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Summary

Background—Little is known about whether machine-learning algorithms developed to predict 

opioid overdose using earlier years and from a single state will perform as well when applied to 

other populations. We aimed to develop a machine-learning algorithm to predict 3-month risk of 

opioid overdose using Pennsylvania Medicaid data and externally validated it in two data sources 

(ie, later years of Pennsylvania Medicaid data and data from a different state).

Methods—This prognostic modelling study developed and validated a machine-learning 

algorithm to predict overdose in Medicaid beneficiaries with one or more opioid prescription 

in Pennsylvania and Arizona, USA. To predict risk of hospital or emergency department visits for 

overdose in the subsequent 3 months, we measured 284 potential predictors from pharmaceutical 

and health-care encounter claims data in 3-month periods, starting 3 months before the first opioid 

prescription and continuing until loss to follow-up or study end. We developed and internally 

validated a gradient-boosting machine algorithm to predict overdose using 2013–16 Pennsylvania 

Medicaid data (n=639 693). We externally validated the model using (1) 2017–18 Pennsylvania 

Medicaid data (n=318 585) and (2) 2015–17 Arizona Medicaid data (n=391 959). We reported 

several prediction performance metrics (eg, C-statistic, positive predictive value). Beneficiaries 

were stratified into risk-score subgroups to support clinical use.

Findings—A total of 8641 (1·35%) 2013–16 Pennsylvania Medicaid beneficiaries, 2705 (0·85%) 

2017–18 Pennsylvania Medicaid beneficiaries, and 2410 (0·61%) 2015–17 Arizona beneficiaries 

had one or more overdose during the study period. C-statistics for the algorithm predicting 

3-month overdoses developed from the 2013–16 Pennsylvania training dataset and validated on 

the 2013–16 Pennsylvania internal validation dataset, 2017–18 Pennsylvania external validation 

dataset, and 2015–17 Arizona external validation dataset were 0·841 (95% CI 0·835–0·847), 

0·828 (0·822–0·834), and 0·817 (0·807–0·826), respectively. In external validation datasets, 71 361 

(22·4%) of 318 585 2017–18 Pennsylvania beneficiaries were in high-risk subgroups (positive 

predictive value of 0·38–4·08%; capturing 73% of overdoses in the subsequent 3 months) and 

40 041 (10%) of 391 959 2015–17 Arizona beneficiaries were in high-risk subgroups (positive 
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predictive value of 0·19–1·97%; capturing 55% of overdoses). Lower risk subgroups in both 

validation datasets had few individuals (≤0·2%) with an overdose.

Interpretation—A machine-learning algorithm predicting opioid overdose derived from 

Pennsylvania Medicaid data performed well in external validation with more recent Pennsylvania 

data and with Arizona Medicaid data. The algorithm might be valuable for overdose risk 

prediction and stratification in Medicaid beneficiaries.

Funding—National Institute of Health, National Institute on Drug Abuse, National Institute on 

Aging.

Introduction

The USA continues to grapple with an opioid epidemic, with an estimated 75 673 opioid 

overdose deaths in the 12-month period ending in April 2021.1 Health systems, payers, and 

policy makers have implemented various policies and programmes to mitigate the crisis. 

The President’s Commission on Combating Drug Addiction and the Opioid Crisis in 2017 

recommended applying advanced data analytics to improve identification of individuals at 

high risk of opioid overdose (hereafter overdose).2 Within the last 5 years, studies identified 

shortcomings of current opioid risk prediction tools and called for the development of more 

advanced models to improve identification of individuals at risk (or at no risk) of overdose.2

Our previous work showed that machine-learning approaches can improve risk prediction 

and stratification for incident opioid use disorder and subsequent overdose in Medicare 

beneficiaries.3,4 Medicaid is one of the largest US health-care payers. Medicaid beneficiaries 

have low incomes, substantial physical and mental comorbidities, and more often suffer 

from substance use disorders, placing them at greater risk of opioid misuse and 

overdose. However, few studies have developed prediction algorithms to identify Medicaid 

beneficiaries at high risk of overdose.5–7 Furthermore, little is known about whether 

prediction algorithms developed using earlier years from one US state will perform as well 

using more recent data or when applied to another state.8

To fill these knowledge gaps, we studied two state Medicaid programmes, Pennsylvania and 

Arizona, with different population characteristics and overdose rates.9 In 2018, Pennsylvania 

ranked fourth and Arizona ranked 21st in US drug overdose mortality.9 We first used 

Pennsylvania Medicaid claims data from 2013–16 to develop a machine-learning algorithm 

to predict overdose in the subsequent 3 months. Second, we externally validated our 

prediction algorithm using more recent years (ie, 2017–18) of Pennsylvania Medicaid data 

and externally validated it using 2015–17 Arizona Medicaid data.

Methods

Study design and data

In this prognostic modelling study we used administrative claims data of Medicaid 

beneficiaries in Pennsylvania from Jan 1, 2013, to Dec 31, 2016, to develop a machine 

learning algorithm for overdose prediction. To evaluate whether the algorithm performs well 

using recent years of data and whether it translates to another state Medicaid programme, 
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we conducted two validations using: (1) Pennsylvania Medicaid data from Jan 1, 2017, 

to Dec 31, 2018 (ie, the 2017–18 Pennsylvania external validation dataset), and (2) 

Arizona Medicaid data from Jan 1, 2015, to December 31, 2017 (ie, the 2015–17 Arizona 

external validation dataset). Pennsylvania and Arizona have different geographical locations, 

population characteristics, and overdose rates with different drugs involved.10 Pennsylvania 

Medicaid ranks as the fourth largest of the 50 states in Medicaid expenditures11 and fifth in 

enrolment (approximately 3 million beneficiaries annually),10 while Arizona Medicaid ranks 

14th in total expenditures11 and 12th in enrolment (approximately 1·7 million beneficiaries 

annually). Pennsylvania and Arizona implemented Medicaid eligibility expansion from the 

Affordable Care Act in different years (Arizona on Jan 1, 2014; Pennsylvania on Jan 1, 

2015).

The Pennsylvania and the Arizona Medicaid datasets captured demographic information, 

eligibility, and enrolment information, outpatient, inpatient, and professional services, and 

prescription drugs. Prescription data contained all prescriptions reimbursed by Medicaid 

and included national drug codes, the dates of prescription fills, quantities dispensed, and 

days of supply. The prescriber information (eg, specialty) was available in the Pennsylvania 

Medicaid dataset but unavailable for the Arizona Medicaid dataset. We were able to 

link Arizona Medicaid data with death certificates data, allowing identification of fatal 

opioid overdoses not present in Medicaid claims, but not for the Pennsylvania dataset. We 

constructed study cohorts and created candidate predictors for the 2017–18 Pennsylvania 

and 2015–17 Arizona datasets as we did for the 2013–16 Pennsylvania dataset. We then 

applied the prediction algorithm to the external datasets. The study complied with Standards 

for Reporting of Diagnostic Accuracy and the Transparent Reporting of a Multivariable 

Prediction Model for Individual Prognostic or Diagnosis reporting guidelines (appendix 

pp 25–28).12,13 It was approved by University of Pittsburgh and University of Florida 

Institutional Review Boards (human research ethics committees).

We identified Medicaid beneficiaries aged 18–64 years who filled one or more opioid 

prescription (excluding buprenorphine formulations approved for pain by the US Food 

and Drug Administration). An index date was defined as the date of an individual’s first 

opioid prescription during the study period. We excluded beneficiaries who: (1) only 

filled parenteral opioids or cough or cold medications containing opioids, or both; (2) 

had malignant cancer diagnoses;3 (3) received hospice care; (4) were dually eligible for 

Medicare or enrolled in special Medicaid programmes that we were unable to completely 

observe their health services or prescription drug use; (5) had the first opioid prescription 

during the study period’s last 3 months, or did not have at least a 3-month look-back period 

before their first opioid prescription, to allow measuring candidate predictors; or (6) were 

not enrolled for 3 months after the first opioid fill (appendix p 9). Beneficiaries remained in 

the cohort once eligible, regardless of whether they continued to receive opioids or had an 

occurrence of overdose, until they died or disenrolled from Medicaid. The same criteria were 

applied to datsets from both states.

We used International Classification of Diseases codes (ICD) versions 9 and 10 (appendix p 

3) to identify any occurrence of opioid overdose (including prescription opioids and heroin) 

from inpatient or emergency department visits in 3-month periods from the first index opioid 
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prescription.3 Overdose was defined as an opioid overdose code as the primary diagnosis, or 

other drug overdose or substance use disorders as the primary diagnosis (appendix p 4) with 

opioid overdose as a nonprimary diagnosis.3

To be consistent with previous literature and quarterly evaluation periods commonly used 

by prescription drug monitoring programmes and health plans, we chose 3 months for the 

predictors’ and outcomes’ measurement windows.14,15 Candidate predictors of overdose 

(n=284) included sociodemographics, patient health status, use patterns of opioid and other 

non-opioid prescriptions, and provider-level and regional-level factors measured at baseline 

(during the 3-month period before the first opioid fill) and in 3-month windows after 

initiating prescription opioids (appendix pp 5–6). We updated the predictors measured in 

each 3-month period to account for changes over time for predicting overdose risks in each 

subsequent period (appendix p 10). This timeupdating approach mimics active surveillance 

health systems might adopt.3

Statistical analysis

Our machine learning analysis using 2013–16 Pennsylvania Medicaid data comprised two 

steps: (1) developing a prediction model and creating overdose risk prediction scores for 

each individual, and (2) risk stratifying individuals into subgroups with similar overdose 

risks. We conducted external validation of the developed prediction algorithm using the 

2017–18 Pennsylvania and the 2015–17 Arizona Medicaid datasets, respectively.

First, we randomly and equally divided the 2013–16 Pennsylvania Medicaid cohort into 

training (developing algorithms), testing (refining algorithms), and internal validation 

(evaluating algorithms’ prediction performance) datasets. We compared beneficiaries’ 

characteristics in training, testing, and internal validation datasets using two-tailed Student’s 

t test, χ2 test, and analysis of variance, or corresponding non-parametric tests. We 

applied several commonly used methods such as multivariate logistic regression, penalised 

regression, random forests, and gradient-boosting machine (GBM) to develop and test 

overdose prediction algorithms. Consistent with previous studies,3,5 GBM yielded the best 

prediction results (C-statistic of 0·841 for GBM vs up to 0·820 for other methods; appendix 

p 11) with an ability to handle complex interactions between predictors and outcomes. The 

study’s objective was to externally validate the best-performing algorithm; thus, we focused 

on reporting the GBM model (appendix pp 1–2). Using the internal validation datset of the 

2013–16 Pennsylvania Medicaid cohort to assess the prediction algorithm’s discrimination 

performance (ie, the extent to which predicted high-risk patients exhibit higher overdose 

rates compared with those predicted as low risk), we report C-statistics (0·700–0·800=good; 

>0·800=very good)16 and precision-recall curves.17 However, since C-statistics do not 

account for outcome prevalence information, which is important given the rarity of overdose 

events, we also report sensitivity, specificity, positive predictive value, negative predictive 

value, positive likelihood ratio, negative likelihood ratio, number needed to evaluate to 

identify one overdose, and estimated rate of alerts (appendix pp 12–13).18,19 Given that 

beneficiaries could have multiple 3-month periods until occurrence of a censored event 

(disenrolment or death), we presented episode-level performance as the main result. We 
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conducted sensitivity analyses that iteratively and randomly selected patient-level random 

subsets from the internal validation data to ensure consistency of prediction performance.

No single prediction probability threshold to define high risk suits every purpose, as 

it is determined by the outcome’s risk and benefit profile, type of interventions, and 

resource availability. Therefore, our main analysis classified validation datset beneficiaries 

into subgroups using decile thresholds of predicted overdose risk scores from the training 

algorithm (ie, fixed thresholds) to allow comparison of risk profiles in different validation 

datasets. We further split the highest decile into three strata based on top first, second 

to fifth, and sixth to tenth percentiles to allow closer examination of patients at highest 

risk of experiencing an overdose. We thus created 12 risk subgroups. As an alternative, 

we conducted secondary analyses using decile risk score thresholds derived from each 

validation dataset to stratify beneficiaries into 12 risk subgroups. We created calibration 

plots (composed of 20 population bins of equal size) to examine the extent to which 

predicted overdose risks agree with observed risks by risk subgroup. We also present 

different thresholds along with other metrics at multiple levels of sensitivity and specificity 

(eg, arbitrarily choosing 90% sensitivity or a threshold with balanced sensitivity and 

specificity identified by the Youden Index as an anchor).20

In external validation analyses, we applied the developed GBM algorithm to the 2017–18 

Pennsylvania and 2015–17 Arizona datasets. Because the original prediction algorithm 

included two prescriber-level variables, and we did not have prescriber information in 

the Arizona Medicaid dataset, the model automatically imputed these two prescriber-level 

variables for the Arizona dataset using the median values from the 2013–16 Pennsylvania 

dataset. As done in the 2013–16 Pennsylvania Medicaid dataset, we evaluated prediction 

performance. We also used risk score thresholds derived from the training dataset to classify 

beneficiaries in these validation cohorts into 12 risk subgroups, the definition of which was 

based on the training dataset (2013–16 Pennsylvania) risk scores.

In secondary analyses, we first reported the top 25 important predictors from the GBM 

model. Second, we compared our prediction performance over a 12-month period with any 

of the opioid measures included in the Core Set of Adult Health Care Quality Measures for 

Medicaid21 or Medicaid Section 1115 Substance Use Disorder Demonstrations (hereafter 

Medicaid opioid measures) used by US states to identify high-risk individuals or substance 

use behaviour in Medicaid. These include three metrics: high-dose use defined as more than 

120 morphine milligram equivalent for 90 continuous days or longer; four or more opioid 

prescribers and four or more pharmacies; and concurrent opioid and benzodiazepine use for 

30 days or longer. Third, we used Arizona Medicaid beneficiaries death certificate data to 

identify fatal opioid overdoses that did not receive medical attention to determine whether 

the prediction algorithm worked to predict fatal overdoses using International Classification 

of Diseases, Tenth Revision (ICD-10) underlying cause-of-death codes X42, X44, Y12, 

and Y14 for accidental and undetermined overdose and multiple cause-of-death codes 

T40.1 (heroin), T40.2 (natural and semisynthetic opioids), T40.3 (methadone), and T40.4 

(synthetic opioids other than methadone).22
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Analyses were performed using SAS 9.4 and Salford Predictive Modeler software suite 

version 8.2.

Role of the funding source

The funder had no role in the study design and conduct; data collection, management, 

analysis, and interpretation; manuscript preparation, review, or approval; and decision to 

submit the manuscript for publication.

Results

Beneficiaries in training, testing, and internal validation datasets of the 2013–16 

Pennsylvania dataset (n=213 231 in each dataset used for model development) had similar 

characteristics and outcome distributions (table 1). Compared with Pennsylvania Medicaid 

beneficiaries in the 2013–16 dataset, Pennsylvania Medicaid beneficiaries in the 2017–18 

external validation dataset (n=318 585) were more likely to be older (39·2 vs 36·2–36·3 

years) and newly eligible for Medicaid (42·9% vs 22·0–22·1%) and to have opioid use 

disorder diagnoses (5·9% vs 4·5–4·6%), whereas Medicaid beneficiaries in the Arizona 

dataset (n=391 959) were more likely to be of other or unknown race (36·2% vs 12·7–

12·8%) and less likely to have opioid use disorder diagnoses (2·8% vs 4·5–4·6%). Rates of 

one or more opioid-overdose episodes during the study period were lower in the 2017–18 

Pennsylvania (0·8%) and 2015–17 Arizona (0·6%) validation datasets, compared with the 

2013–16 Pennsylvania algorithm-development dataset (1·3–1·4%).

Figure 1 summarises four prediction performance measures for the GBM models using the 

internal validation dataset from the 2013–16 Pennsylvania dataset and the external validation 

datasets. At the episode level, the prediction algorithm performed well in all three validation 

datasets (C-statistic of 0·841 [95% CI 0·835–0·847] for the 2013–16 Pennsylvania dataset, 

0·828 [0·822–0·834] for the 2017–18 Pennsylvania dataset, and 0·817 [0·807–0·826] for the 

2015–17 Arizona dataset; figure 1A). The improved performance in the internal-validation 

and external validation Pennsylvania datasets compared with the Arizona Medicaid dataset 

in precision-recall curves (figure 1B), number needed to evaluate (figure 1C), and positive 

alerts per 100 beneficiaries (figure 1D) were mainly driven by higher opioid overdose rates 

in Pennsylvania (table 1).

Prediction performance measures by varying sensitivity and specificity levels (90–100%) are 

shown in the appendix (pp 7–8). In the 2013–16 Pennsylvania internal validation dataset, 

at the balanced threshold using the Youden index, the GBM model had a 75·3% sensitivity, 

78·5% specificity, 0·7% positive predictive value, 99·9% negative predictive value, number 

needed to evaluate of 149 to identify one opioid overdose, and approximately 22 positive 

alerts per 100 beneficiaries. In the 2017–18 Pennsylvania external validation dataset, at 

the balanced threshold, the GBM model had a 71·4% sensitivity, 79·9% specificity, 0·6% 

positive predictive value, 99·9% negative predictive value, number needed to evaluate of 171 

to identify one opioid overdose, and approximately 20 positive alerts per 100 beneficiaries. 

In the 2015–17 Arizona external validation dataset, at the balanced threshold, the GBM 

model had a 67·2% sensitivity, 84·0% specificity, 0·4% positive predictive value, 100% 

negative predictive value, number needed to evaluate of 281 to identify one opioid overdose, 
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and approximately 16·1 positive alerts per 100 beneficiaries. Sensitivity analyses using 

randomly and iteratively selected patient-level data overall yielded similar results as using 

episode-level data (appendix pp 14–15).

Figure 2 depicts the actual overdose rate for individuals in the internal validation dataset 

using risk score thresholds derived from the 2013–16 Pennsylvania training dataset. The 

highest-risk subgroup (risk scores in the top 1st percentile; 1·3% [n=2666]) had a positive 

predictive value of 2·2%, a negative predictive value of 97·8%, and number needed to 

evaluate of 45. Among 343 individuals with overdose in the 2013–16 Pennsylvania internal 

validation dataset, 253 (73·8%) individuals were in the top two deciles of risk scores (shown 

in figure 2 as the top four risk subgroups). The 3rd–10th decile subgroups had minimal 

overdose rates (0–15 per 10 000). In external validation analyses (figure 3), the overall 

baseline overdose rate in 3-month windows was higher in the 2017–18 than in the 2013–16 

Pennsylvania Medicaid dataset (0·29% vs 0·17%). The overall baseline 3-month overdose 

rate was also lower in the 2015–17 Arizona external validation dataset (0·09%). In the 2017–

18 Pennsylvania external validation dataset (figure 3A), the highest-risk subgroup (or risk 

subgroup 1, 0·23% [n=736]) had a positive predictive value of 4·1%, a negative predictive 

value of 95·9%, and number needed to evaluate of 25. Of 912 individuals with overdose 

in the 2017–18 Pennsylvania external validation dataset, 661 (72·5%) individuals were in 

the top four risk subgroups. The fifth to 12th risk subgroups had minimal overdose rates 

(ranging from 0·03% to 0·21%). In the 2015–17 Arizona external validation dataset (figure 

3B), the highest risk subgroup (risk subgroup 1, 0·10% [n=407]) had a positive predictive 

value of 1·97%, a negative predictive value of 98·0%, and number needed to evaluate of 51. 

Of 342 individuals with overdose in the 2015–17 Arizona external validation dataset, 187 

(54·7%) individuals were in the top four risk subgroups. Consistent with the Pennsylvania 

external validation dataset, the fifth to 12th risk subgroups had minimal overdose rates (2–14 

per 10 000). Similar magnitudes were found using risk score thresholds derived from each 

corresponding validation dataset (appendix pp 16–17). Additional calibration curves are 

shown in the appendix (pp 18–19).

The top 25 most important predictors identified by the GBM model, such as having a 

diagnosis of OUD, total number of emergency department visits, race, gender, and age, 

are shown in the appendix (p 20). Table 2 compared prediction performance with existing 

Medicaid opioid measures over a 12-month period in the 2013–16 Pennsylvania Medicaid 

dataset. Using existing Medicaid opioid measures for identifying high-risk individuals 

(9·3%) captured 24·2% of all actual overdose cases (number needed to evaluate of 62) over a 

12-month period. When using the top fifth percentile of our risk scores to identify high risk, 

our GBM algorithm captured 66·1% of all actual opioid overdose cases (number needed 

to evaluate of 19), despite there being a similar number of high-risk individuals identified 

in both models. Our analysis predicting fatal overdose in the Arizona external validation 

dataset (84% were captured in claims data) yielded similar findings (eg, C-statistic of 0·814; 

95% CI 0·796–0·831; appendix pp 21–22).
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Discussion

We developed and externally validated a machine-learning algorithm with strong 

performance for predicting 3-month risk of opioid overdose in Medicaid beneficiaries. Our 

study shows that an opioid overdose prediction algorithm developed in one state’s Medicaid 

programme can effectively translate to later time periods in the same US state and to a 

different state, addressing a major concern about the generalisability of opioid overdose 

prediction models. In addition, the algorithm represents an improvement on less accurate 

opioid risk measures currently tracked by state Medicaid programmes.21,23,24

To our knowledge, this study is the first study predicting 3-month opioid overdose risk 

among Medicaid populations with external validation after initiation of prescription opioids. 

We only identified two previous studies that used Medicaid data to predict risk of opioid 

use disorder development within 1 or 5 years after initiating opioid prescriptions,6,7 but 

neither examined overdose risk, nor did they include external validation. Studies using 

advanced methods to more accurately identify individuals at risk of overdose are needed. 

This study expanded our previous work using machine-learning approaches to improve 

accuracy of predicting overdose in the subsequent 3 months in a large state Medicaid dataset 

and broaden applicability of these models across state Medicaid programmes.5 Our best-

performing GBM has several advantages, including handling missing data automatically, 

no additional feature selection process required prior to the GBM modelling, greater 

flexibility in hyper parameter tuning to include complex interactions between predictors 

and outcomes, and often providing better performance compared with other approaches.3,5 

We acknowledge, however, that the flexibility during model tuning can be time-consuming 

and computationally expensive.

Our Arizona Medicaid external validation analysis showed the feasibility of applying our 

prediction model to other state Medicaid programmes with very different population race 

and ethnicity, geography, and overdose rates compared with Pennsylvania Medicaid. When 

using fixed risk score thresholds identified from the Pennsylvania dataset, fewer Arizona 

Medicaid beneficiaries were classified into the top four high-risk subgroups (eg, 10% for the 

Arizona dataset vs 22% for the 2017–18 Pennsylvania dataset) with 55% of all overdoses 

captured. Using various risk scores identified from each validation dataset, over 75% of 

overdoses were captured in the top three decile groups in all validation datasets (appendix 

pp 16–17). The model showed good performance across states and the potential clinical and 

policy use of different risk stratification approaches without any major change or adaptation 

of the models developed from a US state Medicaid programme. Future work should further 

validate the applicability of our model to other state Medicaid programmes. To maintain the 

model’s generalisability, the model might need to be recalibrated in different states such as 

Midwest and South regions.

Although our model had good discrimination (C-statistics >0·80), rare overdose outcomes 

led to low positive predictive values that could increase false positives and overestimate the 

benefits or underestimate intervention costs and resources. In cases such as these, reporting 

additional measures, including sensitivity, number needed to evaluate, and estimated alert 

rate provides for more thorough evaluation of a clinical prediction model’s performance.18 
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For example, number needed to evaluate is the number of patients necessary to evaluate in 

order to detect one outcome using an early warning tool (ie, the machine-learning algorithm 

in our study) versus if no tools existed.18 When predicting a rare outcome like overdose, 

the number needed to evaluate closely estimates the number needed to treat or number 

needed to screen because very low baseline overdose rates will make the absolute risk 

reduction close to the post-screening incidence. Despite low positive predictive values, our 

number needed to evaluate (149–602 in the Pennsylvania datasets; 281–1170 in the Arizona 

dataset varying by different risk thresholds) using GBM algorithms is similar to the number 

needed to screen for commonly used cancer screening tests, such as annual mammography 

screening to prevent one breast cancer death (number needed to screen of 233–1316 varying 

by subgroups with different underlying risks).25

Our machine learning model represents an advance on strategies that Medicaid programmes 

are using to predict overdose risk, allowing them to better target time sensitive or so-called 

just in time interventions. Our study showed how current rules (eg, Medicaid Core Set 

opioid measures) for identifying so-called high-risk patients might not accurately predict 

risk of overdose, compared with using different risk score thresholds (eg, top fifth percentile 

of risk scores) to identify high-risk patients. Although not perfect, our risk classification 

with 12 subgroups allows those implementing the algorithm to determine the risk threshold 

at which to intervene, based on costs and intensity of interventions and resource availability. 

Resource intensive and burdensome interventions (eg, pharmacy lock-in programmes) could 

be limited to the small number of individuals in the highest-risk subgroup. Lower cost, 

less burdensome, or less risky interventions (eg, naloxone distribution)26 could be targeted 

towards more individuals in moderate to high risk subgroups.27,28 Nonetheless, additional 

screening and assessment are needed to avoid unintended consequences resulting from false 

positives.

Our study has limitations. First, we could not capture prescriptions paid out of pocket 

or patients with only illicit opioid use. For example, only 40% of fatal overdoses in 

Arizona were captured using our cohort definition (ie, having one or more opioid fills 

in the study period). Second, claims data do not capture overdoses that do not receive 

medical attention. However, we applied a previously validated algorithm using ICD codes 

to identify opioid-overdose events reported in medical claims (positive predictive value 

of 81–84%).29 Our algorithm also did well in a sensitivity analysis using Arizona death 

certificates data to predict fatal overdose. Third, the Arizona dataset did not have prescriber 

information nor a separate variable for ethnicity, which could introduce misclassification 

biases. Fourth, we were unable to capture other potential predictors, including laboratory 

results in clinical data and sociobehavioural information that might improve the model. 

Fifth, our prediction algorithm might not be generalisable to other populations or states. 

Sixth, as expected, the positive predictive value from our model was low due to overdose 

being a rare outcome. Nonetheless, given the serious consequences of overdose, our risk-

stratified approach appeared to be effective in both Pennsylvania and Arizona. Finally, 

although our algorithm has many potential uses, there are key implementation barriers to 

overcome before implementation (eg, infrastructure to automatically generate risk scores or 

algorithm’s usability and effectiveness due to data lags for claims data). Furthermore, the 

current algorithm included race and ethnicity and requires comprehensive bias evaluations 
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to identify potential approaches for ensuring algorithm fairness to target interventions and 

provide health services equitably.

In conclusion, a machine-learning algorithm predicting opioid overdose derived from 

Pennsylvania Medicaid data performed well in external validation with data from more 

recent years and data from another state with different characteristics. The algorithm could 

be a valuable and feasible tool to predict and stratify risk of opioid overdose in Medicaid 

beneficiaries.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

In previous work, we developed machine learning approaches to improve risk prediction 

and stratification for development of opioid use disorder and subsequent overdose in 

Medicare beneficiaries. We are not aware of studies applying these methods in a 

Medicaid population, and then externally validating them. We thus searched PubMed 

for research articles, with no language restrictions, published from database inception 

up to June 1, 2021, using the following search terms: “Analgesics, Opioid / therapeutic 

use* AND Algorithms*” AND “Risk Assessment / methods*”. After excluding eight 

studies that included narrow and specific patient populations (ie, opioid naive, paediatric, 

oncology, and anaesthesia patients), we identified two previous relevant studies that 

included Medicaid data for predicting the risk of opioid use disorder development within 

1 or 5 years after initiating opioid prescriptions. Neither study examined overdose risk, 

nor did they include external validation.

Added value of this study

This study developed a machine learning algorithm capable of predicting 3-month risk 

of opioid overdose using Pennsylvania Medicaid claims data (2013–16) and validated it 

in two data sources: more recent years of Medicaid data from Pennsylvania (2017–18) 

and in claims data from Arizona’s Medicaid programme (2015–17). This work found that 

the algorithm was robust at predicting Medicaid beneficiaries’ 3-month risk of opioid 

overdose, without major changes or adaptations to the model, despite the difference in 

calendar years and the different characteristics of the US states. Our prediction algorithm 

has the potential to be applied to Medicaid populations in other states and could be useful 

to guide clinical decisions and target interventions based on the degree of individual’s 

risk.

Implications of all the available evidence

Machine-learning algorithms that more accurately predict patients’ risks for opioid 

overdose over short time intervals and that provide better risk stratification than currently 

used tools can be valuable tools in data-informed decisions regarding the allocation of 

interventions and resources. The model derived from using historical data in one large 

state was scalable to more recent data and data from another state and provides an 

opportunity to improve on existing Medicaid programme strategies for addressing opioid 

overdose risk.
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Figure 1: Performance matrix for predicting opioid overdose using GBM in Pennsylvania and 
Arizona Medicaid beneficiaries
(A) Areas under the receiver operating characteristic curves (or C-statistics). (B) Precision-

recall curves (precision=positive predictive value and recall=sensitivity)—precision recall 

curves that are closer to the upper right corner or have a larger AUC than another method 

have improved performance. (C) The number needed to evaluate (by different cutoffs 

of sensitivity). (D) Alerts per 100 patients (by different cutoffs of sensitivity). Arizona 

Medicaid 2015–17=2015–17 Arizona external validation dataset (391 959 beneficiaries with 

2 549 039 non-overdose episodes and 2172 overdose episodes). AUC=area under the curve. 

GBM=gradient boosting machine Pennsylvania Medicaid 2013–16=2013–16 Pennsylvania 

internal validation dataset (213 231 beneficiaries with 1 745 919 non-overdose episodes and 

3377 overdose episodes). Pennsylvania Medicaid 2017–18=2017–18 Pennsylvania external 

validation dataset (318 585 beneficiaries with 1 825 672 non-overdose episodes and 3032 

overdose episodes).

Lo-Ciganic et al. Page 15

Lancet Digit Health. Author manuscript; available in PMC 2022 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Opioid overdose identified by risk subgroup in the 2013–16 internal validation 
Pennsylvania Medicaid dataset (n=213 231) using GBM
Based on the individual’s predicted probability of an opioid overdose (fatal or non-fatal) 

event, we classified 203 179 beneficiaries in the validation datasets into modified decile risk 

subgroups, with the highest decile further split into three additional strata based on the top 

first, second–fifth, and sixth–tenth percentiles to allow closer examination of beneficiaries 

at highest risk of experiencing an overdose. We used the thresholds of the risk scores 

derived from the 2013–16 Pennsylvania training dataset to identify a beneficiary’s risk 

subgroup: top first percentile (≥98·3); second–fifth percentile (96·6≤risk score<98·3); sixth–

tenth percentile (64·9≤risk score<96·6); decile 2 (47·6≤risk score<64·9); decile 3 (38·4≤risk 

score<47·6); decile 4 (32·2≤risk score<38·4); decile 5 (27·5≤risk score<32·2); decile 6 

(23·8≤risk score<27·5); decile 7 (20·4≤risk score<23·8); decile 8 (18·8≤risk score<20·4); 

decile 9 (14·2≤risk score<18·8); decile 10 (14·2<risk score). GBM=gradient boosting 

machine.
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Figure 3: Opioid overdose identified by risk subgroup in the 2017–18 Pennsylvania (n=318 585) 
and 2015–17 Arizona Medicaid (n=391 959) external validation datasets using GBM
Based on the individual’s predicted probability of an opioid overdose (fatal or non-fatal) 

event, we classified beneficiaries in the two validation datasets into risk subgroups using the 

modified decile thresholds of the risk scores derived from the 2013–16 Pennsylvania training 

dataset, with the highest risk decile further split into three additional strata based on the top 

first, second–fifth, and sixth–tenth percentiles to allow closer examination of beneficiaries at 

highest risk of experiencing an overdose. The thresholds of the risk scores derived from the 

2013–16 Pennsylvania training dataset to identify a beneficiary’s risk subgroup are: top first 
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percentile (≥98·3); second–fifth percentile (96·6≤risk score<98·3); sixth–tenth percentile 

(64·9≤risk score<96·6); decile 2 (47·6≤risk score<64·9); decile 3 (38·4≤risk score<47·6); 

decile 4 (32·2≤risk score<38·4); decile 5 (27·5≤risk score<32·2); decile 6 (23·8≤risk 

score<27·5); decile 7 (20·4≤risk score<23·8); decile 8 (18·8≤risk score<20·4); decile 9 

(14·2≤risk score<18·8); decile 10 (14·2<risk score). GBM=gradient boosting machine.
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