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ABSTRACT

Regulatory agencies rely upon rodent in vivo acute oral toxicity data to determine hazard categorization, require appropriate
precautionary labeling, and perform quantitative risk assessments. As the field of toxicology moves toward animal-free
new approach methodologies (NAMs), there is a pressing need to develop a reliable, robust reference data set to
characterize the reproducibility and inherent variability in the in vivo acute oral toxicity test method, which would serve to
contextualize results and set expectations regarding NAM performance. Such a data set is also needed for training and
evaluating computational models. To meet these needs, rat acute oral LD50 data from multiple databases were compiled,
curated, and analyzed to characterize variability and reproducibility of results across a set of up to 2441 chemicals with
multiple independent study records. Conditional probability analyses reveal that replicate studies only result in the same
hazard categorization on average at 60% likelihood. Although we did not have sufficient study metadata to evaluate the
impact of specific protocol components (eg, strain, age, or sex of rat, feed used, treatment vehicle, etc.), studies were
assumed to follow standard test guidelines. We investigated, but could not attribute, various chemical properties as the
sources of variability (ie, chemical structure, physiochemical properties, functional use). Thus, we conclude that inherent
biological or protocol variability likely underlies the variance in the results. Based on the observed variability, we were able
to quantify a margin of uncertainty of 60.24 log10 (mg/kg) associated with discrete in vivo rat acute oral LD50 values.
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Acute systemic toxicity studies are used by regulatory agencies
to determine hazard categorization, assign appropriate labeling
to alert consumers to potential toxicity hazards, and in risk as-
sessment applications (Strickland et al., 2018). The in vivo regula-
tory test guidelines are used to determine a dose level expected
to result in 50% lethality for tested animals following a single
oral administration of test substance (oral LD50). There are regu-
latory needs for experimentally derived discrete point estimates
of oral LD50 values (eg, when used to determine acceptable ex-
posure limits), but in other instances a range of LD50 values may
be acceptable (eg, to define personal protective equipment
requirements; Morris-Schaffer and McCoy 2021; Strickland et al.,
2018). To address these regulatory needs, multiple protocols
have been internationally harmonized by the Organization for
Economic Co-operation and Development (OECD) health effects
test guidelines to identify potential acute oral toxicants (OECD,
2002a,b, 2008).

As the field of toxicology moves toward the development of
new approach methodologies (NAMs) that do not require the
use of laboratory animals, there is an inherent need for fully
characterized reference test data against which NAMs can be
compared. For acute oral toxicity, rodent LD50 values serve as
the primary reference comparator, and therefore it is important
to compile a resource of in vivo reference data and to character-
ize the variability of these values based on independently con-
ducted studies for the same test substances. Simply put, a solid
understanding of the reproducibility and inherent variability of
the rat in vivo acute oral toxicity assays will provide a founda-
tion to contextualize results and set expectations regarding
NAM performance.

Several studies have previously evaluated the within- and
between-laboratory reproducibility of the in vivo test method to
demonstrate the impact of modifying protocol components
such as rat strain, vehicle, or age of rat from a relatively small
(n< 30) number of chemicals (Griffith, 1964; Hunter et al., 1979;
Weil and Wright, 1967; Weil et al., 1966). Other studies compiled
larger (n¼ 62–88) lists of reference chemicals with replicate LD50

values to establish a reported range as a measure of variability
(Hoffmann et al., 2010; ICCVAM, 2006). However, with the expan-
sive list of chemicals in global commerce that include substan-
ces registered by multiple manufacturers, far greater numbers
of chemicals have been evaluated for acute oral toxicity numer-
ous times. These data have become increasingly available
through publicly accessible web-based resources, thereby pro-
viding an opportunity to collate large databases of toxicology
study results.

Herein, we present the largest assembly to date of manually
curated rat acute oral toxicity LD50 data comprising chemicals
with more than one experimentally derived LD50 value retrieved
from multiple international data sources. We have accounted
for data redundancy, evaluated LD50 distribution/variance, ap-
plied cheminformatics analyses, and defined a margin of uncer-
tainty that can be applied when considering in vivo acute oral
toxicity data or predictions thereof. Given the long history of
regulatory decisions based upon LD50, establishing this margin
of uncertainty will more effectively build scientific confidence
in results generated by NAMs as compared to in vivo results.

MATERIALS AND METHODS

Data Sources and Inventory Compilation
Data sources for rat acute oral toxicity were selected based on
data accessibility or availability and included the following:

• ChemProp (European Chemicals Agency [ECHA], https://echa.eu-

ropa.eu/information-on-chemicals; last accessed November

2018)
• Hazardous Substances Data Bank (National Library of Medicine,

https://www.nlm.nih.gov/databases/download/hsdb.html; last

accessed November 2018)
• ChemIDplus (National Library of Medicine, https://chem.nlm.

nih.gov/chemidplus/chemidlite.jsp; last accessed November

2018)
• AcutoxBase (European Union Joint Research Centre, Kinsner-

Ovaskainen et al., 2009)
• eChemPortal (OECD, https://www.echemportal.org/echemportal/;

last accessed November 2018)

Data compilation was restricted to rat LD50 values, retaining
only LD50 values that were amenable to conversion into mg/kg
units. Where unit conversion was required, molecular weights
were retrieved from the U.S. Environmental Protection Agency
(EPA) CompTox Chemicals Dashboard (Williams et al., 2017;
https://comptox.epa.gov/dashboard; last accessed November
2018) using Chemical Abstracts Service Registry Numbers
(CASRN) as input. In addition to species and LD50 unit filtering,
data were also manually curated (described below). Compiled
LD50 values were in the form of point estimates, limit tests, and
acute toxic class ranges (OECD, 2002b).

The data set was compiled using CASRN as the primary
chemical identifier. When more than one CASRN mapped to the
same chemical structure (including deprecated CASRNs), these
data entries were not collapsed/corrected, but rather kept sepa-
rate to match the identifier used in the database of origin and to
reflect unique experimental records; thus, unique chemical
counts reflect unique CASRN, not necessarily unique chemical
structures.

The initial compilation yielded a total of 15 688 unique
chemicals with at least one rat LD50 value. The inclusion of mul-
tiple instances for the same LD50 value for any given chemical
was limited to avoid overrepresenting studies that may have
been reported in multiple data sources. A subset of chemicals
for which at least 2 unique discrete point estimate LD50 values
were available was selected and manually curated to create the
foundation of the inventory used for the current study.
Subsequently, data generously provided directly by ECHA were
added to yield a final data set of 1885 chemicals and 5826 quan-
titative LD50 values (provided in Supplementary File 1).
Additional acute oral systemic toxicity data that were not
reported as discrete point estimate LD50 values, but rather as
limit tests or acute toxic class ranges, were also retrieved and
added to the discrete LD50 values to generate an expanded in-
ventory for further hazard category-based analyses. When
these values were added to the discrete LD50 data set, the ex-
panded categorical data set contained 7574 entries representing
2441 chemicals (also provided in Supplementary File 1). This
data set retained the requirement that chemicals have at least 2
unique entries.

Additional physicochemical data for various analyses con-
ducted in this project were retrieved from a variety of sources.
Chemical structures and properties were retrieved from the EPA
Comptox Chemicals Dashboard (Williams et al., 2017) and gener-
ated by the Open Structure-activity/property Relationship App
(OPERA; Mansouri et al., 2018). We used simplified molecular-
input line-entry system (SMILES) strings for structure-related
analyses. These were retrieved from the EPA CompTox
Chemicals Dashboard with all queries conducted using CASRNs
as input. ToxPrint (ChemoTyper v1.0; Yang et al., 2015)
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chemotypes fingerprints were used for cheminformatics assess-
ments. Finally, product use information for each chemical was
obtained from the EPA Consumer Product Categories (CPCat)
database (Dionisio et al., 2018) to characterize the diversity of
the data set and evaluate any trends associated with variability.

Curation of the Rat Acute Oral Systemic Toxicity Inventory
Curation of the compiled data set involved identifying unique
LD50 values per CASRN in order to omit values that may have
been the same data point present in multiple source databases
to avoid overrepresentation. For example, a chemical might
have 3 LD50 values of “>2000 mg/kg” based on limit test results.
Because the majority of databases we used did not include pri-
mary source references for the original studies, it was impossi-
ble to determine whether this data point originated from 3
independent studies or arose from one study that was captured
in multiple source databases. As such, only one value of
>2000 mg/kg was kept in the final data set. Where available,
qualifiers associated with limit tests were noted and tracked.
For example, “>” or “<”, reflecting “greater than” or “less than”
designations for limit test outcomes, respectively, were noted.

We removed each of the following: values derived from com-
plex mixtures reported as individual substances; values from
studies having an “unreported” exposure route (the required ex-
posure route was oral); and values exceeding 10 000 mg/kg be-
cause they were considered to be unrealistically high. Data
reported as ranges or sourced from acute toxic class or limit
tests were separated into a unique inventory. These values
were integrated with the main data set only for categorical anal-
yses, where EPA or United Nations Globally Harmonized System
of Classification and Labelling of Chemicals (GHS) hazard cate-
gories could be assigned despite the lack of discrete point esti-
mate LD50 values.

Based on expert judgment, manual curation removed any
data identified as potentially erroneous. Such values were
traced back to their source database to determine if they could
be confirmed. For example, in some instances, 3 values for the
same substance were reported that were both similar and very
precise (eg, 22.2, 23.6, and 25). Upon further inspection, it was
determined that these values were actually the mean and 95%
confidence interval for that substance; in these cases only the
mean value was retained in our data set and the other 2 values
were excluded. In another example, 3 values were reported for
the same substance that, upon further inspection, were deter-
mined to be separate values calculated based on either males,
females, or a mean value calculated from both sexes; in these
cases only one value was retained. In yet another example, mul-
tiple LD50 values for the same substance were flagged because
they were the same as those associated with LD50 ranges used
for hazard classification (eg, 300 mg/kg, 2000 mg/kg). The study
metadata revealed that the results were actually a reported LD50

range (300–2000 mg/kg) generated from the acute toxic class
protocol that was mistakenly recorded as 2 separate LD50 val-
ues, these data were kept only in the expanded data set.

Additional Systematic Evaluation for Possible Read-Across Data
The lack of metadata available for the retrieved data compiled
herein created another source of uncertainty around the acute
oral toxicity values. For example, some LD50 values were
reported as experimental point estimate values, but manual
curation identified the original toxicity assessment report to be
based on a read-across analysis from an analog structure (see
ECHA dossier on 3-methylpentane, https://www.echa.europa.
eu/web/guest/registration-dossier/-/registered-dossier/24591/7/

3/2; last accessed November 2018). Once this was discovered, we
used cheminformatics tools to try to identify other instances
where data points may have originated from read-across. For
this, we tested 2 types of hypotheses for which the findings are
described below. Results suggest that some of the data points in
our compiled inventory may have originated from read-across
studies. However, without clear metadata, as was the case for 3-
methylpentane, it was not possible to prove with certainty that
even the most similar chemicals are a result of a read-across.

Read-across analysis 1: Based on association of multiple CASRNs with
the same set of LD50 values. We identified chemical clusters where
multiple CASRNs were associated with the same set of LD50 val-
ues. In total, there are 47 clusters of chemicals sharing at least 2
LD50 values. The clusters were identified using the CASRNs
matched to the same Distributed Structure-Searchable Toxicity
Database identifiers (DTXSIDs; Grulke, 2019), names, original
structures, and quantitative structure-activity relationship
(QSAR)-ready structures (Supplemental File 2,
“repeated_LD50.csv”; Mansouri, 2016). Upon evaluating these
clusters of chemicals, we identified several cases of single
chemicals with multiple CASRNs or different salts like boric
acid and calcium borate, silver sulfate and silver chloride, so-
dium lactate and calcium lactate, magnesium vanadate
(MgV2O6), and calcium vanadate (Ca(VO3)2), all of which would
generally have resulted in the same QSAR-ready structure, and
had the same set of LD50 values. We also found instances of
chemicals that exist in different forms, like D-dilactide and 3,6-
dimethyl-2,5-dioxo-1,4-dioxane, camphor and D-camphor, or
citronellal and (3R)-3,7-dimethyloct-6-enal. Finally, there were
cases where 2 different CASRNs represented different forms of a
chemical that can coexist in the same solution, and the LD50

was assigned to both, such as p-xylene and m-xylene, or cinerin
I and cinerin II.

On the other hand, we concluded that the equivalent LD50

values of ethane-1,2-diyl bis(sulfanylacetate) and 2-ethylhexyl
thioglycolate were derived from independent studies, as the
structures of these 2 substance looked too different for the val-
ues to have been generated by read-across. Similarly, although
chloroxuron and dinitramine had very similar structures, their
LD50 values (3000 and 3700 mg/kg, respectively) seemed more
like limit test values, despite having been recorded as point esti-
mates in the source databases. In conclusion, despite these
chemical clusters appearing to have the exact same data, our
review suggested that none were conclusively the result of
read-across and could not be excluded from the compiled in-
ventory for that reason.

Read-across analysis 2: Based on structural similarity. This analysis
approach targeted chemical structures and compared them
based on multiple chemicals sharing the same single LD50 (as
opposed to groups of CASRNs sharing multiple LD50s, examined
in the previous analysis). First, groups were formed by identify-
ing CASRNs sharing a single LD50. Then, extended fingerprints
generated using CDK were used to evaluate similarity using
pairwise Tanimoto indices, see Supplemental File 3
(repeated_LD50_analogs.xlsx). For example, 6 CASRNs in the
compiled inventory had an LD50 of 2 mg/kg. After generating the
similarity matrix of the 6 chemicals, we pulled those with
Tanimoto similarity scores between 0.7 and 0.95, representing
the range of structures that are similar enough for read-across
analysis but not actually the same structure. Out of the 6, only 2
were within the similarity range for read-across (0.9 in this ex-
ample). We identified 41 such groups, some of which were likely
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candidates for read-across given the chemical similarity
scores. However, there were no cases where we were able to
definitively identify LD50 data points that were generated by
read-across. Furthermore, out of many structures with the
same LD50 values, only 2 groups of chemicals were in the appro-
priate similarity range, with the remaining structure too dissim-
ilar to suspect read-across. Thus, if some substances had the
same LD50 and were very different structurally, we cannot make
the case that only the identical LD50 values from chemicals with
similar structures resulted from read-across and should poten-
tially be excluded. This possibility, however, is worth noting as
an additional source of uncertainty in the data set that we have
attempted to quantify.

Analysis Approaches
All analyses were conducted in R (version 3.6.0) unless stated
otherwise, and all these analyses and figure generation code
are provided in an R script in Supplementary File 4. A repre-
sentative LD50 for each chemical was computed as the median
of only replicate point estimate LD50 values (ie, not including
limit tests or hazard categorical data). Similarly, variability
was computed as the median absolute deviation (MAD) across
log10 of the point estimate LD50 values only. The correlation
between each of the experimental LD50 point estimate values
and the chemical-specific median LD50 was assessed using
Pearson’s correlation r2 and root mean-squared error (RMSE).
Chemical-specific MADs were evaluated relative to chemical
potency, number of replicate studies, and hazard categories. A
global margin of error around the median LD50 was computed
as 62.5�MAD, as recommended for outlier detection (Leys
et al., 2013). To assess the likelihood of hazard category con-
cordance across repeat studies, conditional probabilities were
calculated as described in Luechtefeld et al. (2016). The proba-
bility of a chemical being in category j (C2 ¼ j) given that it
has been previously categorized in category i (C1 ¼ i) is calcu-
lated as:

P C2 ¼ jjC1 ¼ ið Þ ¼
n ið Þj

n ið Þ

where i and j are hazard categories, n(i) is the number of studies
for chemicals classified in category i at least once, and n(i)j is the
number of studies within n(i) where a chemical was classified in
category j.

Chemical use categories, structural descriptors, toxicity-
related fingerprints, and physicochemical properties were ex-
amined for trends associated with LD50 variability. MATLAB
(version 9.4) was used for categorical analyses for concordance,
ToxPrint, and physiochemical property analyses.

RESULTS

Rat Acute Oral Systemic Toxicity Inventory
A data set of rat acute oral LD50 values, for chemicals with at least
2 independent experimentally derived discrete point estimate val-
ues, was compiled comprising 1885 chemicals and 5826 LD50 val-
ues. Figure 1A shows the distribution of these point estimate LD50

values, revealing that the 5826 LD50 values in the data set ranged
from 0.02 to 10 000 mg/kg. Most values were above 1000 mg/kg
(3349/5826 values, ie, 57.5%). Additionally, the number of unique
LD50 values per chemical was assessed (Figure 1B) revealing that
the majority of chemicals had 2 (915 chemicals) or 3 (503 chemi-
cals) unique point estimate LD50 values. There were 18 chemicals
with 10 or more point estimate LD50 values in the data set.

Characterizing Acute Oral Toxicity Study Reproducibility and
Variability
To assess reproducibility of discrete LD50 point estimates from
replicate studies for a given chemical, a single representative
LD50 value was calculated for each chemical to serve as a refer-
ence value. Given increased confidence due to manual curation,
representative LD50 values were defined per chemical as the
median of all point estimate LD50 values for a single chemical.
In vivo study reproducibility was then assessed as a measure of
how each experimentally derived LD50 value (at least 2 indepen-
dent experiments per chemical) compared with the

Figure 1. Characterizing the LD50 data set. The curated rat acute oral systemic toxicity LD50 data set comprised chemicals with at least 2 point estimate LD50 values,

resulting in an inventory of 5826 LD50 values representing 1885 chemicals. A, Histogram of the distribution of LD50 values in the data set. B, Summary of replicate LD50

values in the data set per chemical. The LD50 values ranged from 0.02 to 10 000 mg/kg, with most values between 1000 and 10 000 mg/kg as shown in the histogram.

Most chemicals (1742/1885 chemicals) had 5 or fewer LD50 values.
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representative value (used as “truth”). Most of the 5826 experi-
mental LD50 point estimate values were within one order of
magnitude from the chemical-specific median LD50 value (rep-
resentative value; Figure 2A). This plot visualizing the deviation
from the median shows a peak at 0 where uneven replicate LD50

values resulted in the median being exactly one of the experi-
mental values. The high Pearson’s correlation (r2 of 0.927) and
low RMSE (0.197) confirm the appropriateness of the median
LD50 representative value for the experimental data set.

To quantify the variability, MAD was calculated for each
chemical using discrete point estimate experimental LD50 val-
ues. The distribution of MAD (Figure 2B) reveals that most MAD
values are below 0.5, though there are a few chemicals with
high MAD values, the top10 most variable chemicals based on
MAD are listed in Table 1. Iridium tetrachloride (CASRN 10025-
97-5) had the highest MAD of 1.87 (log10 (mg/kg)), based on 2

independent LD50 point estimate values that were 3 orders of
magnitude apart: 4.67 mg/kg and 1560 mg/kg. The median MAD
across all 1885 chemicals was 0.0895 log10 (mg/kg).

The variability of LD50 values was significantly different be-
tween chemicals (Brown-Forsythe p< .001). To confirm that
interchemical variability was the primary source of variance
rather than intrachemical replicate variability, a Welch’s
ANOVA was performed as this approach does not assume equal
variances and adjusts for differing group sizes in the derivation
of the residual degrees of freedom (Welch, 1951). The Welch’s
ANOVA confirmed that in the linear model between log10 LD50

and chemical, most variability is attributable to inter-chemical
variability (Figure 2C).

To assess whether any trends existed between variability
and either the number of studies for a chemical or the chemi-
cal’s potency (eg, LD50), we evaluated the chemical-specific

Figure 2. Evaluating variability of LD50 replicates. For each of the 1885 chemicals with at least 2 discrete point estimate LD50 values, a median value was used as the

chemical-specific representative LD50. Deviation was derived by subtracting the chemical median from the individual LD50 values (A). MAD values computed per chem-

ical are plotted as a histogram to visualize frequency of values (B). Welch’s ANOVA table (C) summarizes statistical analyses that confirm most variability is attribut-

able to interchemical (between chemicals) rather than intrachemical (within chemical) variability. Variability among replicate point estimate LD50 values was assessed

by calculating MAD across replicate LD50 values per chemical in log10 mg/kg units. Plots show MAD values as a function of chemical potency (D) or the number of repli-

cate LD50 values available per chemical (E).
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MADs relative to both of these factors (Figure 2D and 2E). Most
chemicals had a relatively low MAD (represented by the y-axis
spread of Figures 2D and 2E). We found that the MADs had low
correlation with chemical potency (linear trend r2 ¼ 0.046) and
that MAD did not increase or decrease as the number of study
replicates increased (Jonckheere-Terpstra test p> .05). It should,
however, be noted that the sample distributions were rather bi-
ased, with relatively few chemicals having a high number of re-
peated studies. Thus, we suggest that variability, represented as
high MADs over multiple studies, may be associated either with
potency or with the number of replicate studies available. In
general, it is difficult to conclude that the variability observed
was simply due the number of times the rat acute oral toxicity
assay was conducted.

Impact of Variability on Hazard Categorization
Acute oral toxicity studies are frequently used to derive hazard
categorizations for safety labeling. Accordingly, we mapped the
chemical-specific representative point estimate LD50 values to
hazard categories using both the EPA (EPA, 2018) and GHS (UN,
2021) hazard classification systems. The association between
hazard categories (ie, potency) and quantitative variability for

the 1885 chemicals was evaluated by generating boxplots of the
chemical-specific MADs for all chemicals per hazard category
(Figure 3). A generally decreasing median was observed in MAD
distributions across hazard categories, which were significant
as tested by a one-sided Jonckheere-Terpstra trend test (p value
.0002 for both the EPA and GHS systems; Figure 3A and 3B).

When limit tests and acute toxic class range values were
added to the discrete LD50 data set, the expanded categorical
data set contained 7574 entries representing 2441 chemicals.
Note that the categorical data set encompassed the entirety of
the discrete point estimate LD50 values (5826 entries represent-
ing 1885 chemicals). Because not all data points in this categori-
cal data set were discrete values, a median or MAD per chemical
could not be calculated for evaluating reproducibility or quanti-
fying variability by hazard category. Instead, chemicals were
grouped based the number of hazard categories they could be
assigned to using the available replicate study data.

Concordance across hazard category determinations was
computed and evaluated as compared with the number of ex-
perimental replicates and number of entries per hazard cate-
gory (Supplementary Figure 1), revealing that increased study
replication does not correlate with category concordance. In

Table 1. Top 10 Most Variable Chemicals Based on Median Absolute Deviation

CASRN Chemical Name
Median Absolute

Deviation (log10 (mg/kg))
Number of
LD50 Values

LD50 Values
(mg/kg)

10025-97-5 Iridium tetrachloride 1.871 2 4.67, 1560
97-18-7 Bithionol 1.713 2 7, 1430
62-56-6 Thiourea 1.459 2 20, 1860
7487-94-7 Mercuric chloride 1.163 2 1, 37
104-12-1 4-Chlorophenyl isocyanate 1.137 2 138, 4710
7719-12-2 Phosphorous trichloride 1.101 2 18, 550
72-54-8 p,p’-DDD 1.096 2 113, 3400
83-26-1 Pindone 1.063 2 10.3, 280
2374-14-3 2,4,6-Trimethyl-2,4,6-tris(3,3,3-trifluoropropyl)cyclotrisiloxane 1.047 2 180, 4659
117-18-0 2,3,5,6-Tetrachloronitrobenzene 1.039 3 250, 1256, 7500

Figure 3. MAD of LD50 values per chemical in each hazard category. The MAD (log10 mg/kg units) across all LD50 values, per chemical, was computed for each of the

1885 chemicals having at least 2 independently reported LD50 values. The boxplots reflect the distribution of MADs for each chemical classified into each respective

hazard category for EPA categorization (A) and GHS categorization (B) schema, respectively, where lower hazard category numbers correspond to lower/more potent

LD50 values. These distributions demonstrate that MAD, as a measure of variability, may be correlated with hazard category (ie, more potently toxic chemicals have

higher variability; Jonckheere-Terpstra trend test p value¼ .0002 for both classification systems).
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fact, disparate hazard categorization (ie, chemicals mapping to
more than one hazard category) was seen for nearly 40% of
chemicals with either classification schema. For example, of the
2441 chemicals in the expanded categorical data set, 809 were
mapped to more than one EPA hazard category and 969 were
mapped to more than one GHS category. The chemicals with
the most variable LD50 values were associated with as many as
3 EPA hazard categories (19 chemicals) or with 3 (33 chemicals)
and even 4 (2 chemicals) GHS hazard categories. The majority of
data points in the expanded categorical acute oral toxicity data
set were associated with EPA hazard Category III or GHS
Categories 4 and 5 (Table 2), reflecting the general bias of the
data set toward less potent chemicals for hazard category
evaluation.

The impact of variability in hazard category assignment
across independently conducted replicate acute oral toxicity
studies was summarized by conditional probabilities analysis.
Briefly, conditional probabilities are a measure of the probability
that, upon repeat testing, a chemical will be categorized into a
given hazard category once a prior study has already catego-
rized the chemical. This approach has similarly been applied to
ocular and dermal toxicity studies to evaluate the reproducibil-
ity of these in vivo methods in identifying hazard categories

(Luechtefeld et al., 2016; Rooney et al., 2021). Using the expanded
categorical data set, the conditional probabilities were com-
puted across the experimental data and summarized for EPA
hazard categorization (Table 3) and GHS categorization
(Table 4). For the EPA hazard system, an assignment to Category
III was most likely to be replicated by subsequent studies, with
a probability of 79.8%, whereas replication of a Category IV out-
come was only 54.6%. Similarly striking results were observed
for the GHS schema where an assignment to category 5 was
most likely to be reproduced with the highest probability being
75%. These results suggest that reproducibility of the rat acute
oral toxicity study for hazard categorization is closer to 50%–
60% as studies are replicated and not nearly as consistent as
might be expected.

Evaluating Possible Chemical Sources of Variability
An investigation to assess whether chemical use was correlated
with variability was also conducted. Chemical use categories
were retrieved from the CPCat database (Dionisio et al., 2018). Of
the 1885 chemicals with discrete point estimate LD50 values,
1619 had chemical use information. There were 181 unique use
terms represented across the 1619 chemicals with retrieved use
information. Chemicals were often associated with more than

Table 2. Hazard Categorization of Expanded Inventory

EPA Category GHS Category Number of LD50 Entriesa Number of Chemicalsa

I (LD50 � 50 mg/kg) 1 (LD50 � 5 mg/kg) 104 53
I (LD50 � 50 mg/kg) 2 (5< LD50 � 50 mg/kg) 342 183
II (50< LD50 � 500 mg/kg) 3 (50< LD50 � 300 mg/kg) 1166 556
II (50< LD50 � 500 mg/kg) 4 (300< LD50 � 2000 mg/kg) 528 354
III (500< LD50 � 5000 mg/kg) 4 (300< LD50 � 2000 mg/kg) 2567 1309
III (500< LD50 � 5000 mg/kg) 5 (LD50 > 2000 mg/kg) 2079 1032
IV (LD50 > 5000 mg/kg) 5 (LD50 > 2000 mg/kg) 788 458

aNote that although the sum of LD50 entries equals the total number of chemicals in the inventory (7574 entries), the total number of chemicals does not equal the sum

of unique chemicals in the inventory (2441 chemicals) because many chemicals have entries (eg, LD50 values) in more than one row depending on whether replicate

study results mapped to different categories.

Table 3. Conditional Probabilities for EPA Hazard Category Reproducibility

Conditional Probability of Subsequent Study Categorization

I II III IV

First Study Hazard
Category

I 57.9% 34.5% 6.2% 1.3%
II 5.7% 66.5% 27.5% 0.4%

III 0.5% 11% 79.8% 8.7%
IV 0.1% 0.6 44.7% 54.6%

Bold values represent conditional probability of subsequent studies identifying the same hazard category as the first study.

Table 4. Conditional Probabilities for GHS Hazard Category Reproducibility

Conditional Probability of Subsequent Study Categorization

1 2 3 4 5

First Study
Hazard
Category

1 53.3% 34.9% 1.5% 5.1% 5.1%
2 7.7% 48.9% 33.2% 8.9% 1.3%
3 0.2% 7.1% 61.9% 28.9% 1.9%
4 0.1% 1% 11.0% 66.1% 21.8%
5 0% 0.2% 1% 23.8% 75%

Bold values represent conditional probability of subsequent studies identifying the same hazard category as the first study.
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one use term; in fact, the number of use terms per chemical
ranged from one to 128. Similarly, we also assessed how many
chemicals were associated with each use term present in the
data set, revealing a range of 1 to 1093 chemicals being associ-
ated with any term. There were 5 use terms associated with
over 500 chemicals: manufacturing (1093 chemicals), industrial
manufacturing (1048 chemicals), pesticide (901 chemicals), con-
sumer use (713 chemicals), and personal care (518 chemicals). This
analysis was repeated with the expanded categorical data set,
yielding the same results (data not shown). To evaluate whether
variability was associated with use terms, we focused on 161
use terms with at least 3 associated chemicals (Figure 4). An ex-
amination of this data subset revealed that the range of LD50

variability was comparable for all use terms represented in the
data set. The lowest median MAD category (left-most boxplot in
Figure 4) was UV stabilizer, which mapped to 3 chemicals having
a combined median MAD of 0.0081 log10 (mg/kg). Conversely,
the highest median MAD was 0.280 log10 (mg/kg) for the use
term friction agent. There was no use term enriched with chemi-
cals with more variable MADs, suggesting that use category is
not correlated with variability in acute oral toxicity studies
(Brown-Forsythe p¼ .27).

To investigate whether chemical structure was associated
with an enrichment of greater variability in acute oral LD50 data,
the publicly available set of 729 ToxPrint chemotypes (Yang
et al., 2015) were utilized to define chemicals in terms of struc-
tural features. This set of chemical fingerprints was selected be-
cause it was developed specifically with toxicology and
annotation of motifs associated with mechanisms of toxicity in
mind. The ToxPrint chemotypes encompass 3 sets of substruc-
tures, all of which were included for our analysis: generic struc-
tural fragments, Ashby-Tennant genotoxic carcinogen rules,
and cancer threshold of toxicological concern (TTC) categories.
All 2441 chemicals in our expanded categorical data set were

included in this analysis. The data set chemicals were repre-
sented by 408 of the 729 total ToxPrint chemotypes, suggesting
a somewhat limited chemical space compared with all possible
annotations available. Of the 408 ToxPrint chemotypes repre-
sented, 224 ToxPrint chemotypes had at least 5 chemicals
mapped and were included for variability assessment (Figure 5).
This analysis revealed that enrichment of any ToxPrint chemo-
type was proportional to the number of chemicals per variabil-
ity class (classes were defined based on the number of hazard
categories that the chemical was mapped to, as defined in the
figure legend) and that there were no significant differentiators
(ie, ToxPrint substructure/fragment) associated with higher or
lower LD50 variability, as defined by the number of categories to
which a chemical was classified across experimental replicates.

To further explore factors that may have affected variability,
physicochemical properties for the 2441 chemicals in the ex-
panded categorical data set were retrieved from OPERA and eval-
uated using principal component analysis (PCA) for any
association with variability, as measured by the number of haz-
ard categories that each chemical was classified to based on rep-
licate LD50 study data. There were 17 physiochemical properties
included in the analysis, including melting point, boiling point,
and solubility properties. The PCA analysis yielded comparable
results whether considering EPA or GHS categorization (Figure 6),
with no clear clustering or trend for any physiochemical prop-
erty, confirming that physiochemical properties were not corre-
lated with variability in this data set of acute oral LD50 values.

Defining a Margin of Uncertainty for Interpreting LD50 Data
Given the variability documented herein for chemicals that
have been evaluated in several independently conducted rat
acute oral systemic toxicity studies and the impact on hazard
categorization, it is apparent that some degree of uncertainty
should be associated with experimentally derived LD50 values.

Figure 4. Evaluation of LD50 median absolute deviation (MAD) per chemical use category. The 1619 chemicals with at least 2 discrete point estimate LD50 values could

be mapped to chemical use categories in CPCat. Chemicals were associated with anywhere from 1 to 128 use terms among 181 unique use categories present in the

data set. The 161 use category terms having at least 3 chemicals mapped are all represented across this figure (ie, each respective boxplot along the x-axis). The box-

plots represent the distribution of LD50 MADs (in log10 mg/kg units) for the chemicals associated with each use term, respectively. Although the MAD across the chemi-

cals mapped to each use term increases from left to right across the plot, the range of MADs (boxplots) generally overlap, confirming that there is no use term with

significantly lower/higher variable chemicals.

KARMAUS ET AL | 41



In an effort to determine a margin of uncertainty based on ex-
perimental LD50 values, we leveraged our inventory of discrete
point estimate rat acute oral LD50 values. MADs for the 1885
chemicals in the data set with 2 or more point estimate LD50

values were bootstrapped 5000 times, and the result provided a
representative MAD (0.0953 6 0.002 log10 (mg/kg)) that takes
into account the range of MADs in the data set. A margin of
62.5 � MAD was computed as 60.24 log10 (mg/kg), providing a
moderately conservative margin of uncertainty for acute oral
LD50 values (Leys et al., 2013).

To demonstrate the range (60.24 log10 (mg/kg)) against the
experimental data, we highlight the uncertainty region sur-
rounding the median LD50 in Figure 7. For chemicals with rela-
tively consistent LD50 values across independent studies, the
highlighted region encompasses all experimental LD50 values
(represented by the boxplot). However, for those chemicals
with a larger range of LD50 values (and higher variability), the

highlighted region helps narrow down a high confidence
range for each chemical’s LD50 estimate. For instance, convert-
ing the values back to linear range, which is consistent with

experimental practice and application to classification
schema, a highly toxic chemical with an LD50 of 5 mg/kg
would have a confidence range of 2.9 to 8.7 mg/kg and for a low
toxicity chemical with an LD50 of 5000 mg/kg it would be 2877–
8689 mg/kg.

DISCUSSION

The current study presents the most diverse and comprehen-
sive compilation of curated rat acute oral LD50 data based on the
consolidation of multiple resources, as well as providing broad
coverage in terms of chemical structure and usage. The interna-
tionally sourced LD50 data contained instances of redundancy,
which were limited to unique values per chemical through

Figure 5. Evaluation of LD50 variability per ToxPrint chemotype. The expanded categorical inventory of 2441 chemicals was mapped to ToxPrint chemotypes.

Chemicals were associated with 408 ToxPrint chemotypes represented, of which 224 ToxPrint chemotypes had at least 5 chemicals mapped and are represented in this

figure. Evaluations for both EPA hazard category (A) and GHS hazard category (B) schema yielded comparable results in that enrichment of ToxPrint chemotypes were

proportional to the number of chemicals per variability class, rather than the class itself (1 category being low variability class, 2 being moderate, and 3–4 categories be-

ing high variability class).
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manual curation efforts. The compiled data allowed for compre-
hensive characterization of the variability and performance for
the rat acute oral toxicity study. The data set is available for
download via the National Toxicology Program’s Integrated
Chemical Environment (https://ice.ntp.niehs.nih.gov/; last
accessed January 2022).

The original data compilation, prior to the manual curation
efforts undertaken here, served as the basis for several predic-
tive modeling efforts, including the Collaborative Acute Toxicity
Modeling Suite (CATMoS) collaboration (Mansouri et al., 2021), in
which an appropriate representative LD50 value was calculated
for each compound and data were used to develop a consensus

Figure 6. Evaluation of LD50 variability and physiochemical properties. The physiochemical properties for the expanded categorical inventory of 2441 chemicals,

grouped into the same variability class groupings as Figure 7 (1 category being low variability class, 2 being moderate, and 3–4 categories being high variability) were re-

trieved from OPERA. PCA was conducted for both EPA hazard category (A) and GHS hazard category (B) schema yielded comparable results. Overall, there was no dis-

cernable physiochemical property related to variability.

Figure 7. Defining an acute oral toxicity LD50 margin of uncertainty. For illustration purposes, only chemicals with at least 4 LD50 values (467 chemicals) are shown in

this plot. Each chemical has a boxplot wherein the box limits represent the 25th and 75th percentiles of the data, dashed lines represent the bounds for outlier detec-

tion defined by the 1.5 interquartile range rule, and circles indicate outliers. The MADs across point estimates, per chemical, were used as input for bootstrapping (sam-

pling 5000 times), from which the median was used to compute a margin of uncertainty. This interval equates to 60.24 (in log10 mg/kg units) and is shown centered

around the median of LD50 values per chemical (shaded area). The defined range generally encompasses the distribution of experimental LD50 values and serves as a

reasonable range for evaluating acceptable LD50 estimates per chemical.
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model for predicting rat acute oral LD50 (Bercu et al., 2021; Borba
et al., 2020; Helman et al., 2019; Kim et al., 2020; Lunghini et al.,
2019). However, for the purpose of evaluating variability among
replicate study results, additional data curation was conducted
to increase confidence and fidelity in subsequent analyses. Our
curation processes revealed several data cleaning challenges
that should be considered in future data set compilation efforts.
First, many values obtained from online resources overrepre-
sented the actual number of studies conducted. For example,
there were several instances where 3 LD50 values were extracted
from the online resource, but upon closer inspection, those val-
ues represented one LD50 and the upper and lower bounds of its
associated 95% confidence interval from a single study.
Similarly, we noted multiple examples where 3 LD50 values
were extracted, but they were all obtained from the same study
and represented an LD50 for males, females, and both sexes
combined. Second, some “extreme” LD50 values were chemical
specific, and sometimes associated with chemicals that have
multiple isomers that mapped to the same CASRN, which could
introduce variability as different individual studies may have
been testing different isomers. Furthermore, “extreme” LD50 val-
ues were also identified as being the result of unit transcription
errors, for example, where mg/kg was recorded as g/kg. We also
observed instances where a reported range of LD50 values was
extracted as a single value, thereby creating a nonsensical
“extreme” LD50 value, (eg, 500–2000 mg/kg recorded as
5 002 000 mg/kg). Collectively, these examples point to the criti-
cal need to carefully curate and review information from com-
putationally derived data sets. However, it is important to note
that there were many manually curated chemicals for which
the high variability across multiple LD50 values could not be at-
tributed to errors in the extraction process, and thus all seem-
ingly reliable values were reported as experimental values
herein.

Using the curated data set, analyses of data-rich chemicals
(those having multiple unique LD50 values) revealed that inde-
pendent experimental studies can yield LD50 values orders of
magnitude apart. The variability among LD50 estimates for a
single compound bears significant implications in regulatory
applications due to disparities in hazard classification and la-
beling. We interrogated every source of variability that could be
attributed to the chemicals themselves. We compared a wide
range of parameters across the entire chemical space to deter-
mine if there were any distinct between “high variability” chem-
icals (ie, highest MADs or the most hazard categories classified
per chemical) and “low variability” chemicals (ie, lowest MADs
or only one hazard category classified per chemical). Chemical
parameters such as functional use or chemical and physico-
chemical structural properties (ToxPrint and OPERA) could not
account for the variability observed.

Accordingly, it is likely that variability among LD50 estimates
for a single compound in our data set reflects biological variabil-
ity inherent in animal models and/or the test method itself. It is
important to note that although there are different iterations of
the acute oral systemic toxicity test method with minor proto-
col differences (eg, up-and-down procedure, limit tests), they
share key commonalities (species, dosing route, etc.), are all
considered acceptable by regulatory authorities, and the results
are used interchangeably for hazard and risk assessment pur-
poses. Because this work is intended to support regulatory ap-
plication, it was deemed appropriate to pool all obtained LD50
values despite the lack of experimental metadata. In the ab-
sence of complete study metadata, we were not able to consider
known sources of biologic variability such as rat strain (Kacew

and Festing, 1996; Walden and Schiller, 1985), sex (Fonsart et al.,
2008), age (Gaines and Linder, 1986), or vehicle. Such sources of
variability have the potential to influence acute LD50 estimates
across an order of magnitude and may explain some of the vari-
ability observed in our analyses. For example, the acute LD50 of
2,3,7,8-tetrachlorodibenzodioxin (TCDD) is 9.8–17.7 mg/kg in
Long Evans rats, but is greater than 7200 mg/kg in Wistar
Hannover rats (Pohjanvirta et al., 1993). Similarly, sex differen-
ces can result in LD50 estimates that differ by several-fold be-
tween males and females. For example, female Sprague Dawley
rats exhibit an oral LD50 for colchicine that is 2-fold lower than
males (Wiesenfeld et al., 2007), whereas the acute LD50 of 3,4-
methylenedioxymethamphetamine is 2.4-fold lower in male
Sprague Dawley rats compared with females (Fonsart et al.,
2008). In addition to strain and sex, rat age may also influence
sensitivity toward a test chemical. The acute oral toxicity of 57
pesticides was compared across male and female adult or
weanling Sherman rats, and LD50 estimates were significantly
lower for adult rats compared with weanlings for 18 pesticides
(up to 1.87-fold different; Gaines and Linder, 1986).

There are other factors not typically standardized across
studies nor included in study metadata that may alter biological
responses and potentially contribute to LD50 variability. Rodents
are sensitive to their environment and previous work has
shown that numerous factors can influence their biology, such
as time of day/circadian cycle (Ede, 1973), and physical stressors
such as restraint (Pearl et al., 1966) or noise level (Lauer et al.,
2009), among others. For example, simply moving a rack of
cages from the colony room into a new location, such as a pro-
cedure room, can induce a 12%–15% increase in thymus weight
(Drozdowicz et al., 1990), a 36% decrease in lymphocyte count
(Drozdowicz et al., 1990), or a 30%–40% increase in serum glu-
cose in mice (Tabata et al., 1998). Animal handling can also in-
fluence physiology; picking rats up by their tails rather than by
their body can predispose them to convulsions (Everds et al.,
2013).

Rodent biology is sensitive to environmental factors but the
potential for these stressors to impact acute oral LD50 estimates
is not well characterized. There is evidence that stressors can
directly impact key aspects of toxicology, such as alteration of
stability or absorption of chemicals by changing gastrointestinal
secretion or motility; disruption of vasoconstriction or vasodila-
tion in different tissues, which affects distribution of chemicals;
and impairment of metabolism of chemicals (Vogel, 1987, 1993).
Standardized test methodology cannot feasibly encompass ev-
ery single factor that may contribute to animal stress or other-
wise serve as a potential source of variability. Given the
numerous potential sources of variability in rodent studies, it is
reasonable to conclude that even well-standardized test meth-
ods will not be able to control or account for every potential
source of variability.

The curated data set compiled herein was used to establish
a margin of uncertainty that could help in the assessment of
NAMs. By bootstrapping MADs 5000 times, a representative
MAD was obtained in order to compute a margin of uncertainty
range of 60.24 log10 (mg/kg). This result is within the same order
of magnitude established in previous efforts such as Hoffmann
et al. (2010), who noted that most of the 88 chemicals with rat
data they evaluated had standard deviations less than 0.5 log10

(mg/kg) and calculated a median transformed standard devia-
tion for all chemicals of 0.17 log10 (mg/kg). Recent work examin-
ing systemic effect levels from subacute, subchronic, chronic,
multi-generation reproductive, and developmental toxicity
studies found that unexplained variance ranged from 0.20 to
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0.39 log10 (mg/kg), even after accounting for study protocol
descriptors (Ly Pham et al., 2020).

With the application of rat acute oral toxicity data for haz-
ard category determination, it is important to understand re-
producibility, how uncertain a hazard category may be, and
the likelihood of repeated studies resulting in the same out-
come. By applying the conditional probability analyses, it is
apparent that specific potency ranges are more likely to be
reproduced than others. This analysis was conducted using
the same conditional probabilities approach as has been ap-
plied to ocular and dermal toxicity data to help identify which
hazard categories’ determination may be no better than a coin
toss (Luechtefeld et al., 2016; Rooney et al., 2021). Analyses
conducted with the current data set suggest that acute oral
toxicity in rats is also largely only 50%–60% reproducible for
most hazard categories in both the EPA and GHS categoriza-
tion schema based on percentages computed using the condi-
tional probabilities approach on the expanded data sets
comprising multiple studies per chemical to yield hazard cate-
gory outcomes. This striking result is an important takeaway
from this study to help characterize reproducibility of the
existing in vivo study. Understanding the limitations and vari-
ance inherent in the method provides important context for
subsequently using these in vivo data for training and evaluat-
ing alternative predictive methods.

Our analyses provide a global margin of uncertainty of
60.24 log10 (mg/kg) characterizing the variability in the rat
acute oral systemic toxicity study based on curated reference
animal data. Applying this margin of uncertainty onto predic-
tions made with alternative methods that predict rat acute
oral LD50 values can serve as an approach to help identify ac-
ceptable LD50 ranges to target. For example, in the
Collaborative Acute Toxicity Modeling Suite (CATMoS;
Mansouri et al., 2021), international predictive modeling efforts
were undertaken to create consensus predictions for rat acute
oral toxicity LD50s and hazard categories. To provide context
to the predicted values in that modeling exercise, a 95% confi-
dence interval allowed for the identification of outlier predic-
tions and generation of consensus hazard category
predictions. Such applications of this data set, or the margin
of uncertainty generated herein, could substantially improve
confidence in predicted values.

Understanding uncertainty and characterizing reference
data helps provide much needed context to assess “gold
standard” in vivo regulatory test methods. In fact, an ad hoc
committee of the National Academies of Sciences,
Engineering, and Medicine was recently charged with provid-
ing a review of the variability and relevance of existing labora-
tory mammalian toxicity tests for human health risk
assessment to inform approaches for validation and establish-
ing scientific confidence in new approaches. Herein we have
compiled an extensive list of rat acute oral LD50 data from a
large number of chemicals; we believe our extensive curation
efforts allow these analyses to best represent the true variabil-
ity of the acute oral lethality test. Experimental replication,
chemical use, and chemical structure were not found to be
sources of variability for disparate LD50 values arising from in-
dependently conducted acute oral toxicity tests. Finally, the
margin of uncertainty derived herein can be leveraged to pro-
vide context for alternative approaches based on the under-
standing that the precision of NAMs that predict the LD50 is
inherently limited by the precision of animal data.
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