Table 2.
Model accuracy evaluation based on bootstrap resampling method
| Model | Dataset | Number | C-index | C-index | C-index | Brier-score | Brier-score | Brier-score |
|---|---|---|---|---|---|---|---|---|
| 12-month | 36-month | 60-month | 12-month | 36-month | 60-month | |||
| Cox | Dataset1 | 14,946 | 0.822 | 0.822 | 0.822 | 0.077 | 0.124 | 0.133 |
| Dataset2 | 14,946 | 0.818 | 0.818 | 0.818 | 0.078 | 0.124 | 0.137 | |
| Dataset3 | 14,946 | 0.819 | 0.819 | 0.819 | 0.075 | 0.123 | 0.135 | |
| Dataset4 | 14,946 | 0.819 | 0.819 | 0.819 | 0.076 | 0.125 | 0.138 | |
| Dataset5 | 14,946 | 0.823 | 0.823 | 0.823 | 0.075 | 0.122 | 0.130 | |
| AFT | Dataset1 | 14,946 | 0.824 | 0.824 | 0.824 | 0.077 | 0.123 | 0.131 |
| Dataset2 | 14,946 | 0.819 | 0.819 | 0.819 | 0.078 | 0.124 | 0.136 | |
| Dataset3 | 14,946 | 0.821 | 0.821 | 0.821 | 0.076 | 0.123 | 0.133 | |
| Dataset4 | 14,946 | 0.821 | 0.821 | 0.821 | 0.077 | 0.125 | 0.136 | |
| Dataset5 | 14,946 | 0.825 | 0.825 | 0.825 | 0.075 | 0.122 | 0.128 | |
| MTLR | Dataset1 | 14,946 | 0.827 | 0.830 | 0.830 | 0.077 | 0.133 | 0.131 |
| Dataset2 | 14,946 | 0.822 | 0.824 | 0.825 | 0.078 | 0.124 | 0.137 | |
| Dataset3 | 14,946 | 0.824 | 0.828 | 0.829 | 0.076 | 0.122 | 0.134 | |
| Dataset4 | 14,946 | 0.824 | 0.826 | 0.827 | 0.077 | 0.125 | 0.137 | |
| Dataset5 | 14,946 | 0.828 | 0.830 | 0.830 | 0.075 | 0.121 | 0.130 |
MTLR multi-task logistic regression, AFT accelerated failure time