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Systems/Circuits
Spontaneous Spiking Is Governed by Broadband Fluctuations
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Populations of cortical neurons generate rhythmic fluctuations in their ongoing spontaneous activity. These fluctuations can
be seen in the local field potential (LFP), which reflects summed return currents from synaptic activity in the local popula-
tion near a recording electrode. The LFP is spectrally broad, and many researchers view this breadth as containing many nar-
rowband oscillatory components that may have distinct functional roles. This view is supported by the observation that the
phase of narrowband oscillations is often correlated with cortical excitability and can relate to the timing of spiking activity
and the fidelity of sensory evoked responses. Accordingly, researchers commonly tune in to these channels by narrowband fil-
tering the LFP. Alternatively, neural activity may be fundamentally broadband and composed of transient, nonstationary
rhythms that are difficult to approximate as oscillations. In this view, the instantaneous state of the broad ensemble relates
directly to the excitability of the local population with no particular allegiance to any frequency band. To test between these
alternatives, we asked whether the spiking activity of neocortical neurons in marmoset of either sex is better aligned with the
phase of the LFP within narrow frequency bands or with a broadband measure. We find that the phase of broadband LFP
fluctuations provides a better predictor of spike timing than the phase after filtering in narrow bands. These results challenge
the view of the neocortex as a system composed of narrowband oscillators and supports a view in which neural activity fluc-

tuations are intrinsically broadband.
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Research into the dynamical state of neural populations often attributes unique significance to the state of narrowband oscil-
latory components. However, rhythmic fluctuations in cortical activity are nonstationary and broad spectrum. We find that
the timing of spontaneous spiking activity is better captured by the state of broadband fluctuations over any latent oscillatory
component. These results suggest narrowband interpretations of rhythmic population activity may be limited, and broader
representations may provide higher fidelity in describing moment-to-moment fluctuations in cortical activity.
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Introduction

Since the first human electroencephalogram (EEG) recordings
by Hans Berger (Berger, 1929), neuroscientists have inferred
cortical function from the state of rhythmic fluctuations in
neural population activity (Buzsiki and Draguhn, 2004; Wang,
2010). These brain rhythms are believed to arise from return cur-
rents generated by large-scale spiking activity in cortical neural
populations (Logothetis, 2003; Katzner et al., 2009; Buzsaki et al.,
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2012). When recorded intracranially with penetrating electrodes,
rhythmic activity can be measured in the local field potential
(LFP), which typically reflects neural signals arising within
~250 pM of the electrode tip (Katzner et al., 2009; Lindén et al.,
2011). LFP fluctuations are spectrally broad but are often thought
to be composed of activity in narrow frequency bands correlated
with distinct neural functions (Canolty et al., 2010; Einevoll et al.,
2013; Friston et al., 2015). For example, in the visual cortex, alpha
band rhythms (8-15 Hz) are thought to reflect feedback processes
of suppression (Jensen and Mazaheri, 2010; van Kerkoerle et al.,
2014) and have been shown to be attenuated with or modulated
by attention (Worden et al., 2000; Busch and VanRullen, 2010).
Beta band rhythms (15-30 Hz) have been linked to motor plan-
ning (Sanes and Donoghue, 1993; Rubino et al., 2006) and feed-
back regulation of excitability (Bastos et al., 2015; Friston et al,,
2015). Theta band (4-8 Hz) activity has been related to attention
(Fiebelkorn and Kastner, 2019), working memory load (Jensen
and Tesche, 2002), and hippocampal function (Buzsaki, 2002).
Delta band (<4 Hz) activity has been related to sleep and states
of arousal (Sanes and Donoghue, 1993; Steriade et al., 2001;
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McGinley et al.,, 2015). Higher frequency gamma activity (30—
90 Hz) has been linked to local coordination in excitation and
inhibition (Brunel and Wang, 2003; Bartos et al., 2007; Buzsaki
and Wang, 2012), attention (Fries et al., 2001, 2008; Gregoriou
et al., 2009), memory (Pesaran et al., 2002; Colgin et al., 2009;
van Vugt et al., 2010; Lundqvist et al., 2018), and perception
(Singer and Gray, 1995; Panagiotaropoulos et al., 2012; Misselhorn
et al, 2019), and has been used as a surrogate for measuring cortical
activation (Crone et al., 2006; Ray et al., 2008a; Merker, 2013).
Oscillatory activity can be induced under certain conditions,
such as the increased low-frequency power that is observed in
the EEG when eyes are closed (Berger, 1929; Geller et al., 2014),
optogenetically (Lu et al., 2015; Bitzenhofer et al., 2017; Zutshi
et al., 2018), electrically (Contreras et al., 1997; Kirov et al,
2009; Escobar Sanabria et al., 2020), or pharmacologically as
in the alpha oscillations that occur in medial prefrontal cortex
under propofol-induced anesthesia (Purdon et al., 2013; Flores
et al., 2017; Bastos et al., 2021).

It has been proposed that certain frequency bands play a priv-
ileged role in routing information among brain areas (Akam and
Kullmann, 2010; Bonnefond et al., 2017; Khamechian et al., 2019).
The idea that communication between brain areas occurs
through oscillatory processes within narrow frequency bands
bears similarity to a radio, where signals are broadcast within
different frequency bands and a receiver can be tuned to receive
them (Hoppensteadt and Izhikevich, 1998). For example, the
idea of cross-cortical communication through coherence views
synchrony in gamma oscillations as periods of coordination
between presynaptic and postsynaptic groups to transmit sig-
nals about, for example, an attended stimulus while blocking
competing inputs (Fries, 2015). These patterns of gamma-band
synchronization are proposed to be regulated across cortical areas
by top-down signals within a slower (8-20 Hz) frequency band
(Bastos et al., 2015). Other theories suggest that the LFP is com-
posed of multiplexed oscillatory neural signals that are separate
streams of information processing (Lisman and Idiart, 1995;
Panzeri et al., 2010; Akam and Kullmann, 2014; Tingley et al.,
2018). If oscillatory activity in separate frequencies encodes
distinct information channels, and the spiking activity of neu-
rons are the fundamental units of information transmission in
the nervous system, then the spiking activity of individual
neurons should show preferential alignment of their spiking
activity to oscillatory rhythms to tune in to a channel of infor-
mation (Canolty et al., 2010; Belluscio et al., 2012). There is
evidence to suggest this can occur, as spikes have been found
to preferentially align with the phase of theta (Takahashi et al.,
2014; Souza and Tort, 2017; Striiber et al., 2022), alpha (Haegens
et al, 2011), gamma (Fries et al., 2001; Womelsdorf et al., 2007;
Ray et al., 2008b), and beta (Donoghue et al., 1998; Canolty et al.,
2010) frequencies.

An alternative view is that neurons spike with no preference
for any particular narrowband frequency. Rather, spiking is
modulated by the instantaneous state of fluctuations in the
local population, which varies from moment to moment across a
broad range of frequencies. Supporting this view is the observa-
tion that balanced excitation and inhibition creates fluctuating
neural activity patterns in the awake state, which often exhibit
1/f® power spectra across a broad range of frequencies (Destexhe
et al., 2001; Gao et al., 2017). Studies in humans have found that
changes in cognitive state are associated with broad spectral
changes in the EEG (Voytek et al,, 2015). The membrane potential
of individual neurons is correlated with the population fluctua-
tions measured in the instantaneous LFP (Haider et al., 2016), as
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opposed to any narrowband component, which suggests the
broadband LFP is therefore informative about the instantaneous
excitability of neurons in the population (Davis et al., 2020).
Accordingly, previous work has found that spikes are weakly
coupled to all frequencies of the broadband LFP (Martin and
Schroder, 2016), and specific interactions in narrowband fre-
quencies may at times be because of spurious artifacts from
narrowband filtering (Scheffer-Teixeira and Tort, 2016).

Even when approximately oscillatory activity may be transi-
ently apparent in LFP recordings, it is difficult to describe the
phase of neural fluctuations within a narrow range of frequencies
because of their nonstationarity (Pesaran et al., 2018). LFP phase
is a useful measure for tracking the state of neural fluctuations
because it is indicative of the relative transition in the balance of
excitation and inhibition with, for example, the falling phase
reflecting a transition from inhibition to excitation, and the ris-
ing phase transitioning from excitation to inhibition (Atallah and
Scanziani, 2009; Poo and Isaacson, 2009; Isaacson and Scanziani,
2011; Telenczuk et al, 2017). This is in contrast to amplitude
measures, which can be ambiguous as the same negative voltage
value could reflect neurons becoming more depolarized or more
hyperpolarized depending on the signal history. Under this view,
one can better characterize the state of neural populations from
the phase of broadband fluctuations in LFP activity, and neurons
will show preferential alignment of their spiking activity to the
broadband signal phase, not to any narrowband oscillatory phase.

To ask whether neuronal spiking is better coupled to narrow-
band oscillations or broadband fluctuations during waking visual
function, we compared spike-phase coupling after filtering the
LFP in various filter bands. If the spiking probability of a neuron
is phase locked with the LFP within some frequency band, this
is evidence that the neuron in question participates, to some
degree, in oscillatory activity of the larger ensemble of neurons
whose transmembrane currents give rise to that rhythm. If nar-
rowband rhythms do reflect distinct information channels, then
the phase of these oscillations should be particularly informative
about the excitability of neurons participating in that oscillatory
rhythm and therefore the timing of their spontaneous spiking
activity. Alternatively, if the excitability of the population is
reflected in the phase of the broad spectrum fluctuations, then
the spiking activity of neurons should be more poorly pre-
dicted by any individual oscillatory component and better pre-
dicted by the phase of the broadband LFP. Therefore, in this
work we take the magnitude of spike-phase coupling as a direct
measure of the degree to which oscillatory activity reflects a dis-
crete information channel.

The ability to test between these alternatives has been limited,
however, because the calculation of phase using the Hilbert trans-
form breaks down when the frequency content of a signal is too
broad (Le Van Quyen et al, 2001). It had been infeasible to
directly compare the relative phase coupling of spiking activity to
narrowband or broadband LFP signals without consideration of
this potential confound. To overcome this technical limitation, we
have developed a measure of phase [generalized phase (GP); Davis
et al., 2020], a generalization of the Hilbert transform that can be
applied to spectrally broad signals, allowing us to directly com-
pare narrowband and broadband phase estimates of cortical
excitability. This enabled us to test whether the timing of sponta-
neous spiking activity in cortical populations is better aligned
with the phase of classically defined narrowband oscillations,
similar to channels on a radio, or is more tightly coupled to the
phase of the broad ensemble of nonstationary components. In
recordings made from the marmoset middle temporal (MT)
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extrastriate visual cortex, we find that spontaneous spiking is
more strongly phase coupled to the broadband LFP than to any
individual narrow band. Thus, fluctuations in spontaneous
neuronal spiking are not coupled preferentially to individual
narrowband oscillations but rather track with the instantaneous
fluctuations of neural activity as they change from moment to
moment.

Materials and Methods

Electrophysiology recordings. One male (monkey W) and one
female (monkey T) marmoset monkey (Callithrix jacchus) were sur-
gically implanted with a headpost for head stabilization and eye track-
ing. The headpost contained a hollow chamber housing an Omnetics
connector for a Utah array (Blackrock Microsystems), which was
implanted in a 7 X 10 mm craniotomy over area MT (stereotaxic coor-
dinates, 2 mm anterior, 12 mm dorsal). An 8 x 8 (64 channel, mon-
key W) and 9 x 9 with alternating channels removed (40 channel,
monkey T) Utah array was chronically implanted over area MT
using a pneumatic inserter wand. The electrode spacing was 400 pm
with a pitch depth of 1.5 mm. The craniotomy was closed with
DuraSeal (Integra Life Sciences, monkey W) or DuraGen (Integra
Life Sciences, monkey T), and covered with a titanium mesh embed-
ded in dental acrylic. All surgical procedures were performed with
the monkeys under general anesthesia in an aseptic environment in
compliance with National Institutes of Health guidelines. All experi-
mental methods were approved by the Institutional Animal Care
and Use Committee of the Salk Institute for Biological Studies and
conformed with National Institutes of Health guidelines. Data used
in this study were previously used in Davis et al. (2020).

Marmosets were trained to enter a custom-built marmoset chair that
was placed inside a Faraday box with an LCD monitor (ASUS VG248QE)
at a distance of 40 cm. The monitor was set to a refresh rate of 100 Hz and
gamma corrected with a mean gray luminance of 75 candelas/m>.
Electrode voltages were recorded from the Utah arrays using two Intan
Technologies RHD2132 amplifiers connected to an Intan Technologies
RHD2000 USB interface board. Data were sampled at 30 kHz from all
channels. The marmosets were head fixed by a headpost for all recordings.
Eye position was measured with an ISCAN CCD infrared camera sam-
pling eye position at 500 Hz. Stimulus presentation and behavioral control
was managed through MonkeyLogic (Asaad et al.,, 2013) in MATLAB.
Digital and analog signals were coordinated through National Instruments
DAQ cards (catalog #PCI6621) and BNC breakout boxes (catalog
#BNC2090A, National Instruments). Neural data were broken into
two streams for offline processing of spikes (single-unit and multiunit
activity) and LFPs. Spike data were high-pass filtered at 500 Hz, and
candidate spike waveforms were defined as exceeding 4 SDs of a sliding
1 s window of ongoing voltage fluctuations. Artifacts were rejected if
appearing synchronously (within 0.5 ms) on over a quarter of all recorded
channels. Segments of data (1.5 ms) around the time of candidate spikes
were selected for spike sorting using principal component analysis
through the open source spike sorting software MClust in MATLAB
(A. David Redish, University of Minnesota). Sorted units were clas-
sified as single- or multiunits, and single units were validated by the
presence of a clear refractory period in the autocorrelogram. LFP
data were low-pass filtered at 300 Hz and downsampled to 1000 Hz.

Fixation behavior. The marmosets were trained to saccade to a mar-
moset face to initiate each trial. On the gaze arriving at the face, it disap-
peared and was replaced with a white fixation point [0.15 degrees of
visual angle (DVAs)]. The marmosets held fixation on the fixation point
(1.5 DVA tolerance) for a minimum duration (400 ms monkey W, 300 ms
monkey T) awaiting the appearance of a drifting Gabor target (4 DVA
diameter; appearing 6-7 DVAs eccentricity at 1 of 2 equally eccentric
locations in the visual field contralateral to the recording array). Spontaneous
data were analyzed from the period of fixation preceding the appearance
of a target and excluding the initial 100 ms following fixation initiation.
Early fixation breaks (defined by the excursion of the eye position from
the fixation window) were excluded from analysis.
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Free-viewing natural scenes. Marmosets were head fixed and their
gaze monitored as in the previous task. Grayscale versions of naturalistic
images (spanning 20-30 DVAs) were randomly interleaved and
presented to the monkey. The monkey was free to look at the
images, and after 10 s was given a juice reward. Visual activity was
analyzed as in the spontaneous fixation data excluding a 250 ms
window around the times of saccades. Saccades were defined as ve-
locity peaks exceeding 25° per second. The time of saccade was
taken from the peak velocity after threshold crossing. Velocity was
calculated from the absolute value of the first numerical derivative
of the smoothed vertical and horizontal eye traces (5ms sliding
Gaussian). We excluded from our analysis spikes that occurred
from 50ms before to 200 ms after detected saccades. Multiunit
spiking activity from two recording sessions in Monkey T and one
session in Monkey W (N = 142 units) were combined and analyzed
as there was no significant difference in spike-phase index (SPI)
effects between the monkeys (p = 0.10; Wilcoxon rank-sum test).

Spike artifact elimination . To eliminate spike artifacts from the LFP,
we applied a despiking algorithm first described in Zanos et al. 2011. The
goal of the algorithm is to eliminate the contribution of spike waveforms to
the signal that after being downsampled and low-pass filtered constitutes
the LFP. The algorithm assumes the LEP is based on the measured wide-
band voltage trace recorded from the electrode (y), which is composed of a
low-frequency signal (the LEP, w), high-frequency spike components n*,
an offset w, and white noise £ ad follows:

y=w+ E '+ utes. (1)
k=1

Here, m is the number of spikes for kth neuron k. The high-fre-
quency component of k is the convolution of the spike train s* and the
spike waveform ¢* as in the following:

7' =g st (2

Rather than using a spike-triggered average approach to generate a
mean template of the spike waveform, which is subtracted at the time of
each spike, the algorithm optimally estimates the local field potential w,
each spike waveform ¢p¥, and the offset 1, which adjusts for the fact that
spike waveforms tend to be negative.

The first assumption is that the LFP is smooth with most of its power
in the lower frequencies as follows:

p(w) =N(0, y°T), ®3)

where N(a,X) represents a multivariate Gaussian with mean a and co-
variance %, and I is a matrix representing the assumption of smooth-
ness. Multiplying with some vector x (ie., I'x) produces a low-pass
filtered version of x, and y controls the strength of the prior. The second
assumption is that & is generated by a white noise process
p(&) = N(0,21). The final assumption is that the spike waveforms ¢* lie
in a subspace B, where @* =Bg@* and the spike waveforms are
described in a 1.5ms interval around the peak depolarization. Bayesian
inference was used to obtain maximum a posteriori (MAP) model pa-
rameters for the LFP w, the spike waveforms ¢, and the offset . By
Bayes’s theorem, the log-posterior model is the following:

pw, @, uly) o< p(ylw, @, ) p(w)

m 2
1 1
=kexp|—=—— —w— k_ ——wl'w
I E <y E K By :
i k=1 !
4
where k is a constant factor. The partial derivatives with respect to the

parameters are set to 0, and the log of this expression provides the MAP
estimates of the parameters w, @, and j as follows:
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Cortical LFP recordings are inherently broad spectrum. a, Spikes and LFPs were recorded from area MT of common marmosets while they held fixation on a blank screen. Right,

Three seconds of raw LFP (filtered 1-100 Hz) and spike times from a well-isolated neuron recorded on the same electrode is plotted. The red box indicates a period of fixation during the re-
cording epoch. b, The power spectrum for the LFP trace in a is plotted in black, and 10 additional 3 s epochs are plotted in gray. The red dashed line is the mean power spectrum across trials.
¢, The raw LFP during fixation is plotted in black against the narrowband filtered theta oscillatory component (4-8 Hz, red dotted line). d—f, Same as ¢ but for alpha (8-15Hz), beta (15—
30Hz), and low gamma (30-50 Hz) bandpass filters. g, The wideband filtered (5-50 Hz) LFP follows the dominant fluctuation in the raw LFP as it shifts in temporal frequency.
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An implementation of this algorithm in MATLAB is available
from the original authors (http://apps.mni.mcgill.ca/research/cpack/
Ifpcode.zip).

Generalized phase. We calculated GP as described previously (Davis
et al,, 2020). The purpose of GP is to mitigate the breakdown of the ana-
lytic signal representation for spectrally broad signals. As an initial step
in the GP representation, then, we filter the signal within a wide band-
pass (i.e., 5-50 Hz; fourth-order zero-phase Butterworth filter), excluding
low-frequency content that contributes to origin offsets in the complex
plane that distort the estimate of phase angles for higher frequency signals.
We then use the single-sided Fourier transform approach (http://www.
fuchs-braun.com/media/d9140c7b3d5004fbfftf8007HHHH0.pdf; Marple, 1999)
on the wideband signal and compute phase derivatives as finite differ-
ences, which are calculated by multiplications in the complex plane
(Feldman, 2011; Muller et al., 2014, 2016). High-frequency intrusions
appear in the analytic signal representation as complex riding cycles
(Feldman, 2011), which manifest as periods of negative frequencies in
the analytic signal representation. As a secondary step, we then numeri-
cally detect these complex riding cycles (N, points of negative frequency)
and use shape-preserving piecewise cubic interpolation on the next 2N,
points following the detected negative frequency epoch. The resulting rep-
resentation captures the phase of the largest fluctuation on the recording
electrode at any moment in time (Fig. 1f), without the distortions because

of the large, low-frequency intrusions or the smaller, high-frequency
intrusions characteristic of the I/f-type fluctuations in cortical LFP
(Pereda et al., 1998; Linkenkaer-Hansen et al., 2001; Milstein et al., 2009).
All phase estimates of filtered LFP segments were calculated using the
GP algorithm.

Spike-phase coupling. Three-second LFP epochs centered on the pe-
riod of fixation were analyzed during the fixational behavioral task. The
LFP segments were filtered (fourth-order zero-phase Butterworth filter
with varying filter bandwidths depending on the analysis condition),
and spike-phase coupling was calculated over epochs of fixation exclud-
ing the initial 100 ms following fixation initiation. The degree of spike-
phase coupling was measured as the mean resultant vector length for the
LEP phase distribution collected at the time of observed spikes. This mea-
sure was calculated using the circ_r function in the Circular Statistics
Toolbox for MATLAB (Berens, 2009). The mean resultant vector r of the
spike-phase distribution is the normalized sum over complex exponentials
of the phase angles ¢ as follows:

lN
= — 1 6
r ME,E’ (6)
]

where M is the number of spikes, and the modulus of 7 (|r| € [0, 1]) rep-
resents the degree of spike-phase modulation. The closer the value is to
zero, the more uniform the phase distribution. The closer the value is to
one, the more concentrated the phases.

Filtered-raw LFP signal to noise ratio. We calculated the signal-to-
noise ratio (SNR) in decibels by computing the ratio of the summed
squared magnitude of the filtered LFP in either theta (4-8 Hz), alpha (8-
15Hz), beta (15-30 Hz), low gamma (30-50 Hz), or the wideband (5-
50 Hz) filter to the summed squared magnitude of the broadband 1-
100 Hz LFP. The SNR was calculated over a window corresponding to
approximately a single cycle of the mean frequency of each filter band
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(150, 75, 50, 25, and 50 ms respectively). The tested window was slid by
1/fifth the window width over the entire fixation period. Only spike
times that occurred in a window that exceeded —5 dB SNR was included
in the SPI calculation for that narrowband filter.

Generalized linear model analysis. To compare the relative predictive
power of spike timing between multiple narrow and a single wideband
measure of LFP phase (GP), we tested general linear models (GLMs)
trained to predict the likelihood of spiking activity. In particular, both
GLMs were trained using LFP phases recorded at points in time when
spikes occurred, and an equal size sample of LFP phases, selected at ran-
dom, when no spike occurred. The first model used as predictors the
phase at the time of each spike or nonspike for theta (4-8 Hz), alpha (8-
15Hz), beta (15-30 Hz), and low gamma (30-50 Hz) narrowband fil-
tered LFP. The second model used a single predictor, the narrowband
beta phase (15-30 Hz), and the third model also used a single predictor,
the wideband (4-50 Hz) LFP GP computed on the same training set. To
linearize the circular phase variables, we used the sine and cosine of each
phase value as separate predictors (Cremers and Klugkist, 2018), result-
ing in eight predictors for the narrowband model and two predictors for
the single narrow and wideband models as follows:

Yi = ko + Kk1sin(@y) + kycos(py) + kasin(e,) + k4cos(@,)
+ K5sin(¢ﬁ) + Kecos(@p) + Kosin(e,) + KgCOS((p,y)7 (7)

single narrowband GLM as follows:
Yi= Ko+ kisin(@g) + kycos(@g), (8)
and single wideband GLM as follows:

Yi= Ko+ k18in(@yy) + £2008(@ ), )

where the model output Y; for the phases at time sample 7 is determined
by the coefficients on the sine and cosine of the filtered LFP phase. The
GLM was fitted using a binominal logit link function to relate changes in
the phase predictor variables to the binary output variable at each time
sample (spike or no spike). GLMs were fit to half the data in each dataset
(N = 20 across two monkeys), and the predictor coefficients were tested
on the other half of the data. The predictive power of each GLM was
evaluated by measuring the area under the curve (AUC) for the receiver-
operator characteristic (ROC) curve generated by comparing the true
spike hit rate of each model output to the spike false alarm rate given the
model output.

Simulated spike and LFP generation. To generate surrogate spiking
and LFP data, we first generated a normal distribution of random fre-
quency values with a mean of 10 Hz and a standard distribution of 1 Hz.
We then generated a 100 s sinusoidal signal, whose frequency drifted
with random draws from the frequency distribution. In the case where
spikes were generated from the phase of this narrowband signal, we first
filtered this signal between 8 and 15Hz and used the phase to generate
spike times. We also generated a broadband noise signal generated from
a Gaussian distribution with mean of 0 and an SD of 1, whose power
spectrum followed a 1/f power law (Kasdin, 1995). In the case where
spikes were generated from the phase of the broadband signal, the drift-
ing sinusoidal and pink noise signals were summed in the frequency do-
main and transformed back into the temporal domain and filtered
between 1 and 100 Hz. The combination of the sinusoidal signal and the
noise signal made up our surrogate LFP signal, which was identical
between the alternative spike generating conditions.

Spike times were generated using a phase-dependent Poisson spike
generator. The phase-dependent spiking probability was defined with a
circular-linear function across 21 phase bins with a 0% spiking probabil-
ity at Orad phases and a 1% spiking probability at =7 rad phases. At
each millisecond in time, a random value was drawn from a Poisson dis-
tribution, whose lambda corresponded to the probability of a spike
occurring at the phase of either the sinusoidal (narrowband hypothesis)
or surrogate LFP (broadband hypothesis) signal at that millisecond. Any
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drawn value that exceeded zero produced a single spike time. The rela-
tive phase-dependent spike probabilities produced irregular spike trains
with mean firing rates roughly between 5 and 6 Hz in both conditions.
The calculation of spike-phase coupling was performed identically as
that in the recorded data. The surrogate LFP was filtered in either nar-
row or wide filters, and the GP was drawn at the time of each spike to
generate spike-phase distributions.

Statistical analysis. Statistical tests used in this study include the para-
metric pairwise Student’s ¢ test, the nonparametric Wilcoxon signed-rank
test, and the Wilcoxon rank sum test. Two monkeys were used in this
work. No power analyses were performed as the number of monkeys used
followed standard conventions to reduce the number of primates required
for neuroscience research. All results were consistent across both monkeys
and were therefore collapsed for analysis. Individual measurements within
N = 20 recording session were averaged, and statistical tests were per-
formed on the averages across recording sessions.

Data Availability. The data that support the findings of this study
are available from the corresponding authors on reasonable request. An
open-source code repository for the generalized phase algorithm is avail-
able from http://mullerlab.github.io.

Results

We measured spike-phase coupling for single- and multiunit
spiking activity across traditional narrowband and broadband fil-
tered LFP signals. Spiking activity and LFP data were previously
recorded from chronically implanted multielectrode arrays (Utah
array, Blackrock Microsystems) in area MT of two common mar-
mosets (Callithrix jacchus; 10 recording sessions in each monkey)
as they fixated on a point on an otherwise blank screen (gray back-
ground, 75 candela/m’; Fig. 1a), awaiting the appearance of a faint
visual target during a challenging visual detection task (Davis
et al., 2020). Similar experimental paradigms have been used
to study the relationship between prestimulus oscillatory
phase and sensory processing and behavioral performance
(Busch et al., 2009; Balasubramanian et al., 2020; Zareian et
al., 2020). The raw LFP (filtered from 1 to 100 Hz) sporadi-
cally exhibited rhythmic fluctuations across a range of time
scales, but there was not a clear peak in the power spectral
density that would be consistent with a clear and consistent
oscillatory component (Fig. 1b).

The LFP during periods of fixation was filtered in classically
defined frequency bands—theta (4-8 Hz), alpha (8-15Hz), beta
(15-30Hz), and low gamma (30-50 Hz)—or in a wideband filter
that spanned all of these narrow bands from 5 to 50 Hz (Fig. 1c—g).
The bounds of the wideband filter were selected to exclude low-fre-
quency fluctuations (<5 Hz) that are associated with slow changes
in arousal (Steriade et al., 2001; Petersen et al., 2003) and high-fre-
quency components that may be contaminated by spiking artifacts
and could, therefore, induce spurious spike-LFP correlations (Ray
et al, 2008a; Zanos et al., 2011). However, it could be possible
spiking artifacts exist at sub-50Hz frequencies, which
could, in principle, bias our estimate of the relationship
between spiking activity and LFP phase in our broadband
representation. To mitigate this potential confound, we per-
formed a despiking procedure on the data as described in
Zanos et al. (2011). This removes spike waveforms from the
raw (30 kHz) recorded electrode data signals through spike-
waveform subtraction and interpolation before downsampling
and filtering into the LFP. Any remaining relationship
between the phases of sub-50 Hz activity in any frequency
band must therefore be because of an indirect relationship
between the population currents that give rise to the LFP and
individual neuronal spiking, and not the direct contribution
of that spike occurring itself.
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Spikes are more strongly coupled to the phase of wideband filtered LFP signals than narrowband oscillatory components. a, The raw (5-200 Hz) filtered LFP trace from Figure 1 is

plotted in black. The wideband filtered trace (5-50 Hz) is plotted in pseudocolor corresponding to the GP of the wideband filtered trace according to the color wheel. GP captures the troughs
(blue/purple) and peaks (yellow/green) of the dominant fluctuations while interpolating over the higher frequency, lower amplitude riding cycles. b, Histogram showing the fraction of spikes
that occurred during different phases of the wideband filtered LFP (10 phase bins, N = 20 sessions across two monkeys. Error bars indicate SEM. ¢, The spike-phase distribution was flatter for
theta band (4-8 Hz) filtered LFP. The mean SPI, which quantifies the mean vector length of the circular distribution of spike phases, is plotted across 20 sessions from two monkeys. The wide-
band filtered LFP (blue) had significantly stronger SPI values than theta filtered LFP (red, p << 1 x 10~°, 2-tailed paired sample ¢ test). d—f, Same as ¢ but for alpha (green, p < 1 x

107%), beta (pink, p << 1 x 10™""), and gamma filtered LFP (cyan, p < 1 x 107°).

If spiking activity is either organized into oscillations, giving
rise to narrowband fluctuations in the LFP, or if LFP oscillations
reflect population-wide subthreshold fluctuations that modulate
the probability of spiking within a particular band, then spikes
should tend to be aligned in phase with the LFP within these fre-
quency ranges. Alternatively, if no individual rhythmic compo-
nent of the LFP dictates the excitability of neurons, but rather
the precise, moment-by-moment fluctuations of the LFP reflect
the state of the population, we would expect spikes to occur
more often at phases of the broadband LFP that correspond to
states of depolarization across the local population, regardless of
frequency.

To test these competing hypotheses, we measured the phase
of each filtered LEP signal at the times of multiunit spiking activ-
ity. Phase is conventionally measured for oscillatory or spectrally
narrow signals by calculating the analytic signal (Marple, 1999;
Feldman, 2011), where instantaneous amplitude and phase can
be expressed in polar coordinates and whose real and imaginary
parts are related to each other by the Hilbert transform.
However, for spectrally broad signals, the standard computa-
tional implementations break down (Le Van Quyen et al., 2001).
Low frequencies can shift the analytic signal representation by a

constant in the complex plane, distorting the estimated phase
angle. In addition, high-frequency intrusions introduce complex
riding cycles that generate phase reversals and appear as negative
frequencies that distort the analytic signal. To address these prob-
lems, we introduced an updated approach to the analytic signal
representation, termed “generalized phase” (Davis et al., 2020).
Briefly, in this approach we first impose a high-pass cutoff on the
signal (5Hz). This step aims to eliminate low-frequency intru-
sions while also preserving a significant portion of the signal
spectrum and minimizing waveform distortion. Second, we iden-
tify negative frequencies, which can arise from high-frequency
intrusions, and remove them, replacing the phase values with
shape-preserving interpolation. This approximates the continua-
tion of the trajectory of the dominant fluctuation. The result, af-
ter filtering, is an estimate of phase that tracks with the dominant
frequency component of the LFP as it shifts over time (Fig. 2a)
while minimizing phase distortions that arise because of narrow-
band filtering a nonstationary broad spectrum signal such as the
raw LFP (Yael et al,, 2018). All results reported here, for both
broadband and narrowband filtered data, were computed using
GP. Low- and high-frequency intrusions are rare in narrowband
filtered signals, so for narrowband filtered data, computation of
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Scatter plot comparing the magnitude of SPI after use of a broadband filter (x-axis) or theta band filter (y-axis) for
each identified single unit (N = 107 across 20 recordings sessions). b—d, Same as for a but for alpha, beta, and
gamma filters. The wideband filter had a consistently stronger SPI than the narrowband filtered oscillatory phases

across the population of single units.

GP should yield very similar phase estimates to those estimated
using the Hilbert transform. To confirm this, all analyses were
repeated for narrowband filtered signals using the Hilbert trans-
form. As expected, the results were virtually identical. All future
mentions of phase therefore refer to the GP of the signal.

The phase of the wideband filtered signal is strongly coupled
to the timing of measured multiunit spiking activity (Fig. 2b).
We measured an index of the coupling of spikes to each filtered
LFP by calculating the mean resultant length of the circular
spike-phase distribution. This SPI value ranges from 0 (uniform
spike-phase distribution) to 1 (spikes perfectly coupled to a sin-
gle phase), and for the 5-50 Hz wideband filtered signal, the av-
erage SPI was 0.15 = 0.009 SEM (N = 20 sessions across two
monkeys). The wideband filtered SPI was significantly stronger
than the coupling observed after filtering in theta (SPI = 0.08 *+
0.005; p < 1 x 10~ % two-tailed paired sample  test), alpha (SPI =
0.07 = 0.005; p < 1 x 10~'°), beta (SPI = 0.11 + 0.007; p < 1 x
1071, or gamma (SPI = 0.08 = 0.009; p <1 x 1079 frequency
bands (Fig. 2¢—f). These results suggest that the instantaneous
rhythmic state of neuronal excitability is better reflected in the
phase of the ensemble LFP activity rather than in the phase of
any particular narrowband subcomponent.

If oscillations reflect information streams analogous to chan-
nels on a radio, then it could be the case that some neurons are
more coupled to one embedded oscillation, and other neurons
are more coupled to a different oscillation, and by collapsing
across multiunit activity, the phase-dependence of the spiking ac-
tivity is diluted for each narrowband filter. If true, we might find
stronger spike-phase coupling for the wideband filter across the
populations, although individual neurons are best coupled to dif-
ferent narrowband oscillations. To test this, we measured the
spike-phase coupling across filters for well-isolated single units
in our recordings. We did not find any evidence of differential
preference across neurons for narrowband signals. Rather, the
majority of neurons had a stronger SPI to the state of the wide-
band signal compared with theta (78.50%, N = 107 single units;

and identified epochs where the narrowband sig-
nal exceeded a —5dB threshold for at least
onecycle of the center frequency of the filter
bandwidth. Only spikes that occurred during
these epochs were included for that narrowband
SPI measure. Despite restricting each filter band
to spikes that occur when those oscillations are transiently appa-
rent in the data, the wideband measure still captures the strong-
est SPI values (Fig. 4a; wideband mean SPI = 0.16 * 0.010 SEM;
compared with theta, 0.11 = 0.010; alpha, 0.08 £ 0.005; beta,
0.12 = 0.010; and gamma, 0.09 * 0.005; p < 0.001, Wilcoxon
signed-rank test) while also describing a majority of the recorded
data (approximate fraction above dB threshold; wideband 92% vs
theta 16%; alpha 46%; beta 42%; and low gamma 19%).

Thus, spike timing is better predicted by broadband phase
than narrowband phase for any of the bands tested. We next
asked how well spike timing could be predicted based on the
combination of all four narrowband filtered signals. To test this
we constructed a GLM that took as its input the phase values
measured over the four narrow band frequencies (spanning 4-
50 Hz) at times when a spike occurred and an equal number of
randomly drawn times when no spike occurred. The GLM was
trained to predict whether a spike occurred, based on the four
phases. The model was trained on half the data in each recording
session, with the remaining data held out as a test set. The ability
of the model to predict spiking was measured using ROC
analysis.

We reasoned that if oscillatory activity across the multiple
narrow bands drives spiking activity, the four-factor GLM, which
has simultaneous access to the phases of all four oscillatory sig-
nals, should predict spiking better than a GLM trained to predict
spiking based on the phase computed in an individual band
(four-factor GLM AUC = 0.578 £ 0.004 SEM; single narrow-
band GLM AUC = 0.545 * 0.003 SEM; p = 0.00,009, Wilcoxon
signed-rank test). This analysis shows that more information
about spiking is present across multiple bands. This is consistent
with two different hypotheses. The first is that the narrow bands
capture the individual contribution of oscillations that fall within
each band, and the four-factor GLM reflects the joint contribu-
tions of these oscillatory drivers. An alternative hypothesis is that
the processes that drive spiking activity fluctuate over time in
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only a unitary measure of phase—GP
applied to the wideband (4-50 Hz) signal
as its input—and its ability to predict spik-
ing was measured using the same ROC
analysis. As shown in Figure 4b, there was
no significant difference in the ability of
the combined four narrowband or one
wideband GLM to predict spike times as
defined by the area under the curve for
each the ROC for each session (wideband
mean AUC = 0.579 = 0.005 SEM; p =
0.16, Wilcoxon signed-rank test). Thus,
even when combining signals across mul-
tiple frequency bands, narrowband filter-
ing adds no information beyond what is
already present in the phase of the mo-
mentarily dominant fluctuation in the
LFP preserved in the wideband representation and as measured
using generalized phase.

Our results suggest that spontaneous neuronal spiking in the
neocortex is not organized by oscillatory activity but rather is
modulated by fluctuations in synaptic activity that can be esti-
mated from the instantaneous phase of the broadband LFP. If
true, then SPI values should be correlated with how much filter-
ing alters the LFP phase relative to the raw recorded LFP. To test
this, we compared the strength of spike-phase coupling to each
bandpass filtered signal with the degree of correlation between
the LEP signal before and after filtering (Fig. 4c). There was a sig-
nificant positive correlation between SPI and the raw-filtered
LFP correlation across recording sessions (Pearson’s r = 0.65 *+
0.11 95% CI, p < 1 x 10~ '?), suggesting a direct relationship
between spike-phase coupling and how well the filtered LFP
tracked with the raw LFP.

If spikes are more coupled to the broadband LFP than any
embedded narrowband oscillation, then the optimal filter band
for maximizing SPI should be one that is as broad as possible. To
test for an optimal filter band, we scanned across a large parame-
ter space varying the lower and upper bounds of the bandpass fil-
ter. The lower bound ranged from 1 to 50 Hz, and the upper
bound ranged from 5 to 125 Hz with a minimum bandwidth of
4 Hz. Consistent with our prior results, the strongest spike-phase

Figure 4.

Spike-Phase Coupling

Lower Band (Hz)

Narrowband signals do not contain more spike-phase information. a, SPI values after restricting the inclusion of
spikes to when significant power is present in each individual filter band (—5 dB SNR threshold, percentages indicate fraction
of data above threshold; colored dots are N = 20 sessions from 2 monkeys; black dots are the population mean). b,
Representative ROC curves for GLM analyses comparing model sensitivity for identifying spike times based on phase, com-
puted in four narrowband frequency ranges that tile the frequency space from 4 to 50 Hz (red), a single measure of narrow-
band oscillatory phase (blue), or the single wideband GP measure applied to the same frequency range as the four-factor
GLM (black). There was no significant difference between the four-factor and wideband models in identifying spike times
based on phase (Wilcoxon signed-rank test, p = 0.16), whereas the single best narrowband model was significantly weaker
(beta, p = 0.00008). ¢, Scatter plot comparing the correlation between the raw LFP and the filtered LFP signal (y-axis) and
the SPI after filtering (x-axis) in each filter band. There was a significant positive correlation between SPI and how similar the
raw LFP was with the signal after filtering (Pearson’s r = 0.65, p << 1 x 10~ ). d, SPI for a range of bandpass filters rang-
ing in high pass (lower band, 1-50 Hz) and low pass (upper band, 5-125 Hz). Each pixel is color coded with its average SPI
across each recording session (N = 20 sessions from 2 monkeys). White pixels are filter combinations that have bandwidths
<4 Hz. Black contour lines denote SPI intervals (0.02).

coupling was observed for filters that included the largest width
of the signal spectrum, with an exception for the lowest frequen-
cies (Fig. 4d). These results indicate that optimal filters for maxi-
mizing spike-phase coupling estimates span from 3 Hz in the
lower band and as high as we sampled in the upper band
(125 Hz), assuming spike artifacts are effectively removed from
high-frequency components in the LFP. If not, a cautious step
then is maintaining a low-pass filter, which serves to help miti-
gate spurious coupling values because of residual spike artifacts
in higher frequencies.

Spiking activity can bleed into the LFP, artifactually inflating
estimates of spike-phase coupling in high-frequency bands.
Spike artifacts may be responsible for some gamma phase rela-
tionships with spiking activity, as the contribution of spike arti-
facts in the LFP had been previously observed down to 50 Hz
(Ray and Maunsell, 2011; Zanos et al., 2011). To avoid this, we
performed a despiking procedure and examined the consequence
of that despiking on SPI estimates. A comparison of SPI values
on the same data with and without despiking found that the des-
piking procedure significantly reduced SPI values for frequency
bands that included frequencies below 50Hz (but not below
15Hz) such as low gamma (30-50 Hz; not despiked SPI = 0.13,
p =165 x 107, two-tailed Wilcoxon rank sum test), beta (15—
30 Hz; SPI = 0.13, p = 0.026), and the wideband (5-50 Hz; SPI =
0.18, p = 0.009). There was no significant reduction in either
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Figure 5.

Two alternative hypotheses regarding the relationship between spiking activity and LFP fluctuations. a, Signals generated under the hypothesis embedded narrowband fluctuations

drive spiking activity. We generated a narrowband oscillatory fluctuation with power between 8 and 15 Hz. Spikes were generated with a Poisson spike generator coupled to a phase-dependent
probability distribution with spikes more likely at 77/-7r phases and less likely at 0 phases of the narrowband oscillation. This narrowband signal was added to randomly generated broadband
noise to create a simulated LFP. b, Signals generated under the hypothesis ensemble broadband fluctuations drive spiking activity. We generated the same narrowband oscillatory fluctuation
and added the same randomly generated broadband noise as in the simulated LFP in a. Spikes were then generated as in @ but to the phase of the broadband simulated LFP signal. ¢, The
result of the two-signal generation paradigms is two identical simulated LFP traces but with different spike trains generated in relation to the state of either the narrow (blue raster) or broad-
band (red raster) signal. d, The mean power spectrum across 20 simulated LFP signals. Error bars are SEM.

alpha (8-15Hz; SPI = 0.08, p = 0.067) or theta (4-8 Hz; SPI =
0.09, p = 0.190) when we despiked the LFP. These observations
are consistent with recent reports of spike artifacts having an
impact on spike-LFP synchronization at frequencies as low as
20Hz (Banaie Boroujeni et al., 2020). These results argue ei-
ther that the artificial coupling of spiking activity to LFP
phase may be present at low frequencies or that despiking
techniques are overly liberal in the removal of spike wave-
forms. Regardless, even if we consider the possibility that
the despiking procedure is introducing more noise than it is
eliminating, the main result—that the broadband LFP phase
produces the strongest SPI values—holds when this tech-
nique is not applied, and the raw data are left intact.

The results described so far are limited to spontaneous activ-
ity recorded during a period in which animals foveated a fixation
point at the center of a blank screen while awaiting the appear-
ance of a faint visual target. Do these findings generalize to more
naturalistic viewing conditions? To test this, we calculated the
SPI for each frequency band in animals as they freely viewed nat-
ural scene images. As the focus here is on intrinsic fluctuations,
not the transient responses that are evoked at the time of the
saccade, neural activity at the time of the saccade (from 50 ms
before and ending 200 ms after saccades) was eliminated from
analysis. Consistent with the pattern observed during fixation of
a blank screen, the wideband filtered signal produced the strong-
est SPI values (0.16 = 0.008; N = 142 multiunits across two ses-
sions in Monkey T and one session in Monkey W), which was

significantly stronger than the SPI values measured for theta
(0.14 = 0.007; p < 1 x 1077, Wilcoxon signed-rank test), alpha
(0.13 + 0.007; p < 1 x 107'°), beta (0.10 * 0.006; p < 1 X
107", and low gamma (0.11 * 0.006; p < 1 x 10~ '?). Thus, the
spontaneous coupling of spiking activity to broadband fluctua-
tions is not limited to fixating on a blank screen but is apparent
during more dynamic active vision.

Although our experimental results suggest spiking activity is
better correlated with the instantaneous state of the broadband
LFP rather than any individual oscillatory component, the
ground truth mechanism relating spiking to rhythmic LFP activ-
ity is unknown in our recordings. To explore whether our obser-
vations can be explained by the hypothesis that spiking activity is
coupled to broadband LFP phase as opposed to a narrowband
oscillation, we simulated an LFP signal by combining a narrow-
band oscillatory fluctuation that consisted of spectral power
drifting between 8 and 15Hz with broad spectrum noise. The
power spectral density of this simulated LFP fluctuation was
designed to be consistent with the typical 1/f power law observed
in cortical recordings in vivo (Miller et al., 2009; Fig. 5d). We
then generated spike times from a Poisson spike generator,
where the probability was dependent on either the phase of the
narrowband 8-15 Hz oscillatory signal (Fig. 5a, hypothesis A) or
the phase of the combined narrowband and broad spectrum sig-
nals (Fig. 5b, hypothesis B). Spike probability was phase depend-
ent, with spikes most likely to occur near = 77 radians and spikes
least likely to occur near 0 radians. Importantly, the spectral
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Fig. 6b). In the case where the spikes
were generated from the phase of the
broad spectral content of the simulated
LFP (hypothesis B, red), the wideband
filtered LFP was strongly correlated with
the raw simulated LFP (Pearson’s r =
0.84, Fig. 6¢), and the spike-phase rela-
tionship was significantly stronger after
filtering in the wideband (SPI = 0.29 =
0.002 SEM) compared with the spike-
phase coupling to the narrowband filtered LFP (SPI = 0.14 =
0.002 SEM; p = < 0.0001 two-tailed Wilcoxon signed-rank test;
Fig. 6d). These results indicate, in principle, that if neurons were
coupled to an oscillatory component, then narrowband filtering
to extract that oscillation would indeed yield stronger spike-
phase coupling than the broadband signal.

We next asked whether a narrowband or broadband spike-
correlated signal could reproduce the observed relationship of
increasing spike-phase coupling with increasing correlation
between the filtered and raw LFP signal. We filtered the signal
under various filters (theta, 4-8 Hz; alpha, 8-15Hz; beta, 15-
30 Hz; and wideband, 5-50 Hz) as in the cortical recordings, as
well as a broad bandpass from 1 to 100 Hz, and measured both
the spike-phase coupling for narrowband and broadband corre-
lated spike generation and the correlation between the filtered
and raw LFP signal. In the case where spikes were correlated
with the narrowband signal, the best filter was the 8-15 Hz filter
(matching the source of the spike-generating signal), followed by
the wideband and broadband filters, which each included the
spike-generating signal band within its bandwidth but also
included a smaller and larger part of the noise spectrum, respec-
tively (Fig. 7a). In the case where spikes were correlated with the
broadband signal, the best filter was the broadband filter and
decreased as the filters became narrower (Fig. 7b). The narrow-
band spike source had a weak correlation between the SPI
(Pearson’s r = 0.27), and the degree of filter raw-signal similarity
as the optimal filter was one that eliminated the broadband noise
from the simulated LFP. In contrast, the broadband spike source
reproduced the strong positive correlation between SPI and the
filtered raw LFP similarity observed in our recordings (Pearson’s

LFP (solid blue line) is the recovered spike-generating signal from the ensemble simulated LFP (dotted blue line) under hypothesis
A (from Figure 5). b, The SPI from the phase of the narrowband signal is significantly stronger after narrowband filtering as com-
pared with wideband filtering for the simulation where spikes were coupled to the phase of the narrowband component
(5-100 Hz; N = 20 simulations; Asterisks indicate significance at p << 0.0001 2-tailed Wilcoxon signed-rank test). ¢, The
wideband filtered LFP (5-100 Hz, red line) is the recovered spike-generating signal from the broadband simulated LFP
under hypothesis B (from Figure 5; dotted red line). d, The SPI from the phase of the wideband is significantly stronger
after wideband filtering as compared with narrowband filtering for the simulation where spikes were coupled to the
phase of the broadband LFP (p << 0.0001, 2-tailed Wilcoxon signed-rank test).

r = 0.92; Fig. 7c). Our results indicate a that model where spikes
are coupled to the state of fluctuations in the broad spectral con-
tent of the LFP is sufficient to account for our observations in
vivo and suggest neuronal spiking is not preferentially coupled to
narrowband oscillations.

Discussion
A central goal of systems neuroscience is to understand how
brain activity underlies information processing and behavior.
Ideally, we would like to record every action potential of every
neuron and ask how they relate to one another in the service of
behavior, but even with the best available neurophysiological
tools—sets of electrode arrays with contacts numbering in the
thousands—we can only sample a tiny fraction of the neurons in
the brain. Therefore, neurophysiologists typically rely on indirect
measures of the activity to estimate the spiking statistics of larger
cortical populations. These include LFP, EEG, or MEG, which
provide indirect measures of the activity of larger populations of
neurons. Rhythmic patterns of activity are often observed in
these measures, and it is common to treat these rhythmic pat-
terns as meaningful computational units, potentially serving as
independent channels of information processing, or if not inde-
pendent in the context of cross-frequency phase-amplitude
coupling (Munia and Aviyente, 2019), at least functionally disso-
ciable from the signal in which they are embedded (Thut et al.,
2012; Einevoll et al., 2013), similar to turning the dial on a radio
to receive different streams of information.

One way of thinking about rhythmic dynamics is that the
spiking probabilities of the neurons in the larger population
covary within some frequency band and that this results in an
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Figure 7. The model with a broadband spike correlation best matches cortical
recordings. a, SPI values after filtering simulated LFP in various band passes when
spike times are correlated to the phase of 8—15 Hz narrowband component. In this
case, the optimal filter is aligned to the signal source (8—15 Hz). b, Same as a but
when spike times are coupled to the phase of the broadband LFP. The pattern of
SPI across filters is well matched to the pattern observed in data (Fig. 4c). ¢, SPI
(x-axis) is poorly correlated with the similarity between filtered and raw simu-
lated LFP (y-axis) when spikes are correlated with narrowband signal phase (blue
dots, r* = 0.08). Conversely, the correlation is strong when spikes are correlated
with broadband signal phase (red dots, > = 0.85). The relationship for a broad-
band signal source is well matched to the pattern observed in the cortical record-
ings (Fig. 4¢).
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oscillation, for the example studied here, in the LFP. If so, then
by filtering the LFP within that oscillatory band and asking how
it relates to some measure of either behavior (e.g., performance
on a discrimination task), a neural property (such as spike timing
or transmission of information across areas), or its covariation
with some behavioral manipulation (e.g., directing attention into
or away from the retinotopic locus of the electrode), one can
identify the contribution of the oscillation to neural computa-
tions or behavior. However, there are some problems with treat-
ing neural fluctuations as oscillations. First, neural fluctuations
are often only transiently rhythmic in the awake state (Jones,
2016), and even then they are not purely sinusoidal (Cole and
Voytek, 2017) as they drift in frequency content from moment
to moment with changes in arousal (Vinck et al., 2015), attention
(Fries et al., 2001), or sensory input (Henrie and Shapley, 2005).
Even in the case when neural fluctuations are strongly rhythmic,
we find narrowband filtering captures less of the spike-phase
relationship than when maintaining a wideband representation.
This may be because the application of narrowband filters to sig-
nals that are nonstationary in their frequency content can result
in a loss of timing precision in phase estimates (Yael et al., 2018).

The results presented here argue that neurons are not specifi-
cally coupled to narrowband oscillatory activity, but rather it is
the state of the broadband moment-to-moment fluctuations that
are informative of the relative excitability of the local population.
This is not to say that rhythms are not apparent in fluctuating
dynamics or that they are irrelevant for cortical function. Nor are
we suggesting that rhythmic power is limited to what one would
expect from stochastic synchronizations in a 1/f noise process.
For example, it is not the case that oscillatory rhythms are only
as informative as their fraction of the spectral content of broad-
band fluctuations. We observed that low gamma filtered signals
had stronger SPI values than one might expect based on their rel-
ative power in the PSD and given how poorly correlated the
gamma filtered signals were to the raw LFP. Similarly, the alpha
band filtered signals had much more power and were relatively
well correlated with the raw LFP yet had weaker SPI values than
the beta band filtered signals, which were more poorly correlated
with the raw LFP. Indeed, there is variation in the degree to
which spikes couple to LFP phase across the five frequency bands
studied here. However, that does not imply that those frequency
bands are independent information channels, distinct from the
rest of the LFP. It is evident that they are not, as we see the
strongest SPI values for the broadest frequency bands.

To test what one would expect to see if it were the case spikes
preferentially coupled to a narrow set of frequencies, we simu-
lated spike trains generated from the phase of oscillatory signals
embedded in an otherwise 1/f noise spectrum (hypothesis A).
Under these conditions, we found a stronger SPI to the narrow-
band filter that best matched the signal underlying the spike gen-
eration signal. We also found a reduction in SPI values when the
broadband filter was used. This matches what one would intui-
tively expect from a system composed of an oscillatory signal
combined additively with a broad noise. This is the intuition
that often underlies narrowband filtering approaches in electro-
physiological signal analysis. Although there may be alternative
explanations for why a broadband signal produces stronger SPI
values in our cortical recordings, the second model, where spikes
are fluctuation driven (hypothesis B), was sufficient to account
for the spike-LFP coupling relationships observed in the data.

Because the phase of narrowband oscillatory activity does not
predict spiking activity as well as the phase of wideband activity,
it raises the question on whether and when narrowband filtering
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is appropriate to study rhythmic spiking dynamics. The use of
narrowband filters assumes a frequency resolved signal in the
brain that is embedded in noise. As shown by hypothesis A and
in Figure 6, when neural activity is strongly coupled to latent os-
cillatory activity, narrowband filtering is effective at recovering
the signal. Therefore, in situations with steady, ongoing oscilla-
tory activity that has low variance in frequency, such as sleep
spindles, hippocampal theta, or gamma oscillations because of
strong feedforward input, narrowband filtering may better cap-
ture spiking. However, if the signal is not known, narrowband
filtering imposes an assumption of what is signal and noise that
may not be warranted and may yield misleading results. Analytic
techniques that allow for the contribution of broader frequency
ranges, as used here, may reveal the degree to which results are
frequency dependent or filter dependent.

It is important to note the limitations of the present findings.
First, all analyses here have focused on spontaneous activity. We
cannot generalize the present results to neural data collected
under other conditions such as data collected during stimulus-
evoked responses. Some narrowband frequency ranges, such as
the gamma band, do not exhibit much power in the absence of
strong sensory input (Henrie and Shapley, 2005; Ray and Maunsell,
2010). Additional experiments will be needed to determine the
degree to which gamma band and generalized phase predict spike
timing under these conditions. Further, the majority of the data ana-
lyzed here was recorded from the visual cortex in monkeys perform-
ing a particular task in which they foveated a fixation spot at the
center of a blank screen, awaiting the appearance of a faint visual
target. In our spontaneous cortical recordings, which are largely rep-
resentative of the aperiodic 1/f power law observed in primate visual
cortex (Fries et al,, 2001; Henrie and Shapley, 2005; Yu and Ferster,
2010), even when oscillations are transiently present, narrowband
filtering produces a weaker estimate of the spike-LFP relationship
than a wider representation.

The generalized phase approach used here provides a meaning-
ful measure of phase for spectrally broad signals (Davis et al.,
2020) and reveals a stronger relationship between broadband LFP
fluctuations and spiking probability than could be estimated from
any individual narrowband filtered signal. The advantage of GP
over narrowband signals is that it follows the moment-to-moment
fluctuations in the signal and provides a phase value that general-
izes across changes in frequency content. This approach can reveal
patterns that would not be clear from an analysis of narrowband
oscillations. For example, analysis of broadband measures of phase
led to the discovery that the alignment of spontaneous traveling
waves of cortical activity with the retinotopic locations of faint vis-
ual targets was predictive of the magnitude of evoked activity and
perceptual sensitivity (Davis et al., 2020). These effects were only
apparent in the data when the state of broadband LFP fluctuations
was considered. When filtered in narrow bands, the predictive
power of wave phase on behavioral performance was abolished.
Consistent with those findings, the results presented here show
that at least in the spontaneous waking activity of area MT, the in-
stantaneous state of cortical populations is better estimated from
the GP of broadband LFP fluctuations than from any narrowband
oscillatory component. These results suggest that the phase of
broadband neural fluctuations, rather than any specific narrow-
band frequency content, is the main influence on spontaneous
spiking activity in the cortex.
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