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Abstract

Osteoarthritis (OA) is a joint condition that causes significant impairment of the chondrocyte. The gradual degradation of
the cartilage lining of one or more freely moving joints, as well as persistent inflammation, are the causes of osteoarthritis.
Current medications focus on alleviating symptoms rather than curing the condition. The aim of this review is to evaluate
the potential use of fibroblast growth factor receptor 1-bound extracellular vesicle as novel therapy for osteoarthritis. This
reviewarticlewas completedby searching for the keywords “FibroblastGrowth FactorReceptor 1”, “ExtracellularVesicle”,
and “Osteoarthritis” in various journals in several search engines.Of the 102 scientific articles found, 95were foundsuitable
to be used as material in the making of this article. The upregulated amount of FGFR1 (fibroblast growth factor receptors)
signalling suggesting the progression of degenerative cartilage that commonly seen in osteoarthritis (OA) patients. Several
studies showed that the involvement of extracellular vesicles (EV) derived fromMSCs could enhance cartilage repair and
protect the cartilage fromdegradation. EVshave the potential to deliver effects to specific cell types through ligand-receptor
interactions and several pathwaymechanisms relatedwith the FGFR1. EVs and FGFR1-bound Evs have been postulated in
recent years as possible therapeutic targets in human articular cartilage. The protective benefits on both chondrocytes and
synoviocytes in OA patients can be achieved by administering the MSC-EVs that may also stimulate chondrocyte prolif-
eration and migration EVs have a promising potential to become a novel therapy for treating patients with OA. However,
further researches are need to be conducted to discover further the application of this therapy.
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1. Introduction

O steoarthritis (OA) is the most prevalent joint
condition that causes significant impairment

in a huge percentage of elderly people [1]. There are
about 100 distinct kinds of arthritis, with OA being
the most prevalent [2]. OA is a multifaceted and
complex illness that may be described as persistent
joint dysfunction affecting the whole joint [3]. In
2020, there were approximately 86.7 million people
aged 20 and over with reported knee OA worldwide
[4]. Calculation by the IHME GBD Tool suggests
that the peak incidence of OA among 60 to 64 year-
old is 1216 per 100,000 [5]. Furthermore, approxi-
mately 15.1 million people have symptomatic knee
OA, with a lifetime risk of 13.8% [6]. The knee is the
most prevalent location of OA in clinical practice,

followed by the hand and hip [7]. The cause of
osteoarthritis is the progressive degeneration of the
cartilage lining of one or more freely moving joints
and chronic inflammation [8,9]. This frequently re-
sults in incapacitating dysfunction, which can
include different degrees of persistent pain, joint
stiffness and edema, physical deconditioning, and a
variety of functional, social, and vocational prob-
lems and limits [10]. Moreover, the risk factors of
OA include obesity, traumas, advancing age, female
sex and heredity [11]. There are now also substantial
evidences that OA is a risk factor for the develop-
ment of cardiovascular disease [12], memory loss
[13] and diabetes [14].

Changes in extracellular matrix (ECM) composi-
tion or changes in the biomechanical environment
of chondrocytes greatly enhance the risk of OA by

Received 8 September 2021; revised 1 November 2021; accepted 29 November 2021.
Available online 1 June 2022

* Corresponding author.
E-mail address: bryan.gervais@student.unud.ac.id (B.G. de Liyis).

https://doi.org/10.37796/2211-8039.1308
2211-8039/Published by China Medical University 2022. © the Author(s). This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

R
E
V
IE
W

A
R
T
IC

L
E

mailto:bryan.gervais@student.unud.ac.id
https://doi.org/10.37796/2211-8039.1308
http://creativecommons.org/licenses/by/4.0/


disrupting signals important in the maintenance of
normal cartilage development and homeostasis [15].
The discovery of prospective treatment targets
implicated in OA pain or structural progression has
been made possible by advances due to the
knowledge of OA pathophysiology [2]. The patho-
physiology of OA includes cartilage degradation
and bone remodeling as a result of an active reac-
tion of chondrocytes in the articular cartilage and
inflammatory cells in the surrounding tissues [16].
The primary change is thought to be the loss of
articular cartilage, but secondary changes include
subchondral bone remodeling, the formation of
osteophytes, the progression of bone marrow le-
sions, alteration in the synovium, joint capsule, lig-
aments and meniscal tears due to a combination of
cellular changes and biomechanical stresses [17].
Adult articular cartilage is composed of extracellular

matrix (water, collagen and proteoglycans) and chon-
drocytes [18]. The regular turnover of the extracellular
matrix components is governed by the chondrocytes
that synthesize proteins and the proteolytic enzymes
that break them down [19]. Chondrocytes, in turn, are
affected by a variety of variables, including poly-
peptide growth factors and cytokines, structural and
physical stimulation, and even matrix components
[20]. Multiple inflammatory mediators have been
found in the synovial fluid of patients with OA,
including plasma proteins (C-reactive protein), pros-
taglandins (PGE2), leukotrienes (LKB4), cytokines
(TNF, IL1, IL6, IL15, IL17, IL18, IL21) and growth fac-
tors (TGF, FGFs, VEGF, NGF) [21]. One of the growth
factor receptors, FGFR1,has catabolic effects inhuman
articular chondrocytes and invertebrate disc tissue by
upregulating matrix-degrading enzyme production,
inhibiting ECM accumulation and proteoglycan syn-
thesis, and clustering of cells, all of which are associ-
ated with arthritic conditions (Fig. 1) [22]. A
significantly increased levels of FGFR1 is detected in
both the chondrocytes, subchondral bone and syno-
vium of OA patients [23,24]. Through the stimulation
of RUNX2 and ELK1, FGFR1 promotes catabolic ef-
fects by limiting ECM synthesis and upregulating
matrix-degrading enzyme production [25].
While there is no cure for OA, there are treat-

ments that can help control symptoms and improve
quality of life [26]. Currently, non-steroidal anti-in-
flammatory (NSAIDs) medications, analgesics
including opioids, and intraarticular corticosteroids
are among the conventional pharmacological treat-
ments [27]. These therapy methods help alleviate
arthritis symptoms but do not cure or inhibit the
causal pathway of degeneration [28]. Although
NSAIDs have a clinically significant therapeutic
impact on OA pain, the benefits must be balanced

against the risks such as cardiovascular, immunity
and gastrointestinal complications [29,30]. Novel
regenerative treatments have received a great deal
of interest in recent years. In recent years, fibroblast
growth factor (FGF) signalling has been implicated
in cartilage homeostasis [31].
Fibroblast Growth Factor Receptors (FGFRs) are a

group of receptor tyrosine kinases that are expressed
on cell membranes and play important functions in
the development of cells when bind with the corre-
sponding Fibroblast Growth Factor (FGF) [32]. The
human FGF gene family may be classified into eight
subfamilies based on phylogenetic analysis: FGF1,
FGF3, FGF4, FGF7, FGF8, FGF9, FGF11, and FGF19
[33]. FGFR1, FGFR2, and FGFR3 are the most
numerous in the joint, with FGFR1 and FGFR3 being
the most common receptors in human chondrocytes
[34]. In degenerative cartilage of OA, the level of
FGFR1 is increased relative to FGFR3, suggesting that
FGFR1 is the main FGF route in cartilage degenera-
tion [35]. Furthermore, conditional deletion of FGFR1
in a temporomandibular joint OA model has been
shown to slow the development of the disease, and
that inhibition of FGFR1 signalling may increase
autophagic activity [23]. A novel therapy method
purposed is to administer FGFR1-bound Extracel-
lularVesicles (EVs) to bindwith thebody's FGF1, thus
preventing binding with the body's FGFR1.
Acknowledging the potential of FGFR1-bound

EVs, the authors are interested in studying further
regarding this modality so that it can provide better
prospects in the management of osteoarthritis.

2. Method and materials

A literature review was utilized as the review
approach. The literature references are from repu-
table search engines PubMed and ScienceDirect,
and include terms like “Fibroblast Growth Recep-
tor”, “Extracellular Vesicles,” and “Osteoarthritis”.
All research linked to Fibroblast Growth Receptor 1
and Osteoarthritis are suitable for use as reference.
At least five years should have passed since the
studies were conducted. From the 102 journals
examined, 95 were judged to be suitable for use as
references in this work. The evaluated information
is compiled into a single scientific literature review
once it has been reviewed for credibility and
dependability.

3. Results and discussion

3.1. Pathophysiology of osteoarthritis

OA is caused by the inability of chondrocytes to
maintain equilibrium between the production and
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breakdown of these extracellular matrix compo-
nents (Fig. 2) [36]. Trauma induces microfractures or
inflammations that cause an increase in enzymatic

activity leading to the production of “wear” particles
and subsequently be ingested by local macrophages
[20,37]. When the formation of these “wear”

Fig. 1. The Role of FGF1/FGFR1 in the Process of OA. Legend: RunX2: Runt-related transcription factor 2; ELK: ETS Like-1 protein.
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particles outweighs the system's capacity to elimi-
nate them, they become mediators of inflammation,
causing the chondrocyte to produce degradative
enzymes [19,20,36]. Proinflammatory cytokines such
as TNF, IL-1, and IL-6 are also released when mol-
ecules from collagen and proteoglycan degradation
are taken up by synovial macrophages [21,38]. These
cytokines can attach to chondrocyte receptors,
causing more metalloproteinases to be released and
type II collagen synthesis to be inhibited, eventually
accelerating cartilage breakdown [38]. Significant
accumulation of adipokines in obese patients may
also trigger the release of several inflammatory cy-
tokines and proteases such as MMP-1, MMP-3,
MMP-13, ADAMTS-4, TNF, IL1, IL6. These inflam-
matory mediators may further suppress the prolif-
eration of chondrocytes in the cartilage and
interference with the equilibrium between osteo-
blast and osteoclast in the bone [39].

3.2. FGFR1 expression in osteoarthritis

Related with the pathophysiology of OA, FGFRs
were thought to be involved as FGF ligands played a
major role in the conservation of articular cartilage.
FGFRs in human joints are reported to play a sig-
nificant role in the homeostasis of articular cartilage.

In specific, FGFR1 is discovered to be eminently
expressed in the articular cartilage of the knee [40].
Recent studies reported an escalating number of
FGFR1 expressions along with a diminishing
amount of FGFR3 found in the articular cartilage of
OA patients. These expressions were exemplified in
the mice models spontaneously and following the
surgical procedure [41]. This suggests that the sig-
nalling of FGFR1 could accelerate the degradation of
the matrix in articular cartilage.
The signalling of FGFR1 may promote the tran-

scription factors expression of RUNX2 and ELK1.
Expression of RUNX2 and ELK1 implicates the p38
MAPK and RAFeMEKe ERK pathways involve-
ment [22]. Delayed FGFR1 signalling inhibits the
catabolic response indicated by the decelerated
process of articular cartilage degeneration. Howev-
er, the exact mechanism of its molecular responses
remains unknown [42].
RUNX2 is a critical transcription factors that

regulating chondrocytes and osteoblasts differenti-
ation [43]. Multiple studies suggested that FGFR1
signalling regulates the RUNX2 expression, both in
vivo and in vitro. Altered articular chondrocytes
mainly initiate the progression of OA due to the
damaged chondrocytes towards cartilage-degrading
enzymes and inflammatory cytokines. The combi-
nation of these cytokines conceives the infiltration of
phagocytic cells within the joints [44,45]. The upre-
gulation of RUNX2 expression is highly associated
with chondrocytes hypertrophy which is strongly
correlated with the pathogenesis of OA [43,46].
Another pathway is P38 MAPK signalling

pathway holds a significant role throughout several
diseases, particularly for the initiation and pro-
gression of OA [47e49]. The release of MMPs, che-
mokines, COX-2 enzymes in human articular
cartilage, and proinflammatory cytokines might be
triggered by the activation of p38 MAPK pathways
signalling [49]. Many experiments had tried to
suppress the activation of the p38 MAPK signalling
pathway in order to study the potential down-
regulation of inflammatory cells recruitment. The
stoppage of this pathway tends to diminish the
production of proinflammatory cytokines and
apoptosis of chondrocytes in articular cartilage [50].
TNFa and IL-1b are the proinflammatory cytokines
that had shown to be induced by the activation of
the P38 MAPK pathway [51].
These pathways push a progressive change to-

wards the pathophysiological knee of OA condition
as the involvement of FGFR1 expressions increased.
FGFR1 was found to be striving the catabolic re-
sponses resulting in the increase of a disintegrin and
metalloproteinase with a thrombospondin type 1

Fig. 2. Pathophysiology of osteoarthritis.
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motif ADAMTS5geneandmatrixmetalloproteinases
13 (MMP-13) [42]. Up-regulation in such enzymes
were missing in the inactivation of FGFR1 signalling
experiments [42,52]. The rise of FGFR1 signalling in
the knee joint's articular cartilage canalso be reflected
as the FGFR3 expression is gradually declined in OA
patients. This decreased FGFR3 expression happens
due to the FGF-2/FGFR1 signalling, which is found to
be significantly increased [53].
Another important aspect in maintaining and

regulating the articular cartilage that was recently
discovered is autophagy [54]. Excessive autophagic
situation can, later on, develop into a worse pro-
gression ofOA. The autophagy activity is inhibited by
the down-regulation of FGFR1 expression, although
the precise details for thismechanism remain unclear
[42,54,55]. The autophagic activity had been studied
in vitro and in vivo. The microtubule-associated pro-
tein 1 light chain 3a (LC3) which is a marker for
autophagosome showed an increased along with
more expression of FGFR1 signalling. Later on, LC3
will convert to LC3-II as the marker for autophagic
activity. Examination of this marker with Western
Blotting showed an increase of 2.5 times from the
normal LC3-II level [23]. A study in mice models
showed that the deletion of FGFR1 expression was
proven to be having a better aggrecan comparedwith
micewith high FGFR1 expression [56]. Another study
also reported the diminished amount of FGFR1 could
delay the progression of OA in temporomandibular
joint model [42].

3.3. Extracellular vesicle in osteoarthritis

EV is composed of variative micro- and nano-
sized particles produced by both healthy and altered
cells. EV is collectively classified as microparticle/
microvesicles, exosomes, and apoptotic bodies
[57,58]. Many studies have been conducted on the
involvement of extracellular vesicles (EV) in osteo-
arthritis. Recently, it was revealed that EVs can also
be generated from MSCs, and that they may have a
wide range of therapeutic applications in a variety of
human illnesses [59]. A number of studies have
found that utilizing MSC-derived EVs to enhance
cartilage repair and protect against OA-induced
cartilage degradation has shown beneficial results
[59e61]. Moreover, exosome release is limited by
FGFR inhibitors and affect the stromal cells' capacity
to defend in OA [62].
EVs have the potential to deliver effects to specific

cell types through ligand-receptor interactions [63].
Research involving the use of synthetic receptor-
bound vesicles that binds to natural ligand was
conducted as proof-of-concept that this therapeutic

approach successfully depletes the targeted ligand
by promoting its endocytic uptake and lysosomal
degradation [64e66]. EVs are generally simple to
operate and have a wide range of surface engi-
neering as well as encapsulation capabilities. Mol-
ecules linked to the EV surface have been
demonstrated to confer targeting ability, boost
expression levels, improve solubility, and activate
antigen immunogenicity, and they are predicted to
have therapeutic benefits against different degen-
erative illnesses [67]. By providing an alternative
receptor to selectively bind with the endogenous
FGF1, this might have comparable effects in pre-
venting future OA degeneration.
The pathogenesis of OA is complicated, and the

involvement of many distinctive cells are difficult to
be studied, especially the role of EVs. However,
some cell types within synovial fluid like bone, lig-
aments, tendon, fibroblast-like synoviocyte and
chondrocytes are acknowledged to produce abun-
dant EVs [68]. EVs have been known to maintain the
communication between distinct cells lineage. EVs
held a crucial role in maintaining joint homeostasis
by regulating ECM production, inflammatory re-
sponses, and cell proliferation [69,70]. It is found
that OA-like situations in the chondrocytes might
drive EVs to become more harmful and aggravate
the OA condition [71]. ECM has a low cell density so
that it holds a crucial role in articular cartilage
properties. To maintain healthy articular cartilage
integrity, a composure between ECM breakdown
and synthesis should be achieved. As in OA condi-
tion, there is an alteration in maintaining the har-
mony of ECM synthesis and breakdown [72,73].
Hence, the synthesis of ECM could no longer keep
up with the breakdown that further will appear as
the clinical symptoms, including osteophyte for-
mation, pain, and joint space narrowing. The con-
dition might be proven by isolating the EVs from
synovial fibroblast under the IL-1b condition, which
shows an excess of degradable mediators. EVs
product from the synovial joint itself may play sig-
nificant roles in tissue repair and the recruitment of
Mesenchymal stem-cell (MSCs), which further will
be discussed in the other chapter [74].
Despite the indistinct explanation of the detailed

mechanism, the properties of MMPs are considered
to lead the ECM breakdown process. Specifically,
MMP-13 is believed as the mediator accountable for
the significant breakdown of ECM. In addition, the
activation and production of such proteolytic en-
zymes could further trigger the production of IL-1b
and TNF-a. As the degradation of cartilage progress,
further induction of these proinflammatory cytokines
might be generated through the autocrine
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mechanism, followed bydistinctive proinflammatory
cytokines, including IL-8 and IL-6 [75].
The breakdown of ECM can be seen as the most

symptoms inOA are composed of both fibroblast-like
synoviocytes and chondrocytes [76]. EVs particles
confined from the synovial fibroblasts along with the
administrationof IL-1b to imitates thepathologicalOA
environment were proven to promote aggrecan and
MMP-13 expression within the chondrocytes, indi-
cating the process of tissue breakdown and degener-
ation [77].
Another known component of EVs is miRNA.

miRNA is the non-coding group of single-stranded
RNA, which consisted of 19e24 nucleotides [78]. In
OAcases, somemiRNAswerenoticed tobe increased
along with a notable decrease in several miRNAs.
miR-504- 3p,miR-210-5p,miR-155-3p, andmiR-16-2-
3p are the upregulated miRNAs in the synovial fluid
of OA patients. On the other hand, miR-6878-3p,
miR-146a-5p, and miR-26a-5p are the miRNAs that
were found to be downregulated [79]. These down-
regulated particles are linked with the process of
mucin-type O-glycan biosynthesis, glycan degrada-
tion, and cell adhesion molecules [78e80]. miRNAs
that were upregulated were associated with the
metabolism of biotin and synthesis of thyroid hor-
mone. Chondrocytes proliferation and apoptosis,
regulated by glycogen synthase kinase-3b, can be
altered following the expression of miR-372-3p [80].
The imbalance level of miRNAs may further worsen
the degeneration of the cartilage. However, targeting
miRNAs associated with signalling cascade may
counter the activation of several proinflammatory
cytokines pathways and avoid the occurrence of the
disease [71].
Targeting the role of EVs to counter such inflam-

matory environment in OA conditions should be
explored further. However, there has not been any
perfect procedure or method to prepare and select
EVs that will be administered. To acquire the best
result of EVs, purification using ultracentrifugation
followed by density gradient flotation needs to be
done. The content of the EVs can be varied based on
the origin of the tissue cultured [81]. To separate the
chondrocytes, osteoblast, and adipocytes completely
from MSCs, the procedure needs a change in the
microenvironment that can be done by bioengi-
neering. Later on, the EVs derived fromMSCs can be
administered as an injection into the joint space [82].

3.4. Extracellular vesicle interaction with FGFR1

The optimal OA management should concentrate
on the repair of tissue homeostasis due to the strong
biological fingerprint, rather than symptomatic [83].

EVs and embedded molecules, such as proteins,
lipids, or nucleic acids, have been postulated in
recent years as possible contributors to chon-
drocytes pro-regenerative and immunosuppressive
capabilities, alongside secreted factors [83e85]. In
fact, MSC-EVs have protective benefits on both
chondrocytes and synoviocytes in OA patients by
stimulating chondrocyte proliferation and migration
[86,87]. Potential embedded molecules such as
FGFR1-bound EVs, acting as natural FGFR1
competitor for ligand, have potentials in preventing
the mineralization tidemark from migrating to the
nonmineralized articular cartilage by inhibiting
cartilage degeneration [88]. Moreover, a recent in
vivo research targeting the natural receptor by
providing an alternative synthetic ligand showed
significantly reduction loss of proteoglycan and
articular cartilage degradation, as well as the pro-
duction of ECM degrading enzymes and death in
articular chondrocytes [41]. Conversely, providing
an alternative receptor with higher affinity to
selectively bind to the natural ligand could possibly
exert similar effects in preventing further degener-
ation in OA.
EVs are made up of a complex mixture of lipids,

surface and membrane molecules, and other
components; some of these components help in
tissue targeting, while others maintain minimum
non-specific interactions [89]. It was shown that
nanobodies may be attached to the surface of
extracellular vesicles using phospholipids, altering
their cell targeting behavior at least in vitro [90].
Other researchers have achieved comparable
findings by using native EV membrane proteins
(e.g., Lamp2b and platelet-derived growth factor)
as fusion partners in targeting ligands [91,92]. An
N-terminal myristoylation signal (MYR) anchors
artificial mem-opto-FGFR1 to the plasma mem-
brane, followed by the KD, CTD, and LOV domains.
mV-mem-opto-FGFR1 is inserted into the plasma
membrane by incorporation of the transmembrane
domain of p75 [93]. Another option is to genetically
engineer vesicle-forming cells to make a trans-
membrane receptor or protein before vesicle for-
mation, which has been extensively researched [94].
Furthermore, FGFR1 gene is amplifiable and dual-
color silver-enhanced in situ hybridization could be
used for assessing the amplification [95,96].

3.5. Reliability of the treatment in OA

EVs are essential biological microparticles that
can prevent OA in numerous ways, particularly in
its interaction with FGFR1 in human articular
cartilage. Furthermore, MSC-EVs may provide
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specific interaction of the targeted tissues [89]. In
addition, the usage of EVs is proven to suppress the
MMP-13 expression, which is strongly correlated
with the lower production of proinflammatory cy-
tokines [42]. By reducing the production of some
ECM degrading enzymes and maintaining the
number of proteoglycans, EVs may prevent the
progression of OA [41]. The ability to diminish the
FGFR1 signalling would also suppress the auto-
phagic infiltration in the articular cartilage and
prevent further progression of OA. However,
several pitfalls may also follow this novel treatment.
There is no standardized procedure or validated
method to isolate the specific origin of EVs [71]. The
cost of such a procedure should also be calculated
carefully as the multiple isolation methods may in-
crease the cost, time, and effort. The complexity in
developing the perfect isolation techniques may also
be a burden towards establishing this therapy [97].

4. Conclusion

The most frequent causes of OA are underlying
bone disease and the gradual degradation of the
cartilage lining of one or more freely moving joints.
The amount of FGFR1 is raised in OA degenerative
cartilage, suggesting that FGFR1 is the primary FGF
pathway in cartilage degeneration. Moreover,
employment of MSC-EVs to improve cartilage
repair and protect against OA-induced cartilage
degradation has proved to be helpful in a number of
trials. It results to the point that the novel usage of
FGFR1-bound EV-derived MSC could be beneficial
in the treatment of osteoarthritis by preventing
ligation of FGF1 to the natural FGFR1. However,
more clinical trials are needed to elucidate the
specific clinical consequences and to understand the
mechanism of this modality.
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