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Abstract

A growing number of studies claim to decode mental states using multi-voxel decoders of 

brain activity. It has been proposed that the fixed, fine-grained, multi-voxel patterns in these 

decoders are necessary for discriminating between and identifying mental states. Here, we 
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present evidence that the efficacy of these decoders might be overstated. Across various tasks, 

decoder patterns were spatially imprecise, as decoder performance was unaffected by spatial 

smoothing; 90% redundant, as selecting a random 10% of a decoder’s constituent voxels recovered 

full decoder performance; and performed similarly to brain activity maps used as decoders. 

We distinguish decoder performance in discriminating between mental states from performance 

in identifying a given mental state, and show that even when discrimination performance is 

adequate, identification can be poor. Finally, we demonstrate that simple and intuitive similarity 

metrics explain 91% and 62% of discrimination performance within- and across-subjects, 

respectively. These findings indicate that currently used across-subject decoders of mental states 

are superfluous and inappropriate for decision-making.

1. Introduction

Recent neuroimaging studies either explicitly claim or strongly imply that mental states 

can be decoded from patterns of brain activity. By fitting complex statistical models to 

functional magnetic resonance imaging (fMRI) brain scan results, these studies attempt 

to decode feelings, thoughts, decisions, intentions, and behaviors (Gabrieli, Ghosh, & 

Whitfield-Gabrieli, 2015; Gianaros et al., 2020; Haynes et al., 2007; Kragel, Koban, Barrett, 

& Wager, 2018). If truly successful, such approaches would break the code of mental states 

and suggest the ability to “read the brain” of every human being, at least for the mental 

states for which such models have been constructed. Here, we systematically examine the 

validity of such claims.

Decoding predicts unknown experimental variables from brain responses. In contrast, 

encoding models the statistical dependence of brain responses on experimental variables. 

In either case, decoders and encoders are typically created from task fMRI studies, in which 

investigators deliver a stimulus (independent variable) and observe brain activity (dependent 

variable) (Hu & Iannetti, 2016; Naselaris, Kay, Nishimoto, & Gallant, 2011). Encoding 

models are consistent with this data-generating process while decoding flips the independent 

and dependent variables. This switching of variables is also referred to as reverse inference. 

Conceptually, decoding and reverse inference are one and the same: The use of brain activity

—a response to a stimulus—to predict the applied stimulus. However, it has been argued 

that decoding is “principled” because the encoding map is not used as the model; instead, 

a decoding model is created (Poldrack, 2011; Varoquaux & Thirion, 2014). Yet, decoding 

itself is still incompatible with the data-generating process and introduces difficult statistical 

and epistemological problems. Statistically, can we build a model that is both sensitive and 

specific? Epistemologically, what can we learn about the brain from decoding? This paper 

will unpack the former question, providing an in-depth analysis of decoders, their properties, 

and different decoding tasks. From our analyses, we draw broader conclusions and provide 

general recommendations for decoding studies.

Statistically, encoding models brain activation patterns caused by external stimuli or internal 

cognitive processes. This is accomplished through mass-univariate general linear models 

of brain responses. Since a voxel’s activation time series is analyzed as a function of 

one or more explanatory variables, the problem is well-posed—encoding models have 
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unique solutions that continuously map the stimulus to the response (if maximum number 

of explanatory variables is less than or equal to the number time points). On the other 

hand, when predicting a stimulus (or mental process) from voxel responses, the number 

of voxels—in this case the explanatory variables—is usually much larger than the number 

of observations, which leads to an ill-posed problem with infinite solutions. Thus, for 

most decoding problems, there are an infinite number of possible decoders, yielding the 

superiority of any decoder or set of decoders, along with the properties that make a decoder 

unique, uncertain.

Decodability—how discernable a mental state is, given a brain activity pattern—is 

predicated both on the brain activity properties of the task being discerned as well as the 

goal of the decoding. Intuitively, decodability is analogous to discerning a breed of dog; 

breeds that look more similar will be harder to distinguish. The literature claims decoders 

can (1) discriminate between mental states, (2) identify mental states, and (3) capture 

additional state-related measures (stimulus or perception intensities). A dog breed metaphor 

can more tangibly elucidate these goals: Consider a pug (a decodee) and a French Bulldog (a 

comparator)—two breeds that may look alike. If one is familiar with a pug’s unique physical 

features—small stature, short snout, wrinkled face, folded ears, curled tail, etc.—then such 

features can serve as the decoder for a pug. This decoder can then be used to perform the 

three decoding tasks. Specifically, discrimination (goal 1) is akin to deciding which dog 

is a pug when the pug and French Bulldog are next to one another. Identification (goal 

2), instead, is akin to saying whether a single dog is a pug when there are no other dogs 

around, and it is intuitive that one must be more confident of the properties of pugs not to 

mistakenly label a French Bulldog as a pug. Finally, capturing a continuous measure (goal 

3), such as perceived intensity of a state, is much like trying to judge a dog’s age. Although 

discrimination and capturing continuous measures have been discussed and illustrated for 

various mental states, less attention has been given to identifying a certain mental state from 

a given pattern of brain activity.

The pattern of mental state decoders arises from weights assigned to its constituent voxels. 

In this paper, we deal with a specific class of decoders that we call fixed-weight decoders
—each voxel is assigned its own weight. Voxel weights are derived in three stages. First, 

general linear models (GLM) generate a brain activity map (correlation between the activity 

in each voxel and the task). This is a basic encoding model since the task is the independent 

variable and voxels are dependent variables. Second, GLM is used to contrast the activity 

maps from a task or state of interest (a decodee; e.g., pain) to one of no interest (a 

comparator; e.g., touch), and its results are thresholded (a contrast map). The thresholded 

contrast map is used to constrain the spatial extent of the decoder. Finally, “machine 

learning” models are used to tune the weights in the thresholded contrast map to optimize 

its predictive performance (Liang, Su, Mouraux, & Iannetti, 2019; Wager et al., 2013); the 

result is a relatively sparse, fixed-weight decoder with a fine-grained pattern (a decoder). 
These models are a conceptual demarcation from the activity map since they are a form 

of decoding (reverse inference) rather than encoding. It is tacitly assumed that each stage 

improves performance of the decoder by uncovering better distributed patterns of neural 

ensembles related to the mental state of interest, and as a result, detailed spatial patterns 

confer predictive value, as explicitly posited to be one possible explanation for decoding 
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performance, “the pattern of activation, rather than the overall level of activation of a region, 

is the critical agent of discrimination.” (Wager et al., 2013, p. p. 1395) This concept is 

now expounded for diverse topics across many labs (Eisenbarth, Chang, & Wager, 2016; 

Gianaros et al., 2020; Kragel et al., 2018; Lindquist et al., 2017; Marquand et al., 2010; 

Poldrack, Halchenko, & Hanson, 2009; Wager et al., 2013; Wager et al., 2015; Woo, Roy, 

Buhle, & Wager, 2015).

The notion that across-subject decoders can capture mental states across different individuals 

violates basic neuroscientific principles, since it is premised on the immutability and 

uniformity of human brains. Within-subject decoding requires a one-to-one mapping 

between brain activity patterns and brain states that needs to be preserved across time. 

Preservation of mapping across time is vulnerable to time effects such as learning, 

repetition suppression, etc. For across-subject decoding, this mapping additionally needs 

to be conserved across individuals. This ignores inter-subject variability in structural and 

functional anatomy due to differences in genetics, lifestyles, experiences, and associated 

memory traces (Gazzaniga, 2000; Kandel, 2013), each of which would carve the 

individualized brain activity of subjective brain states (for a discussion on the topic from 

the viewpoint of fMRI analysis, see (Feilong, Nastase, Guntupalli, & Haxby, 2018)). If 

a trivial, fixed relationship exists between subjective brain states and brain activity, such 

decoders also raise strong ethical and legal concerns regarding their ability to invade mental 

privacy (Mecacci & Haselager, 2019) and would be incongruent with commonly accepted 

philosophical constructs of subjective brain states (Chalmers, 1997).

Our principal aim was to evaluate the performance and necessity of fixed-weight decoders 

relative to more parsimonious approaches (e.g., using encoders or brain activity maps as 

decoders). After rigorously evaluating the performance of decoders, we sought to understand 

fixed-weight decoders from a more general perspective: What determines and constrains 

decodability?

2. Materials and methods

2.1. Datasets

6 datasets were used in this paper; all are part of published studies and were either provided 

by their authors (Datasets 1, 2, 3, 4, and 5) or downloaded from public repositories (Dataset 

6). Datasets 1, 2, 3, 4, and 5 consist of voxel-wise, whole brain, task dependent GLM 

analysis activation maps (beta maps). Dataset 6 consists of BOLD timeseries which were 

processed using standard fMRI pre- and post-processing methods described below.

2.1.1. Dataset 1—15, right-handed, adult subjects (mean age: 35.21 ± 11.48 years, 7 

females). Subjects had no history of pain, psychiatric, or neurological disorders. FMRI data 

were collected while subjects received thermal stimuli across 3 temperatures: 47, 49, and 51 

degrees Celsius. Subjects continuously rated, using a finger span device (Apkarian, Krauss, 

Fredrickson, & Szeverenyi, 2001; Baliki et al., 2006), their pain from 0, not painful, up 

to 100, worst imaginable pain (“pain rating” task.) A control scan was performed while 

subjects used the finger span device to track a moving bar projected on the screen (“visual 

rating” task; moving bar replicated for each subject the specific pain rating task temporal 
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pattern). The dataset includes one GLM beta map per subject per stimulus type. The dataset 

was previously described in (Baliki, Geha, & Apkarian, 2009).

2.1.2. Dataset 2—51 healthy, right-handed, adult subjects (mean age: 24 ± 2.29 years, 

34 females). Subjects had no history of brain injuries, pain disorders, or psychiatric or 

neurological diseases. FMRI data was collected while subjects received painful heat stimuli 

on the right foot dorsum using a CO2 laser, as well as tactile stimuli to the same area using 

electrical stimulation. Stimuli were not delivered at the same time. Perceived intensities were 

recorded for every stimulus and only the stimuli with matched perceived intensity for painful 

heat and touch were selected for GLM analysis. The dataset includes one activation map per 

subject per stimulus modality – painful heat and touch. The dataset was previously described 

in (Liang et al., 2019; Su et al., 2019).

2.1.3. Dataset 3—14 healthy, right-handed, adult subjects (age: 20 – 36 years old, 6 

females). FMRI data were collected while subjects received painful heat stimuli on the right 

foot dorsum using a CO2 laser, tactile stimuli to the same area using electrical stimulation, 

visual stimuli using a white disk presented above the right foot, and auditory stimuli 

delivered via pneumatic earphones. Stimuli were not delivered at the same time. Perceived 

intensities were recorded for every stimulus and only the stimuli with matched perceived 

intensity across the four modalities were selected for GLM analysis. The dataset includes 

one activation map per subject per stimulus modality – painful heat, tactile, auditory, and 

visual. The dataset was previously described and published in (Liang et al., 2019).

2.1.4. Dataset 4—33 healthy, right-handed, adult subjects (mean age: 27.9 ± 9.0 years, 

22 females). Subjects had no history of pain, psychiatric, or neurological disorders. FMRI 

data was collected while subjects received thermal stimuli that varied in one-degree Celsius 

increments across six temperatures from 44.3 degrees Celsius up to 49.3. Subjects then 

evaluated each stimulus as warm, and scored it from 0, not perceived up to 99, about to 

become painful, or as painfully hot, and scored it from 100, no pain, up to 200, worst 

imaginable pain. The dataset includes an average GLM activation map per subject per 

stimulus temperature, as well as the corresponding average stimulus ratings. When this 

dataset was applied dichotomously (pain vs. no pain), we averaged the brain activity maps 

from the painful and nonpainful conditions; we omitted subjects who had fewer than two 

brain activity maps for each condition, resulting in 29 subjects for dichotomous ratings. The 

dataset was previously described in (Wager et al., 2013; Woo et al., 2015).

2.1.5. Dataset 5—14 healthy, right-handed, adult subjects (mean age 22.4 years, range 

19–35, 10 females). Subjects had no history of neuropsychiatric disorders, and were not 

on psychoactive medications. FMRI data was collected while at each trial subjects were 

presented with a word and had to decide if it refers to a living or nonliving entity. Each word 

was presented either mirrored or plain. The direction of presented words were interspersed 

such that we end up with four trial scenarios: Plain-Repeat (PL-RP) where during the trial 

and the one immediately preceding it, the words were plain; Mirror-Repeat (MR-RP) where 

during the trial and the one immediately preceding it, the words were mirrored; Plain-Switch 

(PL-SW) where during the trial the word is plain, and the trial immediately preceding it, the 
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word is mirrored; Plain-Switch (MR-SW) where during the trial the word is mirrored, and 

the trial immediately preceding it, the word is plain. Data was collected across twelve runs, 

two training weeks separated two sets of six runs. Dataset includes, up to 12 GLM activation 

maps (minimum 10) per subject per scenario. The dataset was previously described in 

(Jimura, Cazalis, Stover, & Poldrack, 2014a). This dataset was provided in subject space. We 

performed a nonlinear registration of the brains into standard MNI space, 2×2×2 mm3, using 

FSL FNIRT (Andersson, Jenkinson, & Smith, 2007).

2.1.6. Dataset 6—213 healthy, adult subjects (mean age 24.1 year (SD = 7.4 year), 

101 females). Subjects had no history of physical or mental health condition. fMRI 

data was collected while subjects performed a voice localizer task. Forty blocks of 

vocal sounds (20) and non-vocal sounds (20) interspersed with periods of silence were 

presented while the subjects laid silent and passively listening with their eyes closed in 

the scanner. This dataset was previously described in (C. R. Pernet et al., 2015). Raw 

fMRI data was downloaded from openneuro.org (https://openneuro.org/datasets/ds000158/

versions/1.0.0). We used minimal pre-processing for this study which was performed using 

the FMRIB 5.0.8 software library (FSL) (Jenkinson, Beckmann, Behrens, Woolrich, & 

Smith, 2012), MATLAB2018a and in-house scripts. The following steps were performed: 

motion correction, intensity normalization, nuisance regression of 6 motion vectors, signal-

averaged overall voxels of the eroded white matter and ventricle region, and global signal of 

the whole brain, and band-pass filtering (0.008–0.1 Hz) by applying a 4th-order Butterworth 

filter. All pre-processed rs-fMRI data were registered to the MNI152 2mm template using 

a two-step procedure, in which the mean of preprocessed fMRI data was registered 

with a 7-degrees-of-freedom affine transformation to its corresponding T1 brain (FLIRT); 

transformation parameters were computed by nonlinearly registering individual T1 brains 

to the MNI152 template (FNIRT). Combining the two transformations by multiplying the 

matrices yielded transformation parameters normalizing the pre-processed fMRI data to the 

standard space. Task related activation maps (vocal vs silence, and non-vocal vs silence) 

were derived from a whole brain GLM regression analysis using the FMRIB Software 

Library (FSL) (Jenkinson et al., 2012; Smith et al., 2004; Woolrich et al., 2009).

2.2. Decoders

2.2.1. Neurologic Pain Signature (NPS)—Neurologic Pain Signature, NPS, was 

shared with us by Tor Wager, whose team developed this across-subject fwMVP (Wager 

et al., 2013), and has studied its decoding abilities in multiple publications.

2.2.2. Pain-preferring voxels (pPV)—Pain-preferring voxels, pPV, is an as-fwMVP 

decoder developed by Iannetti and colleagues (Liang et al., 2019).

2.2.3. “Pain” Neurosynth map (pNsy)—We used the term-based meta-analysis 

platform Neurosynth (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011) to identify a 

reverse inference brain activity pattern for the term “pain”, using association test. We term 

the obtained pattern as pain-Neurosynth, or pNsy, decoder. Neurosynth uses a probabilistic 

framework based on Generalized Correspondence Latent Dirichlet Allocation and extracts 

latent topics from a database of 14,371 published fMRI studies (neurosynth.org, (Yarkoni 
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et al., 2011)). The term “pain” identified 516 studies based on which a brain pattern was 

generated. The reverse inference association map (FDR corrected <0.01) was used as pNsy, 

which identifies voxels and their probabilities for being included in the 516 “pain” term 

associated studies but not in the rest of the >11,000 studies.

2.2.4. Gaussian process decoder—We used a probabilistic Gaussian Process-based 

(GP) modeling algorithm (Rasmussen, 2003; Jessica Schrouff et al., 2013) to derive an 

across-subject fwMVP decoder from the contrast between thermal pain ratings and ratings 

of visual bars in Dataset 1. We used the publicly available Matlab toolbox PRoNTo 

(ver2.1.1) (Jessica Schrouff et al., 2013; J. Schrouff et al., 2013). We label derived fwMVP 

decoder pain-GP, or pGP.

2.3. Use of decoders

2.3.1. Normalized dot product—Throughout this study, we use the normalized dot 

product (NDP) (eq. 1) as a measure of similarity between templates and brain activation 

patterns. The NDP is calculated between the vectorized forms of a given decoder template 

and a stimulus specific brain activation map. The NDP is a scalar between −1 for colinear 

vectors of opposite direction, and 1 for colinear vectors of same direction. An NDP value of 

zero means the 2 vectors are orthogonal to each other – no similarity.

NDP = T ⋅ β =
∑i = 1

n T i ⋅ βi

∑i = 1
n T i

2 ⋅ ∑i = 1
n βi

2 eq. 1

Where T and β are the vectorized forms of the decoding template and a stimulus specific 

activation map, Ti and βi are the components of T and β, and n is the number of voxels 

comprising the brain.

2.3.2. Binary classification—Two types of binary classifications were performed. The 

first is a between groups binary classification of brains in painful vs non-painful conditions 

(or some other decode-comparator pair). We start by calculating the NDP for each brain 

under each condition; We then use the NDPs as scores to build the Receiver Operator 

Curve and calculate the area under the curve (AUC). The second classification is a Forced 

Choice classification, this is a threshold free classification, where the NDP of two brains are 

compared to each other, and the one with the highest value is classified as “in pain”, or as 

experiencing a higher level of pain than the second brain.

2.3.3. Meta-analysis—Meta-analysis was performed to obtain average performance 

estimates for each of the three primary decoders. We modeled each decoder separately 

since they are ‘competing’; as such, the effect of covariance on model parameter estimates 

is undesirable. Because Dataset 3 contained three comparator tasks, we averaged their 

performance and estimated the variance of this estimate using the bootstrap technique (1000 

replicates); thus, the variance estimate of the average accounts for covariance between the 

three comparator conditions. No variance stabilizing transformation was performed since 

the bootstrap distribution of each AUC was approximately normal and transformations 
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provided little gain on average. Both NPS and pNsy were modeled using Datasets 1–4, 

and pPV was modeled using Datasets 1, 2, and 4, as pPV was derived from Dataset 3. 

In other words, to use Dataset 3 in the pPV meta-analysis would bias the results in favor 

of pPV, and we wanted each estimate to be unbiased. We performed a random-effects 

meta-analysis, fit using restricted maximum likelihood in the metafor package using the raw 

AUCs (Viechtbauer, 2010).

2.3.4. Bayesian classification for identification—We created a nonparametric 

Bayesian classification model to probabilistically classify subjects as being in a certain state 

given their brain activity map. This model was trained and run on all subjects across all pain 

Datasets (Fix & Hodges, 1951; Silverman, 1986), in addition to the voice dataset (Cyril R 

Pernet et al., 2015).

Starting with the pain datasets, we started with a matrix containing all subjects, tasks, 

and their respective normalized dot products (NDP). Each subject was sampled one at a 

time. Using the remaining subjects, a probability density functions (pdf) of normalized 

dot products was created for each task. To create these pdfs, we used kernel density 

estimation with a Gaussian kernel and a bandwidth chosen using the Sheather-Jones method 

(Sheather & Jones, 1991). Specifically, a pdf was created for each of the comparator 

conditions (visuomotor, touch, audition, vision, and nonpainful heat) and pain. All of the 

pain conditions were modeled as one distribution, as a tacit assumption of these decoders 

is that “physical pain” is a single construct. From these distributions, we could calculate a 

posterior probability, P(pain | NDP), for each individual i: (eq 2)

P pain ∣ NDPi = f pain NDPi ∣ pain P (pain)
∑j = 1

k f j NDPi ∣ taskj P taskj
eq. 2

where f pain NDPi  and f j NDPi  are the kernel density estimates used for NDPi (i.e., 

derived from all other brains) in pain or task j (where tasks j = 1, …, k include all 

comparator tasks and pain). Priors, P(·), were derived from the number of studies in 

Neurosynth that contains:

• “pain” = 516

• “tactile” OR “touch” = 110 + 225

• “visually” OR “vision” = 333 + 137

• “auditory” = 1253

• “visuomotor” = 153

• “heat” (from old Neurosynth) = 61

All study counts were obtained on December 10, 2019. Because they were obtained from 

Neurosynth and each study is given equal weight, the priors assume an equal number of 

subjects across studies, and thus estimates the probability of a brain undergoing each of 

these tasks in the “neuroimaging world,” if we consider these tasks to be the neuroimaging 
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world. Of note, these priors provided more optimistic estimates as compared to uniform 

priors.

For both NPS and pNsy, all subjects were used to obtain the posterior distribution. However, 

to obtain an unbiased posterior distribution for pPV, we did not include subjects from 

Dataset 3 (i.e., from which pPV was derived).

This process was repeated for the voice test dataset (106 subjects). However, because the 

tasks in the voice dataset were unique, we used a flat prior (i.e., prior probability = ½ for 

each of the two tasks).

2.3.5. Calculation of distributional overlap for identification—We calculated 

the overlap between the distributions of decodee and comparator NDPs as a marker of 

identifiability. The overlapping region of probability density functions contains information 

that cannot be used to identify; thus, lower overlap corresponds to higher identifiability. 

To calculate overlap, we first fit each NDP distribution (e.g., NPS pain and NPS nonpain, 

separately) using kernel density estimation with an Gaussian kernel and a bandwidth chosen 

using the Sheather-Jones method (Sheather & Jones, 1991). We then had fdecodee( ⋅ ) and 

fcomparator( ⋅ ), kernel density estimates for the decodee and comparator, respectively. We 

integrated over their minimum to calculate their overlap:

∫
−1

1

min fdecodee (x), fcomparator (x) dx eq.3

2.3.6. Normalized dot product – stimulus relationship—In this analysis we 

wanted to investigate the relationship between the NDP and stimulus rating as well as 

stimulus intensity. Dataset 4 includes information about stimulus intensity and stimulus 

rating. We fit the data using locally estimated scatterplot smoothing (LOESS) (Cleveland & 

Devlin, 1988).

2.3.7. Within study vs. across study decoders—Given that pNsy is based on a 

meta-analysis of study-level GLM brain activity maps, we created decoders from four 

datasets by averaging subject-level GLM brain activity maps obtained from a pain task. 

These study-level decoders were then used to classify brains as pain vs. no pain, in 

accordance with the task.

for each study i

        average beta maps for the pain task in study i

end

for each study i

        for each study j

                for each subject k in study j

                        for each task l in subject k
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                                calculate cosine similarity of between 

TASK_lk and DECODER_i

                        end

                end

                calculate AUC for DECODER_i applied to STUDY_j

        end

end

2.3.8. Within subject vs across subject decoders—Given the variability of fMRI 

data, both within-subject and across-subject, we wanted to answer the following question: 

will decoding mental states of a particular subject using a template derived from data of 

the same subject be more accurate than decoding of mental states of a group of subjects 

using a template derived from the group’s data? Are within-subject decoders superior to 

between-subject decoders? The following analysis addresses this question using Dataset 6.

2.3.9. Within subject decoding—Below is a pseudo-code for the within subject 

analysis.

for each subject i

        for each task j

                randomly select half the task j beta maps replicates,

                average voxel-wise to get inter subject i, task j specific 

decoding template Tj,

                label the remaining task j replicates as TASK_j,

                calculate Signature Responses (SR) of each beta map in 

TASK_j using Tj,

                for each task k ≠ j

                        randomly select half the task k beta maps replicates 

and label as TASK_k,

                        calculate SRs of each beta map in TASK_k using Tj,

                        calculate AUC for correctly classifying TASK_j and 

TASK_k beta maps,

                end

        end

end

Average the AUCs along all subjects,

repeat from the start 1,000 times.

This will result in average AUC estimates for the classification of each possible task pairs 

(i,j) using both Ti and Tj. All performed within-subject.

2.3.10. Between subject decoding—Below is a pseudo-code for the between subject 

analysis.
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for each subject i

        for each task j

                average beta map replicates to get one beta map per subject 

per task to form the between-subjects dataset,

        end

end

for each task j

        randomly select half the task j beta maps (from the between-subjects 

dataset),

        average voxel-wise to get between-subjects task j specific decoding 

template Tj,

        label the remaining task j replicates as TASK_j,

        calculate SRs of each beta map in TASK_j using Tj,

        for each task k ≠ j

                randomly select half the task k beta maps replicates and 

label as TASK_k,

                calculate SRs of each beta map in TASK_k using Tj,

                calculate AUC for correctly classifying TASK_j and TASK_k 

beta maps,

        end

end

repeat from the start 1,000 times.

This will result in AUC estimates for the classification of each possible task pairs (i,j) using 

both Ti and Tj. All performed between-subject.

2.4. Decoder perturbations

2.4.1. Pattern smoothing—To evaluate the importance of the spatial pattern of 

fwMVPs on the performance of task classification, NDPs were calculated using spatially 

smoothed versions of a given decoder. Our hypothesis is that, if a pattern holds task 

specific information, then spatial smoothing will diminish the performance of the classifier. 

Smoothing was done using a 3D isotropic Gaussian kernel filter applied to each template in 

standard space (eq. 4).

Tf(x, y, z ∣ σ) = (T * G(σ))(x, y, z)
(M * G(σ))(x, y, z) ⋅ M(x, y, z) eq. 4

Where T and Tf are the original and filtered decoder respectively, G is the Gaussian kernel, 

M is a binary mask that is True where the decoder is non-zero and False everywhere else, 

x, y, z are voxel coordinates, and σ is the kernel standard deviation. The additional M in 

the numerator resets all non-decoder voxels to zero after filtering – preventing the decoder 

from bleeding out of its boundary. The convolution in the denominator is the sum of the 

kernel coefficients where it overlaps with the decoder; this normalization leads to a weighted 

average using only voxels within the decoder. Together, the additional M in the numerator 
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and the convolution in the denominator correct for boundary effects during filtering. In 

addition to the original decoder, patterns were progressively smoothed by varying the kernel 

standard deviation from 1 mm up to 20 mm. Gaussian smoothing is in effect a spatial low 

pass filter with a spatial frequency cutoff at −3dB given by:

fc(σ) = 2ln(2)
2πσ eq. 5

Increasing the Gaussian kernel standard deviation will lead to a lower cutoff frequency, 

effectively reducing the spatial resolution of the data.

A binarized version of each decoder was also used to simulate a filter with infinite standard 

deviation, as well as the sign of each filtered decoder at each filter level (sgn(Tf)), where 

voxels that are positive become 1, and voxels that are negative become −1, and zero 

everywhere else. The signed version of the templates was motivated by the fact that in 

contrast with pPV and pNsy, almost half of the NPS voxels are negative (22,725/47,490), 

and we needed to investigate the role of sign of the coefficients excluding the effect of the 

absolute value on decoding. The NDPs generated from these spatial filters were used to 

calculate the AUC at each smoothing level.

2.4.2. Information redundancy—We investigated the extent of information 

redundancy for the three pain the decoders. We wanted to examine whether the spatial extent 

of a given decoder was needed, and what percent, on average, of the total number of voxels 

in each decoder was necessary before the classifier performance becomes comparable to the 

full decoder. Our hypothesis is that if there is no information redundancy, the performance 

will reach its maximum only when we include the entire decoder; and with increasing 

redundancy this maximum will be reached with a lower percentage of voxels on average.

Based on the raw, the unfiltered sign, and the infinitely filtered version of each as-fwMVP, 

we constructed a series of new decoders that included an increasing number of voxels 

randomly selected from the parent fwMVP without replacement, all remaining voxels were 

set to zero. We started with ten voxels and increased to the maximum number of voxels in 

a template. This random sampling was repeated 1,000 time, which produces as many NDPs 

for each density level. The NDPs were then used to calculate the ROC and its area, which 

were then averaged to give the average AUC at each percentage level and also calculate 

associated uncertainty.

2.4.3. Voxel weights—We investigated whether or not voxels with higher coefficients 

(in absolute value) encode more state specific information compared to voxels with lower 

coefficients. To address this question, we binned each fwMVP voxels by their absolute 

weights, such that the top 10% of absolute voxel weights were in the first bin, the second 

10% were in the second bin, etc., and built a decoder from each tier. We then used those 

templates to calculate the NDPs and the AUCs as a function of voxel coefficient tier. In 

addition to the 10% bin width and unfiltered decoders, we also generated decoders using 

bin widths of 1%, 5%, and 20%, as well as decoders from the sign of the unfiltered, and 

infinitely filtered versions.
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2.4.4. Role of brain areas—We investigated whether decoder voxels from certain brain 

regions perform better than others. We selected pNsy as the decoder for this analysis given 

the probabilistic meaning of its voxel weights. We thresholded the decoder (voxel weights z 

> 6) and generated a new decoder from each distinct cluster; we ended up with seven new 

decoders. We then evaluated the pain decoding performance of each new decoder on datasets 

1 to 4. We applied a Gaussian spatial filter (sd = 10 mm) before thresholding, otherwise we 

end up with too many fragmented clusters. We also built 7 decoders from NPS and pPV 

using the overlap between each of them and each of the 7 cluster from pNsy. We used pNsy 

clusters because it is the decoder with the most voxels in common with NPS and pPV.

2.5. Decoders derived from Dataset 5 and Dataset 6

We created fwMVP decoders from Dataset 5 (Jimura et al., 2014a) and Dataset 6 (C. R. 

Pernet et al., 2015) to assess the generalizability of our results to other cognitive domains. 

In Dataset 5 we are interested in decoding “reading a mirrored text (mr) after reading 

a mirrored text (mr-mr)” vs “reading a mirrored text after reading a plain text (mr-pl)” 

or pl-mr or pl-pl. In Dataset 6, we are interested in decoding “hearing vocal sounds” vs 

“hearing non-vocal sounds”. Four approaches were used to create these decoders: Support 

Vector Machine, LASSO-PCR, Gaussian Process Classification, as well a GLM contrast 

of activation maps. Training and testing of the decoders were similar across all four 

approaches, with some minor differences in the treatment of each dataset in how we select 

the training and testing groups. Assuming we have our training and testing groups, the 

procedure is as follows:

1. Perform a second-level group analysis with cluster-based thresholding corrected 

for multiple comparisons by using the null distribution of the maximum cluster 

mass (FSL randomize (Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 

2004), option -C) on the training group for the contrast GLM activation maps 

mr_rpt > (mr_sw, pl_rp, pl_sw) for Dataset 6, and vocal_sound > non-vocal for 

Dataset 7.

2. Binarize the group contrast map; this will be the mask of voxels of interest for 

building our decoders.

3. Use SVM, LASSO-PCR, Gaussian Process to generate the decoder with the 

activation maps (GLM) of the training group. For GLM decoders, the mean 

difference in activation maps within this same masked region was used.

4. Perform the normalized dot product of the decoder with the activation maps in 

the testing group to calculate the signature response and calculate the AUC of the 

classification exercise.

Dataset 5 include several replicate activation maps per task for each of the 14 subjects, we 

preprocessed the data as follows:

1. Average all task replicates for each subject.

2. Randomly split the subjects into two seven subject groups: training and testing.

3. Create a template and test it as described above.
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4. Repeat 100 times from step 2 and build the AUC distribution.

After preprocessing, Dataset 6 included 213 subjects and had one activation map per 

stimulus per subject. The large number of subjects allows us to split it into a training group 

(107 Subjects), and a validation group (106 Subjects) without the need for permutation. 

Because the sample was large, we calculated the AUC confidence interval using its 

relationship with the Wilcoxon statistic and normal assumptions (eq. 6)

95%CI = AUC
± 1.96 AUC

n2 (1 − AUC) + (n − 1) 1
2 − AUC + 2AUC

1 + AUC − 2 eq. 6

where n is the number of individuals in the validation sample, each of whom have one 

activation map for each state.

2.5.1. SVM and Gaussian process—We used the Matlab toolbox PRoNTo (ver2.1.1) 

(Jessica Schrouff et al., 2013; J. Schrouff et al., 2013) to derive the decoders using SVM 

(Cristianini & Shawe-Taylor, 2000; Mourao-Miranda, Friston, & Brammer, 2007), and 

Gaussian Process (Rasmussen, 2003; J. Schrouff et al., 2013). Data was split into two 

groups; Group 1 included activation maps of the mr_rp task for Dataset 5, and of the 

vocal_sound stimulus for Dataset 6; Group 2 included the activation maps of the mr_sw, 

pl_rp, and pl_sw for Dataset 5, and non-vocal_sound for Dataset 6. All maps were input 

as independent datapoints. We performed a binary classification analysis and used “Binary 

Support Vector Machine” for SVM, and “Binary Gaussian Process Classifier” for Gaussian 

process, and constrained the analysis to voxels within the mask created from the second-

level group analysis

2.5.2. LASSO-PCR—LASSO-PCR was used to generate decoders following the 

methods described by Wager et al. (Wager, Atlas, Leotti, & Rilling, 2011; Wager et al., 

2013) and was implemented in R. An n×p sparse matrix of subjects (n) and voxels (p) was 

column-wise centered and scaled. Of note, sparse columns were left sparse since their scaled 

estimates are undetermined. Principal components analysis (PCA) was performed using 

singular value decomposition on the column-scaled matrix to obtain a new n×n predictor 

matrix, XPCA, and a p×n rotation matrix, R. The reduced predictor matrix, XPCA, was used 

in a logistic regression with L1 regularization (LASSO) (Friedman, Hastie, & Tibshirani, 

2010; Simon, Friedman, Hastie, & Tibshirani, 2011; Tibshirani, Johnstone, Hastie, & Efron, 

2004). Hyperparameter λ was chosen to minimize binomial deviance using leave-one-out 

cross-validation across 100 λ’s; default glmnet parameters were used to determine the exact 

grid range. PCA was performed (and tested) separately within each fold. An n×1 vector of 

penalized coefficients was pre-multiplied by rotation matrix R to obtain a p×1 vector of 

voxel weights. This vector of voxel weights served as the decoder.

2.5.3. GLM—GLM was used to generate contrast-based decoders. These simply used the 

average difference between unsmoothed GLM activity maps (e.g., mean(vocal) – mean(non-

vocal)), masked to the same thresholded region as the other decoders.
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3. Results

3.1. Overview

Our investigation began with two published pain decoders and one pain encoder that we 

used as a decoder. Both qualitatively and quantitatively, these decoders were markedly 

different from one another (Fig 1). Despite these differences, on average, their ability to 

discriminate pain from non-pain states, using datasets from four published studies (N=113) 

(Baliki et al., 2009; Liang et al., 2019; Wager et al., 2013; Woo et al., 2015), was 

nearly identical (Fig 2a). To understand decoding performance’s dependence on decoder 

spatial properties, we performed several operations to perturb the decoders and reassessed 

their performance after each modification using the area under the receiver operating 

characteristic curve (AUC):

1. To assess if anatomical regions have differential decoding information, we 

limited the extent of the decoders to one region at a time. For any given study, 

multiple clusters from multiple decoders performed similarly well and even 

matched the performance of the full-brain decoder (Fig 2b–c, Fig S2).

2. To test the influence of the spatial resolutions on performance, we blurred each 

pattern using a spatial Gaussian filter (Fig 3a, Fig S1). We filtered each decoder 

within its nonzero voxels using standard deviations ranging from 1–20 mm. In 

addition, we created a binary map, wherein nonzero voxels within each decoder 

were set to 1 and all other voxels 0, and a sign decoder, where positive voxels 

were set to +1, negative voxels −1, and everything else 0. Remarkably, the 

performances of all three decoders were unaffected by pattern blurring; even 

the extreme blurring present in the sign templates, and, with some exceptions, 

the total blurring of the weights in the binary templates did not affect decoding 

performance (Fig 3b, Fig S3).

3. To test the redundancy of information captured by the nonzero weights within 

each decoder, we constructed decoders that included only a subset of voxels from 

the original templates. We randomly sampled nonzero weights, starting with 10 

voxels and increasing to the full decoder. Maximum performance of the decoder 

was realized even using a random selection of just 10% of the decoder’s voxels 

(Fig 3c, Fig S4–6).

4. To assess the impact that voxel weights have on performance, we built decoders 

using 10% of the original decoders’ voxels, selected according to their absolute 

weight percentile (Fig S7). The top 10 percentile, followed by weights between 

the 80 and 90 percentiles, then between 70 and 80, etc. Performance degradation 

was present in some but not all decoders and datasets (Fig 3d, Fig S8–9).

We generalized our findings by examining the decoders for cognitive domains other than 

pain, where functional segregation is better established; namely, a reading task and a 

listening task (two publicly available datasets, n=14 and n=213 subjects, respectively) 

(Jimura, Cazalis, Stover, & Poldrack, 2014b; C. R. Pernet et al., 2015). We compared 

decoding performance between encoders used for decoding (GLM) and decoders, before and 
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after constraining the decoders to binary or signed maps. Our results closely resembled those 

for decoding pain (Fig 5).

The brain imaging literature commonly accepts that if a decoder can adequately discriminate 

between a decodee and a comparator, then it may also be useful for identifying the mental 

state associated with the decodee. We tested this concept for both pain and listening tasks. 

Despite discrimination being possible and robust to perturbations, all decoders performed 

poorly and relatively similarly when trying to identify the decodee mental state (Fig 6).

The results of our perturbation analyses led us to explore the limits of decoding. If 

perturbed and simplified decoders can perform similarly to the original decoders, can we 

further simplify decoders and explain decodability? To address the former question, we 

built pain decoders using noxious stimuli encoders (brain activity maps). These encoding 

models performed similarly to decoders. Unsurprisingly, within-study performance was 

slightly superior to across-study performance (Fig 7a–b). We extended these findings to 

quantify within- and across-subject decoding using four different tasks (mr-mr, mr-pl, 

pl-pl, pl-mr), repeated up to 12 times per subject in 14 subjects.(Jimura et al., 2014b) 

This study design provides the opportunity to calculate discriminability as a function 

of similarity measures from the decoder, decodee, and comparator, for both within- and 

across-subject decoding. Although performance was not consistently better for within-

subject discrimination, variation in performance could be largely explained by within-

task homogeneity and between-task heterogeneity, allowing us to propose decoding rules 

(Fig 7c–d), which worked better for explaining within- compared to between-subject 

discriminability. These results present convergent evidence that 1) specifically for across-

subject discrimination, decoding is limited by the information contained within encoding 

models (brain activity maps). In particular, sparse, binarized brain activity maps contain 

sufficient information to discriminate between mental states; 2) identifying a mental state 

(i.e., no direct comparison) is harder than discriminating between mental states (i.e., a direct 

comparison); 3) similarity measures almost fully account for the variance of within-subject 

discrimination performance, which degrades in across-subject discrimination.

3.2. Exploring established decoders

We started by assessing the similarities and differences of three pain decoders. Two of 

them are optimized multivariable decoders: The Neurologic Pan Signature(Wager et al., 

2013) (NPS), constructed using LASSO-PCR, and the Pain-Preferring Voxels(Liang et al., 

2019) (pPV), constructed using SVM. The third decoder is an encoder: the meta-analytic 

association map from Neurosynth (Yarkoni et al., 2011) for the term “Pain” (pNsy). pNsy is 

a mass-univariate map based on reported statistically significant coordinates from 516 pain-

related studies contrasted with the remaining 13,855 studies in the Neurosynth database. 

Spatially, the three decoders include voxels from approximately the same brain regions (Fig 

1A), with some but not full overlap (Fig 1D). They have substantially different numbers 

of voxels and distinct voxel weight distributions (Fig 1B): pPV and pNsy have 2,665 and 

21,318 voxels, respectively, all with positive weights, except for a few negatives in pNsy, 

whereas NPS has 47,590 voxels with weights distributed around zero. In addition, the 
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correlations between the weights of voxels common in any two decoders are weak (r = 

0.17–0.30; Fig 1C).

3.3. Discrimination performance for pain is similar between diverse decoders

We used the three decoders to discriminate between painful and non-painful control stimuli 

in data from four published studies, collected from three labs, totaling 113 subjects. 

Discrimination was based on a similarity measure—normalized dot product (NDP), also 

known as cosine similarity—between an encoding of the stimulus (brain activity map) and 

the decoder. Others have used NDP for decoding; e.g., the application of NPS to neonatal 

and adult brain responses to noxious stimuli (Geuter et al., 2020). Much like a correlation 

coefficient, NDP produces +1 for identical patterns, 0 for orthogonal patterns, and −1 for 

opposite patterns; however, NDP does not demean the patterns, in turn preserving negative 

voxel weights and “deactivations”. The assumption was that a pain decoder should be more 

similar to an encoding of pain (decodee brain activity map) than an encoding of a control 

task (comparator brain activity map). We used AUC as an indicator of discriminability since 

it can be interpreted as the probability of a randomly sampled decodee NDP being greater 

than a randomly sampled comparator NDP, implying a direct comparison. We meta-analyzed 

the performance of each decoder across datasets (except for pPV and Dataset 3, which was 

used for its development; Fig 2a). Decoding performance showed dataset-dependent AUCs. 

However, the meta-analytic estimate for each decoder was similar (AUC ≈ 0.73).

This average performance similarity is remarkable and informative about the nature of 

what drives decodabiltiy; it implies that different models may nonetheless yield similar 

average performance, indicating that their detailed properties do not constrain decodability. 

Notwithstanding similar average performance, the decoders performed differently across 

datasets, indicating that decoding performance also has a specificity component which can 

likely be explained by brain region-specific dependencies.

3.4. No single brain region is necessary for decoding

We investigated brain region-dependence within the pain decoders. To do so, we first 

divided each decoder into seven parts based on seven different brain regions (Fig 2c; see 

Methods for details). Next, we evaluated the decoding performance within each region for 

discriminating painful from non-painful stimuli for datasets 1–4. Multiple clusters from 

multiple decoders performed similarly well and matched the performance of the full decoder 

(Fig 2B and Fig S2). Moreover, some clusters in isolation showed superior point estimates to 

the entire decoder, but this was not generalizable across studies and decoders. For instance, 

the voxels from NPS in the right insula had an AUC greater than that of the full decoder 

when discriminating pain from touch in Dataset 3, but lower when discriminating the same 

stimuli in Dataset 2. In some instances, such as the inferior brainstem in NPS and pPV and 

right thalamus in pPV, the clusters had no spatial overlap with the decoders. For these cases, 

the performance yielded an AUC of 0.5. The inferior brainstem consistently performed 

worst across studies and decoders. This is partially explained by the exclusion of the inferior 

brainstem from NPS and pPV. However, in pNsy, we suspect this effect is due to the 

influence of physiological noise that contaminates brainstem activity. These results suggest 

that no anatomical region has greater pain decoding power than other regions.
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3.5. All Three pain decoders are insensitive to spatial perturbations

3.5.1. Spatial smoothing of voxel weights—To investigate whether discrimination 

performance relies on the high resolution fixed-weight nature of the decoder’s voxel 

patterns, we measured performance when these patterns were degraded by spatial smoothing 

of the decoder weights using a Gaussian filter with increasing width, up to 20 mm and 

‘infinite’ smoothing (Fig 3A, Fig S1). Gaussian filtering removes the high-frequency content 

from the decoder pattern, effectively reducing the resolution; the wider the filter kernel 

is, the lower the resulting resolution. Of note, this spatial smoothing yields decoders with 

cutoff frequencies below that of the activation maps. We also built a binarized version of 

each decoder wherein all voxels within a decoder were assigned a value of 1 and all voxels 

outside the decoder are zero, effectively destroying all high-resolution information within 

the decoder. The binarized decoder emulates an infinitely filtered decoder. We also built 

a “sign” version of each decoder, where positive voxels become +1, negative voxels −1, 

and everything else 0. Remarkably, decoding performance was minimally affected by these 

procedures, with performance dropping to chance level only for the binary version of NPS 

in Dataset 2 and a slight downward trend also for NPS in Dataset 4 (Fig 3B, Fig. S3). This 

result clearly demonstrates that the fine-grained pattern of weights in these decoders added 

no value to performance (with a few exceptions, Fig S3).

3.5.2. Number of voxels—To characterize the minimum number of voxels necessary to 

discriminate the pain from non-pain states, we created sets of new decoders by randomly 

selecting subsets of voxels from each decoder. Our analysis spanned from 10 voxels up to 

the full decoder. Surprisingly, we attained the original decoding performance when only 

using a random 10% of the total number of each decoder’s constituent voxels (Fig 3C). We 

replicated this finding on all datasets and for all three decoders, using their original form 

(Fig S4), when using their binarized versions (Fig. S5), and when using their sign versions 

(Fig S6).

3.5.3. Significance of voxel weights—We further explored the relationship between 

voxel weights and performance. Particularly, we wanted to investigate if voxels with higher 

weights (e.g., the top 10%) are more specific to pain and will yield greater AUCs than those 

voxels with lower weights (e.g., the bottom 10%). For each decoder, we binned voxels by 

their absolute weights and then constructed a set of decoders using the voxels in each bin 

(see Fig S7). We generated decoders using 1%, 5%, 10%, and 20% bins. For example, the 

10% binned decoders are a series of decoders where the first decoder includes the top 10% 

of the voxels according to the absolute value of their weight, the second decoder is made up 

of the second 10%, etc., and the last of the series is a decoder that is made up of the bottom 

10% of the voxels. Two versions of each series were generated: one version where we left 

the voxel weights intact and a second where we binarized the decoders after binning. Again, 

we observed only minimal degradations in performance with decreasing voxel weights for 

all decoder-dataset combinations (Fig 3D). Degradations were primarily seen for pNsy in 

Dataset 2 (painful heat vs. touch), and NPS in Dataset 3 (pain vs. auditory and pain vs. 

visual) (Figs. S8–S9).
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3.5.4. Pattern value in stimulus/perception intensity decoding—Fixed-weight, 

multi-voxel pattern decoders derived with machine learning have been used to model 

stimulus and perceptual intensities. For example, in addition to binary classification of heat 

stimuli of different intensities, Wager et al. (2013) (see also (Tu, Tan, Bai, Hung, & Zhang, 

2016)) used NPS to capture stimulus intensity and perceptual ratings from brain activity. To 

this end, we tested the ability of the three pain decoders to capture stimulus and perception 

properties. We used data from a study where nonpainful and painful stimuli of different 

intensities, perceptual responses, and their associated brain activity were available.(Wager et 

al., 2013) All three decoders (NPS, pPV, and pNsy), whether raw or binarized, performed 

similarly for capturing perceived pain ratings (Fig 4A,B), for reflecting the intensity of 

the thermal stimulus (Fig 4C,D), and for discriminating between pairs of painful stimuli 

(Fig 4E,F). We performed this analysis using both NDP and dot product (DP) as outcome 

measures. The latter was used in the original study and provides opportunity to compare 

the present results to the original study. The results of the DP better match the original 

study. The discordant performance between NDP (nonmonotonic, Fig 4A, C, and E) and DP 

(almost monotonic, Fig 4B, D, and F) suggests that previously reported results (Wager et al., 

2013) are attributable to an increase in the magnitude of brain activity in specific regions, 

but in a way that becomes less similar to the decoder as indicated by the nonmonotonic trend 

of NDPs. Yet, both NDP and DP were insensitive to the removal of voxel weights.

Our results show, at least for the stimuli and decoders we have analyzed, that optimized 

decoders (NPS, pPV) offer no advantage over the simpler, mass-univariate encoder that 

is used as a decoder (pNsy) for binary classification and stimulus-perception mapping. 

Additionally, the voxel weights in these decoders seem to provide little decoding advantage. 

This reinforces the notion that binarized decoders perform sufficiently and that useful 

information is provided only by the decodee activity in a small subset of the locations 

where a decoder has non-zero weights.

3.6. Cognitive and auditory decoders are similarly highly redundant

So far, we have shown that popular pain decoders, as well as a meta-contrast map (encoder) 

used as a decoder, are able to maintain their full performance after being perturbed and 

degraded, indicating that much of the information contained within them is redundant. One 

worries that the findings may be specific to the modality studied, as pain and nociception are 

sensory systems for which no dedicated tissue has been uncovered in the neocortex (Chen, 

2018). As a result, there is long-standing debate as to specific or distributed encoding of 

pain perception (e.g., (Segerdahl, Mezue, Okell, Farrar, & Tracey, 2015); cf. (Iannetti & 

Mouraux, 2010; Petre et al., 2020)). To broaden our findings, we examined whether the 

uncovered principles apply to decoding for audition and reading. Primary and secondary 

auditory cortex (Brewer & Barton, 2016; Fruhholz & Grandjean, 2013) are in close 

proximity to the somatosensory regions examined above for pain and cortical columns in 

the region reflect specific auditory properties, while language representation with dedicated 

and functionally specific tissue is unique to humans (Broca, 1861). We used data from 

reading (Jimura et al., 2014b) and auditory (C. R. Pernet et al., 2015) studies to construct 

encoders using contrast maps, as well as decoders using multivariable SVM, LASSO-PCR, 

and Gaussian processes (our contrast maps closely resemble those reported in the original 
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studies, Fig S10–S11; see Methods). In the case of the reading cognitive task, our findings 

are entirely concordant with those for the pain decoders: all the constructed decoders show 

similar performance, which was maintained after extreme perturbations (e.g., sign or binary 

decoder) (Fig 5). These findings generalize and provide compelling support for our main 

result: decoders are highly redundant, and decoding primarily exploits information contained 

within voxel locations, independent of voxel weights. Moreover, task-specific encoders 

(contrast maps) are sufficient for decoding, implying that the meta-contrast maps (e.g., from 

Neurosynth) are also not necessary.

In the auditory task, discrimination performance is better with LASSO-PCR, SVM, and 

Gaussian Process than with GLM. We suspect these differences are a consequence of 

specific instantiations of overfitting or due to the larger sample size enabling the models 

to capture more encoding detail. We observed similar decoder-dependent performance 

variations for the pain decoders as well (see Fig 2A); yet, in further analyses, none showed 

superiority over the others. In the auditory task, and for both SVM and Gaussian Process 

decoders, we also observed appreciable performance decrement for binary maps and for 

10% binary map decoders. This too was observed in the pain decoders. Like with the pain 

decoders, here, we also observed that binary map decoders and 10% of sign(decoders) 

performed similarly to the raw decoders, again suggesting that negative weights at large 

scales can influence decoder performance.

3.7. Identification remains a challenge

The ability of machine learning-derived decoders to identify mental states is repeatedly 

asserted in the literature (Eisenbarth et al., 2016; Kragel et al., 2018; Lindquist et al., 2017; 

Marquand et al., 2010; Poldrack et al., 2009; Wager et al., 2013; Wager et al., 2015; Woo 

et al., 2015). If decoders are used with the objective of identification, then they should be 

able to pinpoint the specific mental state solely from the similarity between the decoder 

and decodee, and, crucially, in the absence of a comparator. This is akin to being able to 

state whether a dog is a pug without other dogs being present. In other words, identification 

should be based on a single observation and what we (or the decoder) “know(s)” about 

the world. This may involve a set of brain responses to any possible stimulus—a very 

large set. Alternatively, discrimination only requires information about two brain states: 

the decodee and the comparator. Therefore, instead of AUC, which implies a comparison, 

we tested identifiability by calculating distributional overlap between the states of interest 

and no interest. Distributional overlap estimates the proportion of points that have an equal 

probability of belonging to the state of interest and state or states of no interest; here, 

equiprobability implies unidentifiability. In other words, the proportion of points that are 

unidentifiable. In addition, we were interested in assessing performance at the individual 

level. To do so, we calculated the probability of a subject being in a specific mental 

state given that subject’s brain activity map. Distributional overlaps and state probabilities 

assessed the ability of decoders to identify mental states.

Identification of pain states was similarly poor across the three pain decoders explored: 

overlaps between states of interest and states of no interest were high (≥ 68%) and the 

probabilities of being in pain (when actually in pain) were low (median posterior probability 
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≤ 0.5) (Fig 6a–c). These results paint a markedly different picture than the discrimination 

results, which simply show that NDPs tend to be greater when individuals are in pain. 

Evidently, good discrimination does not imply good identification.

We built upon the pain findings by using the task-specific contrast map to decode perception 

of vocal versus non-vocal sounds (C. R. Pernet et al., 2015). Although the performance of 

the voice decoder was better than that of the pain decoders (overlap = 54%), it was still 

inadequate, as over half of the data was unidentifiable (Fig 6d). The slight superiority of 

the voice decoder relative to the pain decoders may have several explanations, including 

the homogeneity of the training and test sets used for the voice data or simply that 

some tasks are easier to identify than others. In any case, regardless of the mental state 

tested, identification remained unreliable and thus does not seem currently feasible with 

fixed-weight decoders.

3.8. Brain activity maps are sufficient for discrimination

The similarity in performance achieved by meta-contrast maps or task-specific contrast 

maps (encoders) and optimized multivariable decoders prompted us to take another step 

back in the decoding derivation process. Would an even simpler construct—pain activity 

maps—be sufficient to decode the state of being in pain? In other words, if no performance 

is lost by using contrast maps, would task-derived activity maps suffice as simpler but 

adequate decoders? We created brain activity map decoders by averaging half of the brain 

activity maps for each study’s pain task, leaving the remaining maps for testing. Each 

activity map decoder was then used to discriminate pain using the left-out brain activity 

maps of subjects both within and between studies (Fig 7A). Remarkably, these decoders 

performed comparably to the ones presented hitherto (NPS, pPV, and pNsy), with an 

average within-study AUC of 0.79 and between-study AUC of 0.69 (cf. ~0.73 for the 

fixed-weight decoders; Fig 7B). Combined with our earlier findings, these results raise a 

salient question: If decoding can be approached in so many different ways, what actually 

determines decodability?

3.9. Modeling decodability

Although decoding is difficult, decoding performance itself is likely predictable; yet, to 

our knowledge, remains unexplored. To build upon our breed metaphor, some dogs exhibit 

features that largely overlap with other dogs, such as the stature, color, and flat-faced 

features of pugs and French Bulldogs. Similarly, the mental state of “being in pain” shares 

many features with other states; for example, unpleasantness, behavioral relevance, and 

saliency (Mouraux & Iannetti, 2018). Therefore, the primary challenge of decoding is to 

tease apart these overlapping features. For this reason, it seems logical that the similarity of 

activity maps within and between the decoder, decodee, and comparator would determine 

decoding performance. If the decoder is built from activity maps that are dissimilar, 

the resulting average map would have a low signal-to-noise ratio; if the decodees or 

comparators are dissimilar, then we can expect a greater variance in NDPs; and if the 

decodees and comparators are similar to one another, then they will have high overlap and 

be difficult to tease apart. This logic implicates the neuroanatomical and physiological 

assumptions previously mentioned, as heterogeneity across individuals should decrease 

Jabakhanji et al. Page 21

Cortex. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



similarity, making the NDPs more variable and thus more difficult to discern. Using 

similarity metrics that reflect these relationships, we attempted to explain decodability.

Until now, we have primarily focused on decoding across- rather than within-subjects. 

Intuitively, it is apparent that, for many of the reasons elaborated above, decoding 

mental states should be more successful within-subjects compared to across-subjects, as 

has been formulated by others (Cox & Savoy, 2003; Haxby et al., 2011). However, 

no systematic analysis of this notion has been performed using fixed-weight decoders. 

Therefore, we investigated this question using data well-suited for the question: fMRI data 

collected from 14 subjects who completed four cognitive tasks, each with 12 replicates 

(Jimura et al., 2014b). These repetitions enabled the comparison of decoder performance 

within- and across-subjects. As expected, decoding performance is more precise (smaller 

variance) within-subject (Fig 7C), but interestingly, not necessarily better (greater average 

AUC). We investigated whether the ratio of decodee to decodee-comparator similarity (or 

within:between) can be a possible natural metric of why some decoders are more efficacious 

than others. This ratio was calculated as the average NDP of all 15 decodee pairs divided by 

the average NDP of all 36 decodee-comparator pairs. Higher performing decoders showed 

greater within:between ratios than lower performing decoders (Fig 7D). Similarly, decoder 

similarity—the average NDP of all pairwise combinations of a decoder’s constituent activity 

maps, a measure of reliability—could also explain much of the decoder performance, 

and in support of our previous conclusions, this relationship is largely unaffected by 

binarizing the decoder (Fig S12). Further exploration showed that decodability, especially 

within-subject, is strongly predicated on these similarity metrics (Fig S13–S14; Table S1). 

Decodee similarity, together with decodee-comparator similarity, is strongly predictive of 

discriminability, accounting for 91% the variance in AUCs. Our similarity metrics almost 

entirely explain within-subject decodability, but only about 62% of AUC variance in across-

subject decoding. This result may speak to the assumptions violated by across-subject 

decoders, in that a similarity score across-subjects is less interpretable than one calculated 

within a single subject since variance (e.g., brain anatomy) may be converted to bias 

(making all brains fit the same template) during image preprocessing and registration.

4. Discussion

In this study, we asked what the determinants and limits of decoding mental states are. 

For pain, reading, and language tasks, only the locations of a small subset of GLM-derived 

voxels from an encoder were sufficient for achieving a discrimination of AUC ≈ 75%, and 

a long list of machine learning tools could not consistently improve upon this performance. 

We also showed that, in contrast to discriminating between states, identification of a 

given perceptual state is much harder. For the first time, we advanced the concept of 

quantifying discriminability using a simple similarity metric, the NDP, with which we 

provide models for within- and across-subject discrimination. The latter analyses indicated 

that discriminability depends not only on the decoder, but also on similarity between the 

decodee and comparator. Finally, we showed that, even in an example where within-subject 

discrimination was almost fully modeled with similarity properties, there was a considerable 

decrease in the variance of across-subject discrimination that could be explained. In doing 
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so, we establish limits of decodability based on fixed-weight models currently used in fMRI 

literature.

Our similarity metrics explained a large proportion of the variance in AUCs both within- 

(95%) and across- (68%) subjects. The within:between similarity metric in particular—

which is calculated as the average decodee similarity divided by the average decodee-

comparator similarity—is conceptually similar to reliability. If the decodee is not reliable, 

it will have a low average decodee similarity; if the decodee and comparator share a lot 

of variance, the decodee-comparator similarity will be high. To successfully decode, the 

decodees must be similar relative to the comparator. Reliability assesses a similar construct: 

variance must be low within a subject (or task) relative to between subjects (or tasks). 

Thus, the reliability of fMRI itself must be considered when trying to understand decoders. 

fMRI’s reliability has been scrutinized for some time,(Vul, Harris, Winkielman, & Pashler, 

2009) and recently, Elliott et al. (2020) carried out a meta-analysis demonstrating fMRI’s 

poor reliability (e.g., task-fMRI intraclass correlation coefficient [ICC] < 0.4). However, 

as astutely noted by Kragel, Han, Kraynak, Gianaros, and Wager (2021), how the ICC 

is calculated matters. For multivoxel-based decoding (e.g., with multivariable models), 

multivariate ICCs are of greater interest and exceed 0.75. From a data quality viewpoint, 

our similarity metrics imply that designing experiments that maximize task reliability should 

enhance decodability—it is prudent that such measurement properties be considered before 

collecting data.

Limitations of across-subject decoding and reverse inference have been acknowledged by 

others. For example, recent evidence shows that brain-behavioral phenotype associations 

seem to become reproducible only with sample sizes of N ⪆ 2,000.(Marek et al., 2020) Yet, 

the extent of these limitations and specifically the spatially widespread redundancy of fixed-

weight decoders has not been previously quantified, nor has decodability been modeled. 

Multiple approaches have been adopted to overcome such limitations. The simplest is to 

avoid these complications by constraining fMRI studies to within-subject investigations, 

thus bypassing the idiosyncrasies of anatomically aligned group-averaged results. The 

approach obviates across-subject decoding, yet it is used by various groups, including 

subject-specific localizers in vision (Nasr, Polimeni, & Tootell, 2016) and language studies 

(Fedorenko & Blank, 2020). An alternative solution is to build task-based brain atlases using 

a large number of tasks, preferably in large numbers of subjects (e.g. (Nakai & Nishimoto, 

2020; Pinho et al., 2020)), which may be used as priors in future specific studies.

On the other hand, multiple approaches have been implemented for decoding mental states 

from fMRI data (see Supplemental Discussion). Overall, it seems our findings generalize: 

decoding success is not predicated on voxel-wise specificity. Instead, the information 

necessary for decoding appears to be spatially coarse and distributed, rendering many voxels 

contained within the decoders to be redundant. This is not to say that specific voxels 

are not sufficient for decoding; rather, widespread information sharing across the brain 

simply enables statistical prediction to occur on a coarse spatial scale. The importance 

of a fine-grained pattern in a decoder must therefore be explicitly demonstrated (see 

Recommendations).
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Our demonstration that decoders fit using machine learning algorithms do not yield better 

decoding performance compared to linear encoders is novel but perhaps unsurprising. 

The decoders themselves were constrained to “statistically significant” encoding voxels; 

univariately, these voxels were redundant. Although decoders should take advantage of 

multidimensional information that may not be present in the encoders, tuning voxel weights 

using multivariable decoding models only slightly improved performance for the voice data 

(Fig 5, bottom) and had no appreciable effect at all for all other datasets. This overlaps 

with but differs slightly from what has been observed in both neuroscience(Schulz et 

al., 2020) and other domains, such as medicine(Christodoulou et al., 2019; Desai, Wang, 

Vaduganathan, Evers, & Schneeweiss, 2020): simple statistical models, such as logistic 

regression, on average perform similarly to models fit using machine learning algorithms 

and we have yet to maximize the performance of parsimonious models. The reasons for this 

are manifold, and from a modeling viewpoint, it has been argued that the added value of 

linear “machine learning” techniques is often small, exaggerated, and does not translate into 

practical advantages,(Hand, 2006) in part due to small training samples.(Schulz et al., 2020) 

Our data take this idea a step further by demonstrating that encoders—which are essentially 

t-test parameters—contain sufficient information for decoding. It may be the case that full-

brain decoders that are not constrained by contrast maps perform superiorly, but preliminary 

evidence suggests performance gains may be marginal.(Zhou et al., 2020) Further, the large 

number of predictors relative to the small sample sizes yield statistically indeterminate 

models, meaning infinite models exist for a given stimulus. Although unsurprising given the 

aforementioned work in this area, the apparent stark discrepancy between our findings and 

those in the literature warrants explicit explanation.

How do we explain the discrepancy between our results and the literature, even when 

the same decoder is used on the same data (Wager et al., 2013)? We cannot escape 

the conclusion that decoders are superfluous models. Indeed, Wager and colleagues have 

also observed similar performance across several pain decoders, including NPS, pNsy, and 

a candidate NPS model that used SVM.(Geuter et al., 2020; Wager et al., 2013) Yet, 

across-subject decodability remains complex; only brain location seems to add value, and 

decodability depends on within and between similarity of decoder, decodee, and comparator. 

These findings advance the general principles of decoding mental states.

5. Recommendations

Importantly, the results of our study provide valuable insight for the field of decoding and 

several practical takeaways that can improve the future efforts in creating fixed-pattern 

decoders. Specifically, we suggest that authors include and consider the following:

1. Perturbations of the decoders to demonstrate that their properties do, in fact, 

contribute to decoding performance. The perturbations that should be applied 

may depend on what authors would like to claim regarding their decoder. 

If it is claimed that the fine-grained pattern is important, spatial smoothing 

could specifically test the spatial frequency or scale at which decoding can 

be completed. Alternatively, if the decoder is said to be sparse and that its 
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constituent elements are necessary for decoding, then random sampling of the 

weights would specifically test the necessity of its weights.

2. Comparisons of the decoders to a negative control rather than just “chance”. 

To claim that the algorithmic process used to tune the weights of a given 

decoder improves performance, one should test the performance of the decoder 

at each stage of its creation. For example, pPV started with brain activity maps, 

then used contrasts and conjunction analysis, and then applied SVM; however, 

brain activity maps alone have similar decoding performance as the final pPV 

model (Fig 6). The gain of more sophisticated modeling approaches over more 

parsimonious ones should be evidenced rather than assumed.

3. Discrimination and identification performance should not be conflated. Many 

decoding and prediction studies rely on AUC—a measure of discrimination. 

However, in practical situations, identification is arguably of greater interest. 

Here, we used distributional overlap as an agnostic approach to quantifying 

identification, but this is inadequate for practical purposes. Rather, investigators 

should rely on decision theory to pick cutoffs that have appropriate error 

rates—or expected costs and benefits—for their application or utility function. 

Ideally, such cutoffs should not change from task-to-task or sample-to-sample, 

as decoding performance in new samples and environments is of the utmost 

importance. If probabilistically identifying, authors should demonstrate that their 

model is properly calibrated.

4. Use realistic or ecologically valid tests to demonstrate decoding performance. 

The metrics used to assess decoding performance should reflect the problem 

one is trying to solve with the decoder. For example, mixing within- and across-

subject performance can mislead readers if the ultimate goal is one of the two. 

Furthermore, if one wishes to apply decoders to real-world or clinical settings in 

which no known stimuli is being applied, many stimulus-derived decoders may 

not generalize well. That is, although a decoder may perform well with stimuli, 

it will not necessarily generalize to clinical settings if that is the ultimate goal. 
Researchers should test the decoder in the setting or on the level about which 

they would like to make inferences.

5. Share their data and decoder. Open science practices enable others to scrutinize, 

apply, and build upon the original work. Indeed, the analyses we presented in this 

paper would not have been possible without authors’ willingness to make their 

work available.

6. Establish boundary conditions. It is not only important to know when decoders 

perform well, but also when they perform poorly. This may involve introducing 

more control stimuli, more difficult decoding tasks (e.g., identification instead 

of discrimination), or applying to more general samples or populations (e.g., 

chronic instead of acute pain, see for example (Lee et al., 2021)).

By implementing the above recommendations, we believe researchers and readers can better 

understand the properties and limitations of decoders, in turn making gaps in the literature 

Jabakhanji et al. Page 25

Cortex. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



more transparent and eluding optimistic biases. Thus, these recommendations will enable 

authors to easily demonstrate the novelty of their decoders. Similarly, it may be prudent 

for neuroimaging researchers to develop and implement reporting guidelines for decoding 

studies, much like Transparent reporting of a multivariable prediction model for individual 

prognosis or diagnosis (TRIPOD) in the clinical prediction literature.(Collins, Reitsma, 

Altman, & Moons, 2015)

6. Conclusion

Mental state decoding is a large, impactful subfield of cognitive neuroscience. Many 

approaches to decoding have been proposed and implemented. Here, we systematically 

assessed just one such implementation of multivariable decoders, which uses fixed voxel 

weights. Our findings reveal misconceptions that are widespread in the brain imaging 

community and amplified by some oversold decoding studies. On the other hand, our 

findings also agree with much of the literature regarding the spatial resolution of decoding. 

In turn, this work extends our understanding of mental state decoders, provides insight into 

decodability constraints, and forms the basis for several practical takeaways that researchers 

can readily implement in their own work. Importantly, the limited and inadequate 

performance of fixed-weight across-subject decoders, especially regarding identification, 

pose strict bounds on their utility in the domains of medical and legal decision-making.
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Figure 1. Spatial properties for three decoders, which are supposed to distinguish pain from 
other mental states, are distinct from each other.
(A) Location and voxel-wise weight patterns of the three pain decoders (respectively 

abbreviated NPS, pPV, and pNsy). (B) Weight distributions of all three decoders are distinct. 

NPS weight values are distributed around zero; pPV has no negative weights; pNsy has only 

a few negative weights. (C) Pairwise correlations between weights of the three decoders. 

Lines depict total least squares regression fits. All three correlations are weak (rNPS-pPV = 

0.16; rpNsy-NPS = 0.30; rpNsy-pPV = 0.18). (D) Euler diagram depicts relative size of each of, 

and spatial overlap between, the three decoders.
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Figure 2. Decoder discrimination performance and regional specificity.
(A) Meta-analysis of across-subject discrimination performance (AUC, chance = 0.5) for 

decoding pain from non-pain mental states for each of the three decoders. We only included 

datasets that were independent of decoder derivation; since pPV was trained on Dataset 3, 

we did not include Dataset 3 in pPV’s meta-analysis. On average, all decoders perform 

similarly, but there is appreciable variance in each of the estimates. Square sizes indicate 

meta-analytic weight and lines indicate their 95% CIs. Diamonds are the meta-analytic 

estimates, and each diamond’s width spans the 95% CI of the meta-analytic estimate. 

Vertical, dotted lines pass through each meta-analytic point estimate. (B) Regions within 

each decoder have variable performance. We thresholded pNsy at z=6 to obtain seven 

contiguous clusters—each of the seven clusters are depicted in red in C. We used these 

seven clusters as masks for each decoder (see y-axis in B) and evaluated the decoding 

performance of each decoder within the respective clusters using Dataset 2.(Liang et al., 

2019) Full decoder performance is depicted by the translucent vertical lines in B. Grey = 

NPS; blue = pPV; orange = pNsy. NPS, pPV, and pNsy are published models and were 

trained on datasets not included in this analysis; all tests are out of sample and cross 

validation is not applicable.
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Figure 3. Discrimination performance is similar for all three pain decoders and is a function of 
voxel locations, not weighted patterns.
(A) Example of spatial smoothing and its effects on decoder weight distributions. Here, 

we applied spatial smoothing to NPS with standard deviations of 0 (no smoothing), 2, 5, 

10, and 20 mm. Note that smoothing was only applied within the extent of the original 

decoder (non-zero voxels). The fine-grain pattern observed with no smoothing is quickly 

destroyed (i.e., already visually by 5 mm smoothing), and at 20 mm of spatial smoothing, 

the pattern that is left hardly resembles the original decoder. Kernel densities below each 

brain (grey) are the distributions of voxel weights (black line = 0). With more spatial 

smoothing, the distributions become more homogeneous and converge toward their mean 

positive weight. (B-C) Across-subject decoding of pain from touch using Dataset 2 (Liang 

et al., 2019). (B) Performance does not change when decoder pattern weights were distorted 

with increasing-size spatial smoothing. Sign = sign of original voxel weights, rendering 

decoder weights of 0, −1, and +1; filtering σ = 0–20 mm; ∞ = infinite smoothing rendering 

a binary map. (C) Decoder performance depends only on a very small number of voxels, 

indicating information redundancy. The number of voxels constituting each decoder was 

systematically increased (from 10 voxels to the full decoder) and performance assessed 

for random samples of each size. 10% of each full decoder’s voxel count (black ticks) 

discriminates pain from touch equivalently to the full decoders. Shades are standard 

deviations for spatial uncertainty, ignoring across-subject uncertainty. (D) Decoders were 

constructed using 10% of the voxels from the full decoders, with voxels selected in order 

of their absolute magnitude, where 0 is the highest magnitude voxels and 100 is the lowest 

(see Fig S7). The voxels with the highest absolute weights do not necessarily discriminate 

better than voxels with lower magnitudes, except for pNsy in this dataset. Bars and shades 

are the 95% confidence intervals [CI] of AUCs, except in C, where shades indicate standard 

deviations associated with permutation variability. In D, colored bars indicate the AUC of 

the full decoders. NPS, pPV, and pNsy are published models and were trained on datasets 

not included in this analysis; all tests are out of sample and cross validation is not applicable.
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Figure 4. All three pain decoders perform stimulus-perception mapping similarly, both in their 
original formulations and after replacing voxel weights by binary representation (0,1 values).
When binary decoders are compared to the unfiltered (or raw) decoders, all three pain 

decoders perform similarly in mapping pain and heat perception ratings (A–B), mapping 

painful stimuli (C–D), and discriminating between pairs of painful stimuli (E–F). Analysis 

was done using both normalized dot product (NDP) and dot product since NDP produced 

results discordant with an original publication(Wager et al., 2013) that relied on dot 

products. Dot products that do not reliably increase with increasing pain or temperature 

imply that the decoders cannot reliably predict subjective ratings or stimulus intensity. 

Vertical lines in A and B indicate the transition from nonpainful heat (< 100) to painful heat 

(> 100). The dot products in B, D, and F were z-scored within each decoder for presentation 

purposes. NPS, pPV, and pNsy are published models and were trained on datasets not 

included in this analysis; all tests are out of sample and cross validation is not applicable.
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Figure 5. Different implementations of cognitive and auditory decoders perform similarly 
regarding discrimination performance and are robust to perturbations.
We constructed decoders using general linear modeling (GLM), least absolute shrinkage 

and selection operating with principal components regression (LASSO-PCR), support vector 

machines (SVM), and Gaussian processes to decode (top) cognitive (reading mirror txt 

after mirror text vs mirror-plain, plain-plain, and plain-mirror) (Jimura et al., 2014b) and 

(bottom) auditory tasks (listening to vocal vs non-vocal sounds) (C. R. Pernet et al., 2015). 

Much like the pain decoders, these decoders performed similarly and better than chance 

(chance = 0.5 in both) and were relatively insensitive to perturbations. Just 10% of each 

decoder was enough to capture its full performance, and even extreme perturbations, such 

as 10% of the binary decoder or 10% of sign(decoder), had little effect on performance. 

Error bars are the 95% confidence intervals of the AUCs. For the cognitive task analysis, we 

estimated the distribution of AUC using 100 permutations of randomly splitting the subjects 

in half, used one half for training and the second for validation. In the auditory task analysis, 

the large number of subjects (213) allowed us to split the sample into a training group (107 

subjects) and a testing group (106 subjects) without a need for permutations.
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Figure 6. Identification of mental states shows poor predictability.
Three pain decoders (NPS, pPV, and pNsy in A–C) and a voice decoder (D) were used 

to test identification for mental states. x-axes are the normalized dot products between 

decoder and decodee, while y-axes are the posterior probability of being in pain (A–C) or 

listening to voices (D). Distributions of normalized dot products and posterior probabilities 

include both the decodee (light grey & colors) and comparator (dark grey) tasks. (A–C) 

Normalized dot products of the pain condition span the entire distribution of comparator 

normalized dot products, and as a result, pain is not adequately isolated from the comparator 

conditions. Quantitatively, this is evidenced by the strong decodee-comparator overlap for 

(A) NPS (overlap (95%CI) = 68% (59–82)), (B) pPV (79% (73–90)), and (C) pNsy (73% 

(66–84)). This is reflected in the Bayesian model, which shows similar probabilities of 

being in pain for both pain and pain-free conditions (each dot/line). To this end, all three 

decoders perform similarly, and cannot unequivocally identify pain, as indicated by their 

sensitivity/specificity (threshold from Youden’s J statistic, chosen in-sample) of (NPS, A) 

0.64/0.74, (pPV, B) 0.6/0.64, and (pNsy, C) 0.54/0.76. (D) In contrast to pain, a contrast 

map decoder for identifying when a participant is listening to human voices separates more 

clearly the normalized dot products of the decodee (red) from comparator (dark grey), but 

still performs poorly (overlap = 54% (46–66)). This separation is reflected in the Bayesian 

model, which shows high probabilities when individuals are listening to human voices and 

lower probabilities when they are not. Using a threshold determined by Youden’s J statistic 

(chosen in-sample), the voice decoder has a sensitivity/specificity of 0.77/0.64. In (A), (B), 
(C) the dataset used were not used in the training of the decoders (NPS, pPV, pNsy); tests 

are all out of sample. In (D), we split the dataset into a training set (107 subjects) and a 

testing set (106 subjects).
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Figure 7. Decoders constructed from activity maps (encoders) perform similarly to pattern-based 
decoders and are dependent on both decodee and comparator properties.
(A) Performance of four activity map decoders, based on the across-subject averaging for 

pain tasks, to differentiate pain from six other mental states. (B) Among the activity map 

decoders, within study performance is slightly higher but extensively overlaps with across 

study performance. Meta-analytic estimates of performance for NPS, pPV, and pNsy (color 

lines) are within 0.4 standard deviations from the average performance of both within and 

across study activity map decoders. (C-D) Properties of activity map decoders are examined 

within and across subjects as a function of a cognitive task (mr-mr, mr-pl, pl-pl, pl-mr) 

(Jimura et al., 2014b). (C) Decoders (rows) are built from four cognitive tasks, tested on 

remaining three (columns), in a within subject and across subject design. Within subject 

performance is always more consistent (i.e. it has smaller variance) but not necessarily 

greater than across subject. For example, the within subject performance is always superior 

to across subject when using task 2 as the decoder. The inverse is true when task 2 is 

the comparator, implying strong task dependence. (D) Decoder performance scales with 

the ratio of decodee similarity to decodee-comparator similarity (based on normalized dot 

product), for within- and across-subject comparisons. Because discriminability depends on 

this ratio of similarities, they can be viewed as rules for decoding. Each color in (D) 

represents a decodee-comparator pair of tasks 1–4 in (C); each point is a permuted sample 

that has been shrunken towards 0.5; the black line is the fit of a beta regression (Cribari-Neto 
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& Zeileis, 2010) across decodee-comparator pairs. In (A) the testing is a combination of 

within sample (also within study) for the case of: Dataset 1 – Dataset 1: Visuomotor, Dataset 

2 – Dataset 2: Touch, Dataset 3 – Dataset 3: Auditory, Dataset 3 – Dataset 3: Visual, Dataset 

4 – Dataset 4: Heat, and out-of-sample for all other combinations. In (C) the results are 

calculated using 100 permutations of randomly splitting the subjects in half, used one half 

for training and the second for validation.
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