 

Difucosylsialyllacto-N-hexaose I DFS-LNH I 96 

Difucosylsialyllacto-N-hexaose II DFS-LNH II 97 

Fucosyldisialyllacto-N-hexaose I FDS-LNH I 98 

Fucosyldisialyllacto-N-hexaose II FDS-LNH II 98 
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Core # Lactose and HMOS Abbreviations Symbols Ref.

Fucosyldisialyllacto-N-hexaose III FDS-LNH III 97 

V Lacto-N-neohexaose LNnH 52 

Fucosyllacto-N-neohexaose F-LNnH 52 

Difucosyllacto-N-neohexaose DF-LNnH 56 

Sialyllacto-N-neohexaose I S-LNnH I 51 

Sialyllacto-N-neohexaose II S-LNnH II 80 

Disialyllacto-N-neohexaose DS-LNnH 87 

Fucosylsialyllacto-N-neohexaose I FS-LNnH I 80 

Fucosylsialyllacto-N-neohexaose II FS-LNnH II 52 

Difucosylsialyllacto-N-neohexaose DFS-LNnH 80 

Fucosyldisialyllacto-N-neohexaose FDS-LNnH

or

98 

VI para-Lacto-N-hexaose pLNH 53 

Fucosyl-para-lacto-N-hexaose I F-pLNH I 99 
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Core # Lactose and HMOS Abbreviations Symbols Ref.

Fucosyl-para-lacto-N-hexaose II F-pLNH II 100 

Fucosyl-para-lacto-N-hexaose IV F-pLNH IV 100 

Difucosyl-para-lacto-N-hexaose DF-pLNH 53 

Trifucosyl-para-lacto-N-hexaose I TF-pLNH I 101 

Trifucosyl-para-lacto-N-hexaose II TF-pLNH II 100 

Difucosyl-para-lacto-N-hexaose sulfate I DF-pLNH sulfate I 65 

Difucosyl-para-lacto-N-hexaose sulfate II DF-pLNH sulfate II 65 

Difucosyl-para-lacto-N-hexaose sulfate III DF-pLNH sulfate III 65 

VII para-Lacto-N-neohexaose pLNnH 53 

Fucosyl-para-lacto-N-neohexaose F-pLNnH or IFLNH III 99 

Difucosyl-para-lacto-N-neohexaose DF-pLNnH 53 

Trifucosyl-para-lacto-N-neohexaose TF-pLNnH 100 

c
4021b

34 

c
4121a

34 

c
4121b

34 

VIII Lacto-N-octaose LNO 54 
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Core # Lactose and HMOS Abbreviations Symbols Ref.

c
5130c

33 

c
5130b

33 

Fucosyllacto-N-octaose F-LNO 102 

Difucosyllacto-N-octaose I DF-LNO I 54 

Difucosyllacto-N-octaose II DF-LNO II 54 

Trifucosyllacto-N-octaose TF-LNO 54 

c
5031a

34 

Fucosylsialyllacto-N-octaose FS-LNO 103 

c
5131a

34 

c
5231a

34 

c
5231b

34 

Difucosylsialyllacto-N-octaose DFS-LNO 104 

c
5331a

34 

IX Lacto-N-neooctaose LNnO 54 

Fucosyllacto-N-neooctaose F-LNnO 54 
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Core # Lactose and HMOS Abbreviations Symbols Ref.

Difucosyllacto-N-neooctaose I DF-LNnO I 54 

Difucosyllacto-N-neooctaose II DF-LNnO II 54 

Trifucosyllacto-N-neooctaose I TF-LNnO I 54, 55

Trifucosyllacto-N-neooctaose II TF-LNnO II 55 

X iso-Lacto-N-octaose iLNO 55 

c
5130a Fucosyl-iso-Lacto-N-octaose

F-iLNO 33, 105

Difucosyl-iso-lacto-N-octaose I DF-iLNO I 106 

Difucosyl-iso-lacto-N-octaose II DF-iLNO II 106 

c
5230a

33 

Trifucosyl-iso-lacto-N-octaose I TF-iLNO I 55 

Trifucosyl-iso-lacto-N-octaose II TF-iLNO II 56, 105

c
5330a

33 

Tetrafucosyl-iso-lacto-N-octaose TetraF-iLNO 56 

pentafucosyl-iso-lacto-N-octaose PentaF-iLNO 56 

Fucosylsialyl-iso-lacto-N-octaose FS-iLNO 104 
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Core # Lactose and HMOS Abbreviations Symbols Ref.

Difucosylsialyl-iso-lacto-N-octaose I DFS-iLNO I 104 

Difucosylsialyl-iso-lacto-N-octaose II DFS-iLNO II 104 

Trifucosylsialyl-iso-lacto-N-octaose TFS-iLNO 94 

XI para-Lacto-N-octaose pLNO 56 

Tetrafucosyl-para-lacto-N-octaose TetraF-pLNO 56 

XII para-Lacto-N-neooctaose pLNnO 57 

XIII Lacto-N-decaose LND 58, 107

Fucosyl-lacto-N-decaose I F-LND I 107 

Difucosyl-lacto-N-decaose I DF-LND I 58 

Difucosyl-lacto-N-decaose II DF-LND II 58 

Difucosyl-lacto-N-decaose III DF-LND III 58 

Difucosyl-lacto-N-decaose IV DF-LND IV 58 

Difucosyl-lacto-N-decaose V DF-LND V 58 

Difucosyl-lacto-N-decaose VI DF-LND VI 58 
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Core # Lactose and HMOS Abbreviations Symbols Ref.

58 

58 

Trifucosyl-lacto-N-decaose I TriF-LND I 58 

Trifucosyl-lacto-N-decaose II TriF-LND II 58 

Trifucosyl-lacto-N-decaose III TriF-LND III 58 

Trifucosyl-lacto-N-decaose IV TriF-LND IV 58 

58 

58 

c
6340a

33 

Tetrafucosyl-lacto-N-decaose I TetraF-LND I 58 

Tetrafucosyl-lacto-N-decaose II TetraF-LND II 58 

Tetrafucosyl-lacto-N-decaose III TetraF-LND III 58 

58 
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Core # Lactose and HMOS Abbreviations Symbols Ref.

XIV Lacto-N-neodecaose LNnD 58 

Fucosyllacto-N-neodecaose I F-LNnD I 58 

Fucosyllacto-N-neodecaose II F-LNnD II 58 

Difucosyllacto-N-neodecaose DF-LNnD 58 

c
6041a

34 

XV 33 

XVI 59 

59 

59 

XVII 
Devia
nt 
structu
res

A antigen-tetrasaccharide A-Tri 62, 108

A antigen-pentasaccharide A-Penta 62, 108–110

A antigen-hexasaccharide A-Hexa 62 

A antigen-heptasaccharide A-Hepta 62, 108, 109
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111 

3’-Sialyl Lewis a
3’SLe

a 111 

3’-Sialyl-N-acetyllactosamine 3’SLN 34 

6’-Sialyl-N-acetyllactosamine 6’SLN 66 

Fucosylsialyl-novo-lacto-N-pentaose I FS-novo-LNP I 96 

3’-Galactosyllactose β3’GL 67 

4’-Galactosyllactose β4’GL 68 

6’-Galactosyllactose β6’GL 69 

Symbols and abbreviations:  N-acetylneuraminic acid (Neu5Ac),  fucose (Fuc),  galactose (Gal),  N-acetylglucosamine (GlcNAc), 

glucose (Glc),  N-acetylgalactosamine (GalNAc).

a
Missing in the milk of Lea+b− non-secretors.73

b
Missing in the milk of Lewis negative (Lea−b−) individuals.74

c
Indicate the number of Hexose, Fucose, HexNAc, and Neu5Ac in the oligosaccharide.33, 34
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