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Abstract

Today there are approximately 85,000 chemicals regulated under the Toxic Substances Control 

Act, with around 2,000 new chemicals introduced each year. It is impossible to screen all of 

these chemicals for potential toxic effects, either via full organism in vivo studies or in vitro 
high-throughput screening (HTS) programs. Toxicologists face the challenge of choosing which 

chemicals to screen, and predicting the toxicity of as yet unscreened chemicals. Our goal is to 

describe how variation in chemical structure relates to variation in toxicological response to enable 

in silico toxicity characterization designed to meet both of these challenges. With our Bayesian 

partially Supervised Sparse and Smooth Factor Analysis (BS3FA) model, we learn a distance 

between chemicals targeted to toxicity, rather than one based on molecular structure alone. Our 

model also enables the prediction of chemical dose-response profiles based on chemical structure 

(i.e., without in vivo or in vitro testing) by taking advantage of a large database of chemicals that 

have already been tested for toxicity in HTS programs. We show superior simulation performance 

in distance learning and modest to large gains in predictive ability compared to existing methods. 

Results from the high-throughput screening data application elucidate the relationship between 

chemical structure and a toxicity-relevant high-throughput assay. An R package for BS3FA is 

available online at https://github.com/kelrenmor/bs3fa.
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1. Introduction.

Daily life involves being exposed to a variety of chemical substances from diverse sources 

and at varying concentrations. A myriad of legislation and regulatory bodies work to 

assess consumer and industrial products for toxicity and reduce exposure risk. The Toxic 

Substances Control Act (TSCA), passed by Congress in 1976 and administered by the 

U.S. Environmental Protection Agency (EPA), regulates the bulk of1 new and existing 

chemicals in the United States (U.S.). When the TSCA was enacted, around 60,000 

chemicals were grandfathered into the program and effectively considered safe for use. 

The EPA has struggled to catch up on this backlog while also keeping up with the rate of 

new introductions (roughly 2,000 chemicals per year), as they assess chemicals for potential 

toxicity. High-throughput screening methods have proved vital to this effort, as they allow 

researchers to quickly conduct millions of tests.

The EPA’s Toxicity Forecaster (ToxCast) research program in which thousands of chemicals 

are tested in more than 700 high-throughput assay endpoints is used to prioritize, screen 

and evaluate chemicals for potential toxic effects (Dix et al. (2007), Judson et al. (2009), 

Kavlock et al. (2012)). However, even high-throughput toxicity screening (HTS) programs, 

which allow for the relatively cheap and fast collection of dose-response information via in 
vitro studies rather than full organism in vivo studies, are still too slow and expensive to be 

able to study all chemicals. In silico studies, that is, those performed via computer modeling 

rather than in the lab, can be used to guide the design of and supplement the results from 

lab-based studies. Specifically, the characterization of an activity relevant chemical distance 

in silico enables more targeted design of further in vitro studies, increasing the efficiency 

of resource allocation. In addition, predicting toxicity via such studies helps bridge the gap 

between the number of chemicals of interest and the number with known toxicological 

profiles.

The goal of this work is to make inferences about how variation in chemical structure 

relates to variation in toxicological response. Sparse function-on-scalars regression models 

(Barber, Reimherr and Schill (2017), Chen, Goldsmith and Ogden (2016), Fan and Reimherr 

(2017), Kowal and Bourgeois (2020)) do this in a limited way by selecting the important 

chemical structure features and giving them appropriate coefficients or weights. Because 

there are many redundant and highly correlated structure features (see Figure 1), a PCA-

esque approach that introduces latent factors related to the major directions of variation 

in the molecular structure is more informative than such penalized regression approaches. 

However, simply performing PCA or other unsupervised dimension reduction approaches on 

the chemical structure ignores the distinction between overall variation and toxicity-relevant 
variation in the molecular structure. A supervised dimension reduction approach, on the 

other hand, provides a coherent and flexible framework within which to describe the 

relationship between molecular variation and activity variation via a shared latent subspace.

1Exceptions regulated under different legislation include foods and food additives, drugs, cosmetics, pesticides, tobacco products, 
research substances used in small quantities and radioactive materials and waste.
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Dose response data and molecular structure are the two sources of information in ToxCast 

relevant to addressing our goal. Explicitly, chemical i in ToxCast has two relevant pieces 

of information: the vector of response observations at D doses yi = [yi(d1),…, yi(dD)]′, and 

the vector of S molecular features xi = [xi1, …, xiS]′. Observations yi are sparse, noisy and 

not on a regular grid. For an example, see Figure 2; Chlorobenzilate has 54 observations at 

11 unique doses, yet 5-Methyl-1H-benzotriazole only has three doses with one observation 

each. Not all aspects of the feature space (i.e., not all entries in xi) are likely to be relevant to 

the toxicological response.

Response variables in ToxCast are assay specific. Assays in ToxCast each measure a 

single endpoint, for example, the binding to a certain receptor protein, or the transcription 

of a target gene. The specific assay endpoint considered in our real-data example, the 

AttaGene pregnane X receptor (PXR) assay, records the fold-change values in the activity 

of the nuclear pregnane X receptor for drug-treated vs. control-treated human hepatic 

cells (specifically, a HG19 subclone of HepG2). Dimethyl sulfoxide (DMSO) is used 

as the negative control. The response is measured via reporter RNAs that are produced 

proportionately to the activity of corresponding transcription factor (here, PXR). This assay 

has been shown to be related to the body’s response to toxic substances (Kliewer, Goodwin 

and Willson (2002)), so a higher response value for this assay endpoint can be interpreted as 

higher level of toxicity.

This work makes no monotonicity assumptions on the shape of the response. There is a 

nonzero baseline activity level of the nuclear pregnane X receptor in unstimulated hepatic 

cells, so both induction and suppression of the activity of this transcription factor are 

possible outcomes in response to stimulation, rendering a positive monotonicity constraint 

unsuitable. Furthermore, the lack of any monotonicity constraint (not specifically a positive 

one) leaves open the possibility for a biphasic response such as hormesis to be fit.

The tool used to quantitatively summarize a chemical’s molecular structure is Mold2 (Hong 

et al. (2008)), which generates a set of 777 numeric descriptors using the simplified 

molecular-input line-entry system (SMILES) specification (Weininger (1988)); see Figure 

3 for select Mold2 output for an example chemical, and Hong et al. (2012) for a discussion 

of the use of Mold2 in quantitative structure–activity relationship (QSAR) models.

In order to coherently model both structural and toxicological response variation, we 

propose a Bayesian partially Supervised Sparse and Smooth Factor Analysis (BS3FA) 

model. The model assumes structured variation in the molecular features xi is driven by 

two sets of latent factors: call these Fx-specific and Fshared. Fx-specific is unrelated to the 

toxicological response and is responsible for structured molecular variability that does not 

impact toxicity. Fshared is assumed to drive variation in the toxicological response yi and thus 

is responsible for structured molecular variability that does impact toxicity. The directions 

spanned by these two sets of latent factors can be thought of as the “toxicity-irrelevant” and 

“toxicity-relevant” spaces, respectively.

Chemical similarity can be characterized by proximity in this latent toxicity-relevant space, 

enabling a measure of distance with uncertainty quantification that is adapted to the 
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particular response space of interest. Such a metric is powerful because: (1) it is based 

on a subspace driving variation in activity, whereas proximity with respect to the full 

set of molecular descriptors does not necessarily mean proximity with respect to activity 

(Martin, Kofron and Traphagen (2002), Nikolova and Jaworska (2003)) and (2) it is purely 

statistically derived, requiring no knowledge of the fundamental chemical and biological 

processes responsible for the activity, as such information is not always available. Such 

an activity-relevant distance metric could be used by toxicologists in the design of diverse 

chemical libraries or to select new compounds to augment a screening collection such as 

ToxCast.

As with function-on-scalars regression approaches, the BS3FA model allows for the 

prediction of activity profiles for chemicals that have not yet been screened in ToxCast. 

It does so by embedding the full set of molecular features for a new chemical into the latent 

toxicity-relevant feature space Fshared and then projecting this embedding out to the activity 

space. The predicted dose-response profiles can be used to generate point and interval 

estimates for common univariate toxicological outcomes of interest, such as 50% activity 

concentration (AC50), maximum activity or the area under curve (AUC), which can be used 

in place of the as of yet unobserved in vitro results for that chemical.

The rest of the paper is organized as follows. First, we describe existing and potential 

approaches to modeling chemical structure and activity. Then, the BS3FA model is 

described, and its performance is compared to that of existing algorithms on simulated 

data sets. Next, a detailed analysis of the motivating application data set is considered, where 

the BS3FA model is run with Mold2 chemical features and the Attagene PXR assay from the 

ToxCast data set as input data. Finally, the results are discussed and future areas of research 

are highlighted.

2. Background.

QSAR models (see Figure 4) are based on the assumption that chemicals with similar 

features are likely to have similar effects. The ToxCast data poses two main challenges for 

QSAR modeling. First, it is often not trivial to characterize similarity in activity-relevant 

chemical feature space well (Martin, Kofron and Traphagen (2002), Nikolova and Jaworska 

(2003)). Second, the majority of QSAR models aim to relate structure to a summary of 

the data across times/doses (e.g., Liu et al. (2011), Patel et al. (2014), O’Connell and Lock 

(2019)) rather than to the full dose response curves.

We discuss these considerations in the context of existing QSAR models and other related 

approaches not yet applied to QSAR models. To the authors’ knowledge, no existing 

approaches are able to address the challenge of learning a low-dimensional representation 

for multivariate feature data xi partially supervised by sparse functional data yi.

2.1. QSAR approaches for dose response profiles.

Two existing QSAR approaches have attempted to relate molecular descriptors to full dose 

response curves (Low-Kam et al. (2015), Wheeler (2019)). In Low-Kam et al. (2015), a 

Bayesian regression tree is defined over functions where each leaf represents a different 
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dose-response surface. This method was used to learn about the relationship between 

chemical properties and observed dose-response. However, the model lacks the ability to 

scale to the numbers of chemicals and molecular descriptors considered here. Furthermore, 

predictive performance was found to be lacking in leave-one-out analysis. Finally, the code 

was designed under the assumption that each chemical would be tested at the same doses 

with the same number of replicates at each dose.

The Bayesian additive adaptive basis tensor product (BAABTP) model (Wheeler (2019)) is 

designed purely for prediction. It learns basis functions via independent Gaussian process 

(GP) priors over the molecular structure space and the dose space. In the model, step one is 

to perform PCA on the set of Mold2 chemical descriptors. Step two is to use the principal 

feature space explaining 95% of the variation in this Mold2 descriptor set as the input to the 

distance kernel for the molecular structure GPs.

The BAABTP model has two major problems, both stemming from the Gaussian process 

prior over chemical structure. First, the model becomes computationally intractable when 

the number of chemicals increases past a few thousand—the number of chemicals tested in 

the ATG PXR assay has increased from under 1000 up to nearly 4000 in the time since the 

data were analyzed in Wheeler (2019), and this number will only continue to grow. Second, 

the GP priors over chemical structure rely on a concept of molecular distance based on total, 

rather than toxicity-relevant, variability. Mold2 descriptors are a numeric representation of 

the 2D structure of a chemical. Thus, while the leading principal components (PCs) account 

for the majority of structural variability across chemicals, these leading PCs may not be 

those most relevant to toxicity. Figure 5 illustrates this phenomenon, showing that chemicals 

may be close in PCA-based structure space but distant in response space. In other words, 

similarity in directions of highest structural variability does not necessarily correspond to 

similarity in directions of highest activity variability.

2.2. Toward the proposed approach.

Supervised and sparse functional PCA (supSFPCA) (Li, Shen and Huang (2016)) defines 

a hierarchical model to provide supervision for dimension reduction of functional data by 

another multi-output data source. A small modification to the penalty term used in this 

algorithm would allow for the opposite relation (i.e., to supervise the dimension reduction 

of the feature data xi by functional dose-response data yi), but the larger issue is that the 

supSFPCA algorithm is designed such that the algorithm finds directions that maximize 

unexplained variability in xi (i.e., what isn’t accounted for by yi) rather than finding 

directions that maximize variability explained by yi. As such, this algorithm is of little use 

for prediction or for learning about directions of variability of most relevance for toxicity.

The Bayesian latent factor regression model (LFRM) of Montagna et al. (2012) 

characterizes yi as a linear combination of a high-dimensional set of basis functions. The 

basis functions themselves are fixed rather than learned which means that a large number 

of basis functions must be included in order to flexibly model many possible functional 

shapes. This high number of bases drives the choice to use a latent factor regression model 

on the basis coefficients rather than defining a regression model on the basis coefficients 

themselves. Thus, the latent factor scores enter the model in a “lower” layer in Montagna 
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et al. (2012) than they do in BS3FA and are a linear function of covariates xi rather than 

being assumed to drive variability in xi. A shrinkage prior is placed on the regression terms 

associated with the latent factor scores in the model, allowing covariates to impact certain 

facets of the functional response while others are shrunk to zero.

Our approach was inspired by the conceptual goal of separating variability shared by xi 

and yi into toxicity-relevant, toxicity-irrelevant and noise components, similar to the idea 

behind the joint and individual variation explained (JIVE) method (Lock et al. (2013)), 

and an analogous joint Bayesian factor model (JBFM) (Ray et al. (2014)). We utilize 

similar shrinkage tools as LFRM and the Bayesian function-on-scalars regression (B-FOSR) 

of (Kowal and Bourgeois (2020)), implementing sparsity-inducing coefficient-level priors 

to account for the high-dimensional predictors and imposing ordered sparsity so as to 

reduce the impact of the choice of latent subspace dimension. Unlike LFRM and like 

B-FOSR, the BS3FA model learns a flexible basis for the functional response rather than 

prescribing a set of basis functions. Like LFRM, JBFM, and B-FOSR, modeling takes place 

within a Bayesian framework for unified parameter estimation, prediction and uncertainty 

quantification about posterior summaries of interest, and model components are identifiable.

Like many of the approaches described in the previous sections, our model is able to predict 

the dose-response profiles for new chemicals. Unlike previous models, our model is able to 

learn a toxicity-relevant subspace underlying variation in both the chemical structure and 

toxicological response. This subspace can be used to describe a statistically-driven activity-

relevant distance between chemicals. It can also provide insight into how toxicity-relevant 

variability manifests across both molecular structure and dose-response profiles.

3. BS3FA model.

Figure 6 gives a visual representation of the BS3FA model. BS3FA is able to: (1) learn 

a linear low-dimensional latent space underlying both molecular structure and activity, (2) 

develop a distance metric for chemicals relying only on molecular structures relevant to 

toxicity, (3) handle responses observed at a sparse, irregularly spaced set of doses and (4) 

enable activity predictions for chemicals having no observed dose-response information.

3.1. Model specification.

The characteristics of chemical structure and toxicological response can 
likely be summarized using fewer descriptors.—As shown in Figure 1, many 

molecular descriptors tend to exhibit high correlation. Furthermore, their realized value 

can often be attributed to some underlying trait of the molecule (e.g., many descriptors 

are largely driven by molecule size; the descriptors number of carbon, number of oxygen, 

molecular weight and number of atoms in the molecule all have pairwise correlation 

above 0.9). Similarly, dose-response profiles exhibit a somewhat limited range of shapes, 

suggesting possibly a few underlying functional “building blocks” comprising variation in 

activity.

Factor modeling is a means by which to model variability in high-dimensional data via an 

underlying lower dimensional subspace. For some set of observations zi i = 1
N , where zi is 
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the P-dimensional vector of measurements for observation i, the traditional (nonjoint) factor 

model is

zi = Ληi + ϵi, ηi NK(0, I), ϵi NP 0, Σ0 ,
Σ0 = diag σ1

2, …, σP
2 , i = 1, …, N .

(1)

The prior induced on the latent zi by integrating out the unknown ηi is then

zi N 0, ΛΛ′ + Σ0 , (2)

yielding a lower dimensional representation of the covariance between measurements.

Chemical features are often nonnormal (e.g., count, skewed continuous or 
binary).—Many chemical descriptors from Mold2 are counts of particular elements 

(number of carbon, number of oxygen, etc.).

In order to allow this framework to encompass data of mixed type, define

xis = fs zis , i = 1, …, N, s = 1, …, S . (3)

The particular link function fs depends on the feature specification, allowing for mixed scale 

data via selection of an appropriate link by scale and type. Let fs(zis) = zis or fs(zis) = log(zis) 

for continuous xis, with the latter chosen for strictly positive and positively skewed cases. 

Let fs(zis) = 1(zis > 0) for binary xis, where 1(·) is an indicator function taking the value of 

1 when the argument is true and 0 when the argument is false. Categorical variables may 

be incorporated under this framework by transforming the C categories into C − 1 binary 

variables indicating whether or not the categorical value for that individual took a given 

nonbaseline category value; the result is that either none or one of the C − 1 variables will 

take on a value of 1. Finally, for count xis, which may or may not be zero-inflated, let fs(zis) 

be a rounding operator such that fs(zis) = 0 if zis < 0 and fs(zis) = t if t – 1 ≤ zis < t, as 

specified in Canale and Dunson (2013).

There is likely a shared low-dimensional space underlying chemical features 
and activity.—BS3FA assumes that some underlying factors explain all of the variation 

in the dose-response curves and, jointly, part of the variation in the associated chemical 

features. Recall zi and yi denote S- and D-dimensional (latent) continuous features and 

observed dose-response curves, respectively, for observation i. Assume that the indexing 

of yi is such that the function is “in order” (for the ToxCast data, in order means that the 

D unique doses are sorted such that the doses increase with index). Also, for notational 

convenience assume that functional data yi are only observed once per index (the case of 

notationally awkward multiply observed doses is explicitly addressed in the Gibbs sampler 

described in the Appendix). BS3FA models
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zi
S × 1

= μz
S × 1

+ Θ
S × K

ηi
K × 1

+ Ξ
S × J

vi
J × 1

+ ei
S × 1

,

yi
D × 1

= μy
D × 1

+ Λ
D × K

ηi
K × 1

+ ϵi
D × 1

,

i = 1, …, N .

(4)

The form of the above model is that of a set of linked factor models. Note that, although 

there are three non-error component pieces aside from the global mean terms (namely, Θηi, 

Ξνi, and Ληi), there are only two unique factor vectors: ηi and νi. These factors are highly 

interpretable. The term ηi represents the shared latent space underlying structured variability 

in both zi and yi (note that it appears in both factor models). In the expression for yi, it is 

the sole factor vector and in that for zi it is one of two factor vectors. Thus, it is responsible 

for all structured variation in yi but only part of the structured variation in zi. The term νi 

represents structured variation in zi that is unrelated to yi.

By not including unique response-only factors (i.e., factors not assumed to underlay 

chemical structure) in the mean formulation for yi, the model assumes that the mean dose-

response curves can be constructed from factors that are all also present in the chemical 

feature data. Making this assumption allows for easier identification and accurate estimation 

of parameters associated with chemical features predictive of activity, which is the main goal 

of this work. The trade-off of this assumption is that if the feature set is inappropriate (e.g., 

not containing enough information by which to estimate activity) and/or the dose-response 

profiles are truly driven by some individual factors not related to chemical features, then 

the estimates for new chemicals may be overconfident and the model fit may be poor. The 

shrinkage prior on Θ, discussed in a later section, offers some mitigation of this risk.

If zi and yi are mean-centered prior to analysis, fix μz and μy to be zero vectors for 

computational savings. In practice, mean centering is not sensible to perform for count or 

binary features (i.e., for s s.t. xis is binary or count). For noncentered xis, μsz is given a 

Cauchy prior expressed as μsz N 0, ζs
−1 , ζs ~ Ga(0.5, 0.5). Since the Cauchy distribution has 

high density around zero and heavy tails, it is able to capture meaningful signals while still 

encouraging shrinkage. If the yi are not mean-centered, μy is given a GP prior analogous to 

the prior placed on the columns of Λ, discussed in the next section.

In the above model the mean of zi is μz + Θηi + Ξνi, and ei is a term for unstructured noise 

in zi. Similarly, the mean of yi is μy + Ληi, and ϵi is the unstructured noise term for yi. The 

priors on the shared factors {ηi}, the X-specific factors {νi} and error terms are set to be 

those typically used in factor analysis,

ηi NK(0, I), vi NJ(0, I),
ei NS 0, ΣX , ΣX = diag σX, 1

2 , …, σX, S
2 ,

ϵi ND 0, ΣY , ΣY = diag σY
2 , …, σY

2 .
(5)
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Homoscedastic variance is assumed for dose-response curves Y. Fix σX, s
2  to 1, if feature s is 

binary, for reasons of identifiability.

Note that, as of yet, we have not fully addressed how to structure the factor model in light of 

the functional nature of the yi, nor the issue of many entries in zi likely being unrelated to yi. 

The following sections will describe how structure can be imposed on Λ and Θ, respectively, 

in light of these considerations.

The dose-response curve data are functional in nature.—Figure 2 shows the noisy 

observations from a set of example chemicals, but the underlying signal represents a smooth 

curve relating chemical dose to response.

For functional data it is preferable to have each loading vector (i.e., each column of Λ) itself 

be functional. The desired smoothness of the mean curves underlying noisy observations yi 

can thus be imposed via the choice of smooth priors on the loading matrix Λ. Let λk denote 

the kth column of Λ, so

Λ =
∣ ∣ ∣

λ1 λ2 … λK
∣ ∣ ∣

.

In order to learn rather than prescribe smooth bases, columns of Λ are modeled as D-

dimensional Gaussian processes,

λk GP 0, ck( ⋅ ) , ck d, d′ = αk
2e− d − d′ 2

2ℓ2 , k = 1, …K . (6)

The Gaussian process function variance αk
2 is comprised of two components: a global 

inverse variance term ϕ and a column-specific inverse variance term τk. The column-specific 

inverse variance term τk utilizes the multiplicative gamma process prior of Bhattacharya and 

Dunson (2011), leading to stochastic shrinkage of columns of Λ toward 0 by index:

αk
2 = ϕτk

−1, τk = ∏
ℎ = 1

k
δℎ, k = 1, …K,

ϕ Ga gϕ/2, gϕ/2 , δ1 Ga a1, 1 , δℎ Ga a2, 1 , ℎ ≥ 2.
(7)

Following the note by Durante (2017) on hyperparameter selection, set a1 = 2.1 and a2 = 3.1 

in equation (7). The value of gϕ, the hyperparameter for the global function precision of the 

GP, should be chosen to reflect the scale of the data.

This stochastic shrinkage leads to an effective truncation of the factors and an automatically 

learned dimension of the latent space, so long as K is chosen large enough (whether K is 

adequately large can be assessed by monitoring the convergence of αk
2 to 0 as k approaches 

K). To see why, consider the model for yi written in expanded form: yi = λ1ηi,1 + λ2ηi,2 + 

⋯ + λKηi,K + ϵi. Assuming K is large enough, as k approaches K, the vector λk should be 
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approximately the 0-vector, meaning that many of the later terms will contribute negligibly 

to the mean of yi; see Figure 7 for a visualization of Λ and column shrinkage.

The linked nature of the factor models leads to an induced prior on the covariance between 

elements of zi and elements of yi; specifically, Cov(zis, yi(d)) = Σk θskλk(d). The GP prior on 

columns of Λ implies that the covariance between a given feature and a given point on the 

dose-response profile is a smooth function of dose, a desirable model characteristic.

Many features are likely unimportant for certain aspects of chemical activity.
—That is, if a set of chemical descriptors has not been carefully selected to be toxicity-

relevant, it is unlikely that all are related to the shape of the dose-response curves. Even if 

all features are toxicity-relevant, it is plausible that features will impact different pieces of 

the toxicity profile (e.g., some features may impact the steepness of the dose-response, while 

others may impact the height of the final plateau). The way to encourage such a relationship 

is via elementwise shrinkage (i.e., zeros in entries) of the factor loadings matrix Θ.

Shrinkage on elements θsk of Θ is desirable because it is likely that for a given factor many 

features have negligible impacts on the associated component of the functional yi. Explicitly,

Θ =

θ11 θ12 θ13 … θ1K
θ21 θ22 θ23 … θ2K
⋮ ⋮ ⋮ ⋱ ⋮

θS1 θS2 θS3 … θSK

.

There is a very rich literature proposing elaborate shrinkage and sparsity priors for factor 

loadings (e.g., Knowles and Ghahramani (2011), Meng et al. (2010), Pati et al. (2014), 

Yoshida and West (2010)). We opt for a horseshoe prior (Carvalho, Polson and Scott (2010)) 

modified for simple sampling (Makalic and Schmidt (2016)) on entries θsk of Θ,

θsk N 0, β2γsk
2 τk

−1 ,

β2 ∣ t IG(1/2, 1/t)
γsk

2 ∣ bsk IG 1/2, 1/bsk
bsk , t IG(1/2, 1),

s = 1, …S, k = 1, …K .

(8)

The horseshoe component of this prior is in the hierarchical hyperprior on global variance 

term β2 and local variance term γsk
2 . The column-specific variance τk

−1 applies stochastically 

increasing shrinkage as column index increases; see Figure 8 for a visualization of Θ and 

column shrinkage.

Recall Cov(zis, yi(d)) = Σk θskλk(d). The shrinkage prior on entries of Θ allows for the 

possibility that a given chemical feature may not have a contribution from some or any of 

the latent factors (i.e., that θsk for such feature/factor combinations is near 0). In this case the 

covariance between the feature and points along the dose-response profile will not depend 
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on those factor(s). In the extreme case that the sth feature is unrelated to toxicity, θsk should 

be shrunk toward zero for all k, leading zis and yi(d) to be uncorrelated.

The dimension of the latent space underlying the dose-response curves and 
of that underlying toxicity-relevant features should be the same.—The same 

column-specific precision τk
−1 is used for both Θ and Λ, so relative column shrinkage is 

applied consistently across the two matrices. The result is the same effective truncation on 

the number of latent factors in the joint space. This specification, along with the common ηi, 

is what allows the shared directions of variability between yi and xi to be learned. Distance 

can be defined over the η-vector with elements ηk weighted by precision τk
−1 to give a sense 

of closeness in “η space” that reflects the true amount of information contained in each 

latent direction.

There is additional variability in chemical structure beyond that which impacts 
chemical activity.—Unless all chemical features were carefully hand-selected to be 

toxicity relevant for the specific assay considered in the model (a tall task and unlikely 

to be completely true no matter how careful the selection), accounting for variability in zi 

shared with yi will not capture all structured variability in chemical features.

After accounting for the variability in zi shared with yi (via latent factor ηi), zi may still have 

structured variation due to individual latent factor νi. Let zi* = zi − Θηi. Then, zi* = Ξvi + ei

which once again looks like a traditional factor model. The direct application of priors in 

Bhattacharya and Dunson (2011) is used for elements of Ξ. Specifically, elements ξs,j of Ξ 
are given prior

ξs, j ∣ κsj, ωj N 0, κsj−1ωj−1 , ωj = ∏
ℎ = 1

j
ζℎ, s = 1, …S, j = 1, …J,

κsj Ga gκ/2, gκ/2 , ζ1 Ga m1, 1 , ζℎ Ga m2, 1 , ℎ ≥ 2.
(9)

Stochastic column-specific shrinkage via the ωj−1 term removes the need to select an ideal 

number of factors J and allows for simply selecting J “large enough.” This formulation also 

allows for efficient Gibbs sampling of the posterior. Following the note by Durante (2017) 

on hyperparameter selection, set m1 = 2.1 and m2 = 3.1 in equation (9). The value of gκ, the 

hyperparameter for the entry-level precision terms of Ξ, should be chosen to reflect the scale 

of the data.

If there is in fact, no additional variability in zi beyond that shared with yi, the following 

specification allows for all columns of Ξ to be shrunk to 0-vectors. This case reduces to a 

fully joint factor model in which all variability in zi is shared with yi.

Chemical activity is not necessarily measured on a fully observed, regularly 
spaced grid.—There are a handful of common dose measurements at which the 

majority of chemicals are measured (see Figure 11), but there are many chemicals whose 

observations are less regular. Furthermore, some chemicals have multiple observed dose-

response curves.
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The issue of irregular spacing between the unique values associated with the indices is 

handled automatically via the use of GPs for modeling columns of Λ. The covariance 

between points is defined by the kernel for any pair of input values (see equation (6)) and 

not dependent on a regular measurement grid.

Toxicologists may wish to report different components and/or summaries 
of predicted dose-response curves.—For example, they may be interested in the 

dose value at which the response first exceeds some threshold, the maximum response 

value reached, the area under the curve, etc. Each of these summaries provides different 

information about the dose-response relationship. An advantage of a Bayesian formulation is 

that we can obtain posterior samples for any functional of the dose-response curve trivially, 

with these samples then used to obtain point and interval estimates.

3.2. Posterior computation.

The posterior for the BS3FA model is not available in closed form. However, closed 

form full conditional distributions of the parameters associated with the model allow the 

use of a straightforward Gibbs sampler for these draws. Samples obtained directly from 

this Markov chain Monte Carlo (MCMC) algorithm allow for the calculation of posterior 

means, simultaneous bands (Meyer et al. (2015)), and credible intervals for identifiable 

model components, including the predicted mean, covariance, and noise variance of X 
and Y. A post-processing step to resolve rotational ambiguity and account for label/sign 

switching allows for identifiability of the individual model components, including the 

factor scores η and loadings Λ and Θ (code modified from https://github.com/poworoznek/

sparse_bayesian_infinite_factor_models). Full details on the Gibbs sampler steps and 

initialization are included in the Supplementary Material (Moran et al. (2021)).

3.3. Code base and reproducibility.

Code for simulating data and sampling from the BS3FA model, along with a user manual, 

are made available at https://github.com/kelrenmor/bs3fa. A hands-on demonstration of the 

package is available at https://www.youtube.com/watch?v=qLyxBQ-sVcY. Code specific 

to this paper (i.e., to reproduce the simulations, figures, and results) is provided in the 

Supplementary Material (Moran et al. (2021)).

3.4. Simulation study.

Simulation studies were performed in order to assess the ability of BS3FA to learn the true 

toxicity-relevant distance between chemicals, its predictive performance and the model fit. 

Two broad categories of simulations were performed: first, those in which the true data 

generating process aligns with model assumptions (i.e., when data are simulated from a 

partially shared latent factor model) and when it does not (i.e., when data are simulated from 

something other than a factor model). In the former category we also assess how well model 

subcomponents can be learned.

For all simulations, 25% of simulated “chemicals” are held out. That is, rather than with-

holding 25% of dose-response observations across chemicals, we withhold all dose-response 

data for each hold-out chemical. For distance performance, BS3FA is compared to Euclidean 
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distance using all features, using the features selected in the B-FOSR model from the fosr 
R package via an extension of the decision analytic approach of Hahn and Carvalho (2015) 

to the functional data setting (Kowal and Bourgeois (2020)), using the principal component 

scores explaining 95% of the variability in the data found in PCA, and using the selected 

variables from a frequentist FOSR using the fosr.vs() function (FOSR-VS) from the 

refund R package with the PC scores used as inputs. PC scores were used instead of the 

full set of features for FOSR-VS because the fosr.vs() function returned an error saying 

the dimension of yi was not high enough relative to xi (i.e., that D was too small relative 

to S) when the full feature set was used. The performance of each method is compared by 

computing the correlation between predicted and true distance, a choice made because the 

scale of distance varies across methods and, by virtue of the structure of the simulated data, 

we don’t expect any extreme outliers in this space. For predictive performance, BS3FA is 

compared to the BAABTP model (Wheeler (2019)), B-FOSR, FOSR-VS, and least absolute 

shrinkage and selection operator (LASSO) using each covariate, dose and all pairwise 

interactions.

For simulations in which the true data generating process aligns with model assumptions, 

the true dimension of the latent toxicity-relevant space K was varied, taking values 1, 3 and 

5. For each K, the true dimension of the latent toxicity-irrelevant space J was varied from 

0 to 20 in intervals of five. At each combination of K and J, 100 data sets were simulated 

with N = 300, D = 10, and S = 40. For roughly half of the chemicals in each data set, 

ηi was set to a zero vector for that chemical (i.e., for each simulated data set there was a 

50% chance that any given chemical was inactive). Further simulation details are provided 

in the Supplementary Material (Moran et al. (2021)). Overall, the model does quite well at 

capturing the structure of the noise variance and the true components Λ and Θ.

Figure 9 shows the correlation between entries in the true pairwise distance matrix (i.e., 

the Euclidean distance between true latent factors η) and the predicted pairwise distance 

matrix for holdout chemicals. We see that even in the case of small J, performing PCA on 

the S-dimensional X matrix obscures the true distance in the latent space. As J increases, 

the correlation between the chemical distance in the true η and that in either PCA space 

or Euclidean space drops quickly. This phenomenon also occurs for distances computed 

via variable selection using B-FOSR or FOSR-VS. The BS3FA model has stable high 

correlation across all values of J and K.

Figure 10 shows the mean squared predictive error (MSPE) for the simulated hold-

out chemicals’ dose-response mean functions. Although the performance of all models 

deteriorates as the amount of “superfluous” information in X increases (i.e., as J increases), 

the BS3FA and B-FOSR models are the most robust, showing superior performance across 

all values of K and J. The BS3FA consistently outperforms the B-FOSR model, with MSPE 

of the latter on average 1.5 times higher than that of the former (the 95% quantile of this 

multiplicative factor ranges from 1.1 to 2.4 across all simulations and values of K and J). 

The BAABTP model appears most sensitive to the value of J, with MSPE near that of 

BS3FA model when J is small, but among the worst MSPE when J is high. The LASSO 

model is able to perform fairly well when K is small, but, as K increases, it is unable to 
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learn the more complicated relationship between xi and yi. The FOSR-VS model becomes 

increasingly sensitive to J as K increases.

Coverage of the simultaneous bands for the BS3FA model remains close to nominal across 

all values of K and J. Additionally, these band widths are narrowest subject to (at least) 

nominal coverage across competitors and for all values of K and J. The coverage of 

the BAABTP model is consistently below nominal and decreases as J increases, another 

reflection of its overall poor predictive performance. The coverage of the B-FOSR model 

is much higher than nominal, nearing 1 across all values of K and J, and the simultaneous 

bands are wider on average than those of BS3FA. Detailed results for both coverage and 

band width are available in the Supplementary Material (Moran et al. (2021)).

In the ToxCast analysis following this section, we discuss results from one possible method 

of deeming a chemical active. Namely, call a chemical active if its global Bayesian p-

value (Meyer et al. (2015)) is less than 0.05. The null hypothesis in this case is that the 

dose-response mean function equals 0 everywhere, that is, that a chemical is inactive. If 

alternatively activation (suppression) is of specific interest, one could use the additional 

requirement that the direction of observed effect be positive (negative) in order to reject 

the null. The true positive rate (TPR), false positive rate (FPR) and false discovery rate 

(FDR) of this method on the simulated data are shown in Table 1. Across all values of K 
and J, the TPR is generally high, and the FPR and FDR are near zero. Note that the TPR 

increases with K and decreases with J, while FPR and FDR remain stable across values 

of K and J. That is, the model seems more likely to identify chemicals as active, as the 

dimension of the latent toxicity-relevant space increases, but loses sensitivity when there 

is more toxicity-irrelevant information. Results for the B-FOSR method, provided in the 

Supplementary Material (Moran et al. (2021)), show slightly improved TPRs but at the cost 

of much higher FPRs and FDRs (whereas for BS3FA the FPR and FDR are consistently near 

zero, these values range from 0.1 to 0.5 across K and J for B-FOSR).

When there is misalignment between the structure assumed by the BS3FA model and 

the true data generating process, BS3FA is still able to predict similarly to or better 

than the competitors. As with the well-aligned simulation, BS3FA is robust to increasing 

“superfluous” information in X. A similar story can be seen in the coverage and distance 

results for the misaligned simulation. Even when the assumed latent factor model is not 

the model from which data are simulated, the coverage of BS3FA is close to nominal. 

B-FOSR, on the other hand, suffers from much higher than nominal coverage across 

all simulations while BAABTP suffers from much lower than nominal coverage as 

“superfluous” information in X increases. BS3FA is still able to recover a distance metric 

that is highly correlated (mean correlation 0.97, range 0.94 to 0.99 across simulations) with 

the distance in the true relevant X dimensions, although B-FOSR more perfectly learns such 

a metric. Visual results are shown in the Supplementary Material (Moran et al. (2021)).

4. Relating chemical structure to toxicological response.

Data preprocessing steps and results of the analysis of the ToxCast ATG PXR assay are 

discussed in the following subsections. The structure of BS3FA allows for learning about 
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structured variability in both the feature and response space, prioritizing chemicals for future 

evaluation, and predicting chemical activity for as yet unobserved chemicals.

4.1. ToxCast setup.

Observations below the cytotoxicity limit for 3,540 Phase 1, Phase 2 and e1k chemicals 

tested in the AttaGene PXR assay are included in our data analysis. The structure 

information for each chemical is summarized by 777 Mold2 chemical features (Hong et 

al. (2008)). As discussed previously, BS3FA has the advantage of being able to effectively 

ignore toxicity-irrelevant features via shrinkage on elements of Θ, making the careful 

curation of a feature set unnecessary.

Chemicals having no provided SMILES information (n = 405) were omitted from further 

analysis. The result is 3,135 chemicals having Mold2 descriptions of their chemical 

structure. Note that some chemicals have identical Mold2 output. These sets of chemicals 

are, in effect, considered a single chemical (i.e., treated as multiply observed dose-response 

curves by the model). For analysis the number of “unique” chemical sets (i.e., the number 

of unique SMILES represented across the 3,135 chemicals) is N = 3,070. The eight most 

common dose concentrations are −1.05, −0.52, −0.1, 0.3, 0.85, 1.3, 1.85, 2.3 log uM (see 

the vertical white bands in Figure 11), but BS3FA allows both common and unique doses. 

As the bulk of chemicals have no information about extremely low (< −2 log uM) dose 

activity (see Figure 11), the data considered are the D = 38 unique doses ≥ −2 log uM, 

out of the 56 total unique doses. Approximately 4% of chemicals have multiple observed 

dose-response curves, for example, Allethrin and Clorophene from Figure 2. While such 

repeated measurements may come from different experimental runs, unfortunately the data 

set does not provide information on which point is associated with which run, so we assume 

independence in this respect rather than, for example, adding a run-specific random effect 

term.

Mold2 is used to generate a set of 777 numeric molecular descriptors associated with each 

chemical. As noted above, some chemicals exactly shared these descriptors due to Mold2’s 

inability to capture certain differentiating structures (see the Supplementary Material (Moran 

et al. (2021)) for an example); these “identical” chemicals were treated as multiple observed 

chemicals. After removing features having no variability (99 total, including, e.g., features 

equalling zero for all chemicals, such as number of 11-membered rings and number of 

Argon), features with duplicated entries (16) or features having > 99% of chemicals sharing 

a feature value (99, e.g., only one chemical has any aromatic group urea derivatives), S = 

563 features remain. As a further preprocessing step, the continuous variables are scaled to 

have mean 0 and variance 1. Further information on creating and using Mold2 descriptors is 

included in the Supplementary Material (Moran et al. (2021)).

In order to mimic the scenario of using the BS3FA model to prioritize chemicals for further 

screening, we hold out all of the dose-response observations for 25% of chemicals in the 

data set. That is, we provide the model with these chemicals’ structure but not their dose-

response curves. Of interest will be how similar these unobserved chemicals are to known 

active chemicals and the AC50 (the dose at 50% of maximum activity) for unobserved 

chemicals predicted by the model to be activity-increasing. Recall for the purpose of this 
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analysis, we consider a chemical activity-increasing if the global Bayesian p-value (Meyer et 

al. (2015)) of its dose-response profile is less than 0.05 and the direction of observed effect 

is positive.

A global mean term μy is included in the model (see Figure 12) to account for a nonzero 

average profile rather than mean centering, as the low number of observations at less 

common doses leads to a “noisy” center. Additionally, the dose-response matrix is scaled by 

a multiplicative factor so that the scaled X and Y matrices have the same Frobenius norm (a 

measure of total variation); specifically, set Y = ∥ X ∥F
Y

∥ Y ∥F
. This rescaling keeps larger 

matrices from dominating when learning the shared column-specific shrinkage terms {τk} or 

the shared score vectors {ηi} (e.g., when S is much larger than D, as in this setting).

We ran the sampler for 40,000 iterations. After an initial burn-in of 20,000 iterations, 

every 10th sample was saved. Computation time was approximately eight hours on a 2016 

Mac-Book pro with a 2.9 GHz Intel Core i7 processor. Trace plots of model predictions 

show good mixing; these, along with those of model components and an assessment of 

the sufficiency of the chosen K and J values, are available in the Supplementary Material 

(Moran et al. (2021)).

4.2. Model components.

The learned matrix Λ, shown on the left side of Figure 13, provides a snapshot of the 

directions of structured variation present in the dose-response data. The first column of 

Λ, shown in the top middle of Figure 13, is the dominant factor loading (i.e., the factor 

loading having the largest estimated norm). Unsurprisingly, this vector takes the shape of 

a prototypical dose-response curve. Later columns of Λ act to provide smooth deviations 

from this prototypical shape. For example, the third column characterizes a flat profile until 

around −1 log uM followed by a near-linear increase until leveling off at a dose value just 

under 2 log uM, while the fourth column shows an initial start point above zero followed by 

a gentle U-shaped dip.

The learned matrix Θ, the values of which are shown in Figure 14, provides a snapshot of 

the directions of structured toxicity-relevant variation present in the feature data. The bulk of 

the estimated entries are very close to 0 due to the shrinkage effect of the horseshoe prior. 

The BS3FA model structure allows us to interpret the nonzero entries of a given column of 

Θ as being those related to the particular structure present in the corresponding column of Λ. 

For example, the significantly nonzero entries of the first column of Θ are those associated 

with the prototypical activity profile seen in the top row of the middle column of Figure 

13. By absolute magnitude the largest such features include the number of group esters, the 

number of group X-C on aromatic ring, the sum of the topological distance between the 

vertices O and Cl, the number of Chlorine and the sum eigenvalue weighted by polarizability 

distance matrix.

The chemicals having extreme positive values of η1 will be those for which the dose-

response profile has a large component due to λ1 and a large chunk of toxicity-relevant 

molecular variability described by the first column of Θ. In the training set the chemicals 
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having the largest expected value for η1 are Calcium bromide, Nickel(II) chloride, 

Dibromomethane, Zinc chloride, and Dimethylamine. All are known toxins. Several of these 

chemicals have in common the presence of Cl, so it is unsurprising that features involving Cl 

appeared amongst the high-value loadings components for the first column of Θ.

4.3. Distance learning.

Figure 15 shows the predicted pairwise distance matrix between a set of example chemicals 

chosen as clusters of chemicals in the training set closest to specific recognizable hold-out 

chemicals. Included are a cluster of similar low-activity chemicals (the training chemicals 

nearest to hold-out chemical Saccharin) in the bottom left block and a cluster of similar 

high-activity chemicals (the training chemicals nearest to hold-out chemical Clomiphene 

citrate (1:1)) in the central block. A handful of miscellaneous chemicals that are fairly 

isolated in η space relative to the other included chemicals are shown in the top-right block.

When selecting future chemicals for prioritization, one can either seek to “fill in” the space 

around chemicals of known toxicity relevance or to “venture out” into spaces not near any 

currently tested chemicals. While addressing this experimental design problem is outside the 

scope of this work, we assume for the sake of exposition that both possible avenues are of 

interest. We further assume that the set of hold-out chemicals represents the space of options 

for further in vitro testing.

Assuming the central cluster of chemicals in Figure 15 is of interest for more targeted 

exploration, we could select the hold-out chemicals closest to that set to test further. In 

terms of average distance between each cluster member, the four closest chemicals in the 

hold-out set are Clomiphene citrate (1:1) (i.e., our “seed” chemical for this training group 

for which the model predictive performance can be seen in Figure 17), 4-Hydroxytamoxifen, 

Tamoxifen, and Tamoxifen citrate. Research has suggested similarity in action between 

Clomiphene citrate and Tamoxifen (Dhaliwal et al. (2011), Seyedoshohadaei, Zandvakily 

and Shahgeibi (2012)), lending credence to this distance measure’s accounting of activity-

relevant similarity.

If, on the other hand, our goal was to test new chemicals that are least similar to observed 

chemicals, then we could choose the hold-out chemicals having the largest minimum 

distance to a training chemical. Assuming we chose such chemicals iteratively, we would 

select Tetracosafluorotetradecahydrophenanthrene (a solvent used in the preparation of 

certain polymers), Strychnine hemisulphate salt (a pesticide used for rodent and bird 

control), and Cadmium dinitrate (a colorant and photographic flash powder component). 

That these chemicals are the most distant in η space from both the training set and each 

other suggests that the model considers them to have distinctive activity relevant variability. 

See Figure 16 for their structure diagrams; the predicted activity for Cadmium dinitrate is 

also shown in Figure 18.

4.4. Prediction.

Overall, the MSE between the data and the predicted dose-response profiles is 0.24 for 

the training chemicals and 0.30 for the hold-out chemicals. For comparison, the straw man 
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model using the mean of the training data at a given dose to predict the hold-out data at 

that dose leads to an MSE of 0.37 and predicting all hold-out dose-response profiles to be 

inactive (i.e., 0 everywhere) yields an MSE of 0.47. LASSO using dose, feature and the 

interaction between dose and feature gives an MSE of 0.31 for the training chemicals and 

0.40 for the hold-out chemicals. The B-FOSR model, as run using the fosr() function in 

the fosr package, had unstable predictions, as the amount of missingness in the training data 

was too high (recall Figure 11) for the imputation scheme used in the code—the MSE was 

in the 100s. Limiting the training data to only include the most commonly observed dose 

levels did not resolve this issue. The fosr.vs() function simply returned an error due to 

the amount of missingness in the training data. The BAABTP model was not run for the 

toxicity data for computation time reasons.

The 95% prediction intervals for the BS3FA model run cover 94.2% of the training data and 

92.6% of the hold-out data, respectively. Unsurprisingly, hold-out chemicals having lower 

coverage also tend to have higher MSE. The coverage for specific hold-out chemicals is 

inversely related to the minimum distance between that chemical and its closest neighboring 

training chemical, while the MSE is directly related to the minimum distance between that 

chemical and its closest neighboring training chemical. That is, as a hold-out chemical 

moves farther away from other training chemicals, on average its coverage and MSE become 

worse. This finding suggests that increasing the amount of training data with specific care 

to the lesser-known regions of the chemical feature space would likely improve the model’s 

MSE and coverage.

We say a chemical is predicted to be activating, that is, to increase activity, if the global 

Bayesian p-value (Meyer et al. (2015)) for the predicted dose-response profile is less than 

0.05 and the 95% simultaneous bands exceed 0 for at least one dose value. Figures 17 and 

18 show model-predicted mean dose-response (MDR) curves along with samples of the 

AC50 value, that is, the dose at which the dose-response curve is at half of its maximal 

value, for activating hold-out chemicals. The predicted mean and 95% posterior bands for 

the MDR curves are smooth due to the underlying structure of Λ. The proportion of hold-out 

chemicals deemed activating by our model is nearly twice as high among the population of 

chemicals that are heavily tested (i.e., that have 10 or more observations). Since chemicals 

that are known to have toxic effects tend to be more heavily tested, this finding is suggestive 

of the model’s capability to detect activity.

Although the predictive ability of the model is imperfect (e.g., 1, 2, 3, 4, 5, 6-Hexachloro-

cyclohexane in Figure 17 is under-predicted), overall performance appears reasonable. 

Particularly poorly predicted chemicals, examples of which are shown in the Supplementary 

Material (Moran et al. (2021)), tend to have shapes that differ from the common profiles 

and/or be farther in η space from training data than well-predicted curves. Also note 

that, although the observations above the reported cytotoxicity limit were removed prior 

to running the model, the hormesis shape (i.e., the downturn at the end of the predicted 

dose-response profile) remains prominent in highly active chemicals, because it is a feature 

of the first column of Λ, which has the highest column norm and drives large scale variation 

across profiles.
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In the context of this experiment, we fail to reject the null hypothesis that a chemical is 

inactive if its global Bayesian p-value (Meyer et al. (2015)) is greater than 0.05 (i.e., if the 

bounds of the 95% posterior simultaneous bands for the predicted MDR curve include zero 

at all points). For convenience, we refer to these chemicals as being predicted to be inactive 

by the model. Figure 19 shows model-predicted inactive dose-response curves for hold-out 

chemicals. As before, the predictions are smooth and appear reasonable relative to the true 

data. On average, hold-out chemicals deemed inactive under the criteria outlined above have 

a lower true maximum observed response than those deemed activity-increasing.

The choice of how to prioritize chemicals for future evaluation is flexible. Assuming there 

are in fact no dose-response data for the hold-out chemicals, a simple scheme by which 

chemicals could be selected for in vitro study, based on their BS3FA predictions, would be 

to screen all chemicals for which the lower limit of the 1 − α posterior simultaneous bands 

for the MDR curve exceeds some threshold (e.g., 0). The value of α could be selected with 

attention to the resources available, a larger α would lead to more chemicals being screened, 

whereas a smaller α would mean only those chemicals the model is most confident about 

would be screened. Once the set of chemicals are selected for further testing, the order of 

screening could be determined by chemicals’ expected AC50 value, by the maximum value 

of their predicted MDR curves, by the highest value taken by the lower α/2 simultaneous 

band for expected response, by their proximity in latent space to known toxic chemicals, or 

by another metric of interest.

For example, if one chooses α = 0.05, then 68% of hold-out chemicals have predicted 

dose-response curve lower bound that at some point exceeds 0. The five highest priority 

chemicals using the max lower bound method would be Basic Blue 7, Ergocalciferol, 

Toremifene citrate, 4-(2-Phenylpropan-2-yl)-N-[4-(2-phenylpropan-2-yl)phenyl]aniline, and 

2,4-Bis(1-methyl-1-phenylethyl)phenol. As discussed previously, Toremifene citrate is a 

close relative of Clomiphene citrate (1:1) (activity shown in Figure 17) and a selective 

estrogen receptor modulator used to treat ovulatory dysfunction in women trying to 

become pregnant. Basic Blue 7 is labeled as corrosive, an irritant, acutely toxic, and an 

environmental hazard. The closest neighbors to Basic Blue 7 in the training set are other 

colorants, Gentian Violet and Malachite green, that have known toxic effects (Docampo and 

Moreno (1990), Srivastava, Sinha and Roy (2004)).

5. Conclusion.

We have focused on the utility of distance learning for designing future chemical test 

sets, but these pairwise distance matrices could be used in place of Euclidean distance 

in any distance-based statistical analysis. This would include distance-based clustering of 

chemicals as well as kernel and Gaussian process-based models. As a specific example the 

authors believe these activity-relevant distances have the potential to improve main effects 

estimates in mixture models for human health outcomes. It is likely that incorporating 

knowledge about similarity in activity-relevant space (e.g., by using the toxicity-relevant 

pairwise distance matrix to inform a group penalized regression model) would provide 

stabilization for main effects and, in turn, allow for better estimation of the interaction 

effects.
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The designation of active vs. inactive in the BS3FA model is based on a posterior 

summary of the predicted dose-response profiles; there is no direct incorporation of the 

concept of a chemical being inactive in the model itself. It may be desirable, particularly 

when considering assays having very few chemicals presenting with any activity, to 

probabilistically model inactivity. For example, the dose-response profile could be modeled 

as a mixture between the zero-vector and the BS3FA factor model with a learned weight on 

the zero vector corresponding to the probability of inactivity.

The BS3FA model deals with the structured decomposition of a single assay and a single 

feature data set. In reality, any sort of model hoping to extend to human health outcomes 

will need to utilize information from multiple sources. In the ToxCast data set, there is not 

just one dose-response curve per chemical. There are many assay endpoints of potential 

relevance to human toxicity. Furthermore, there are potentially many useful chemical feature 

descriptors (we used Mold2, but others include MACCS keys, Daylight Fingerprints, or 

Morgan Fingerprints, to name a few). Future work will link the ideas in BS3FA to those in 

Wilson, Reif and Reich (2014) to allow for a more direct active/inactive assignation and to 

hierarchically describe variability across multiple assays. Extending even further, the holy 

grail of toxicity modeling would be an explicit linking of multiple assay endpoints to human 

health data such that human health outcomes could be predicted from chemical structure 

alone.
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Fig. 1. 
Pairwise correlation between each of the 777 molecular descriptors in ToxCast for the 

chemicals profiled.
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Fig. 2. 
Left: Dose response data for example chemicals from the ToxCast ATG PXR assay (i.e., yi). 

Right: 2D chemical structure diagrams for example chemicals (converted from SMILES into 

xi using the Mold2 software).
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Fig. 3. 
Numeric values for select Mold2 traits of Bisphenol A (BPA). The 

chemical formula for BPA is C15H16O2, and its SMILES descriptor is CC(C)

(C1=CC=C(C=C1)O)C2=CC=C(C=C2)O.
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Fig. 4. 
Quantitative Structure-Activity Relationship (QSAR) models predict toxicity as a function 

of chemical structure.
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Fig. 5. 
Relationship between chemical “structure distance” and chemical “activity distance” when 

PCA and functional PCA (FPCA) are performed independently on the Mold2 chemical 

structures and the ToxCast dose-response curves. Each point on the graph shows the 

Euclidean distance between the (functional) principal component scores accounting for 95% 

of the variability in the data for one pair of chemicals on the (y-) x-axis.
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Fig. 6. 
Visual representation of the BS3FA model. Entries in X are the chemical feature descriptors 

from Mold2, while entries in Y are noisy realizations of an underlying smooth dose-

response curve. Observations fx,1, …, fx,S are the true mean of the chemical features 

and fy,1, …, fy,D are the true mean of the dose-response values. Latent variables η1, …, 

ηK, the underlying toxicity-relevant factors, are shared, and ν1, …, νK, the underlying 

toxicity-irrelevant factors, are specific to the chemical features. Arrows denote probabilistic 

dependency.
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Fig. 7. 
Visualization of the smoothness and the shrinkage of columns of an example D = 20 by K 

= 3 loadings matrix Λ. The effect is an automatic truncation of the number of factors in the 

model and a learned latent dimension. In this figure, columns of Λ were sampled using the 

kernel in equation (6) with ℓ2 = 1 and αk
2 being 1, 1

25 , 1
400  for k = 1, 2, 3, and the indices d 

corresponding to the length-20 vector from 0 to 4, inclusive. Note that as αk
2 decreases, the 

functions tend to flatten.

Moran et al. Page 29

Ann Appl Stat. Author manuscript; available in PMC 2022 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Visualization of elementwise sparsity and the shrinkage of columns of an example S = 15 by 

K = 3 loadings matrix Θ. The effect is an automatic truncation of the number of factors in 

the model and a learned latent dimension. In this figure, columns of Θ had column-specific 

variance τk
−1 being 1, 1

25 , 1
400  for k = 1, 2, 3.
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Fig. 9. 
Correlation between entries in the true pairwise distance matrix (i.e., the Euclidean distance 

between true latent factors η) and the predicted pairwise distance matrix for holdout 

chemicals. Each subplot shows the result of 100 simulations per J across methods for a 

given true shared subspace dimension K.
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Fig. 10. 
Mean squared predictive error (MSPE) for the hold-out chemicals’ dose-response mean 

functions. Each subplot shows the result of 100 simulations per J across methods for a given 

true shared subspace dimension K.

Moran et al. Page 32

Ann Appl Stat. Author manuscript; available in PMC 2022 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Missingness by dose for each chemical in the analysis. Each row is corresponds to a 

chemical and each column to a dose value (sorted in ascending order). Note that very few 

chemicals have observations below −2 log uM.
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Fig. 12. 
All response values at each dose in the data set. The solid line shows the model-predicted 

global mean μy and the dashed lines show the model-predicted 95% simultaneous credible 

band about μy.
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Fig. 13. 
Left: First six columns of the predicted mean of Λ. Each row represents a unique dose value. 

Middle and right: Mean and 95% simultaneous bands for the first four columns of Λ. The 

dose values are given on the x-axis.
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FIG. 14. 
Histogram showing entries of the predicted mean of Θ. The bulk of the estimated entries are 

close to 0 due to the shrinkage effect of the horseshoe prior.
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Fig. 15. 
Expected distance in η space for a select set of training chemicals.
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Fig. 16. 
From left to right: Tetracosafluorotetradecahydrophenanthrene, Strychnine hemisulphate salt 

and Cadmium dinitrate.
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Fig. 17. 
Results for heavily tested hold-out chemicals predicted by the model to be activating. MSEs 

from left to right are 0.21, 0.49 and 1.44. Top: Predicted average dose-response curve 

(dashed black line), 95% simultaneous band for expected dose-response curve (darker grey 

ribbon) and 95% simultaneous band for observed data (lighter grey ribbon). Data (held out 

in training) are solid points. Bottom: Posterior samples of the AC50 value, that is, the dose at 

which the dose-response curve is at half of its maximal value.
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Fig. 18. 
Results for hold-out chemicals predicted by the model to be active (activity decreasing in 

the case of Cadmium dinitrate). MSEs from left to right are 0.10, 0.03 and 0.40. Top: 

Predicted average dose-response curve (dashed black line), 95% simultaneous band for 

expected dose-response curve (darker grey ribbon) and 95% simultaneous band for observed 

data (lighter grey ribbon). Data (held out in training) are solid points. Bottom: Posterior 

samples of the AC50 value, that is, the dose at which the dose-response curve is at half of its 

maximal value.
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Fig. 19. 
Results for select hold-out chemicals predicted by the model to be inactive. MSEs from 

left to right, top to bottom, are 0.22, 0.23, 0.14, 0.13, 0.06 and 0.42. Shown are predicted 

average dose-response curve (dashed black line), 95% simultaneous band for expected 

dose-response curve (darker grey ribbon) and 95% simultaneous band for observed data 

(lighter grey ribbon). Data (held out in training) are solid points.
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Table 1

True positive rate (TPR), false positive rate (FPR) and false discovery rate (FDR) for the proposed method of 

assessing whether a chemical is active. A perfect classifier has a TPR of 1 and an FPR/FDR of 0. Shown is the 

mean (SD) across simulations

J = 0 J = 5 J = 10 J = 15 J = 20

TPR

K = 1 0.72 (0.08) 0.66 (0.08) 0.64 (0.07) 0.58 (0.06) 0.52 (0.09)

K = 3 0.98 (0.03) 0.97 (0.03) 0.97 (0.03) 0.95 (0.04) 0.93 (0.05)

K = 5 1.00 (0.01) 1.00 (0.01) 1.00 (0.01) 0.99 (0.01) 0.98 (0.02)

FPR

K = 1 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00)

K = 3 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01)

K = 5 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01)

FDR

K = 1 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.00) 0.00 (0.01)

K = 3 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01)

K = 5 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01)
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