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Genetic Architecture of Plasma Alpha-
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With High-Density Lipoprotein Cholesterol
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BACKGROUND: Elevated plasma levels of alpha-aminoadipic acid (2-AAA) have been associated with the development of type 
2 diabetes and atherosclerosis. However, the nature of the association remains unknown.

METHODS AND RESULTS: We identified genetic determinants of plasma 2-AAA through meta-analysis of genome-wide asso-
ciation study data in 5456 individuals of European, African, and Asian ancestry from the Framingham Heart Study, Diabetes 
Prevention Program, Jackson Heart Study, and Shanghai Women’s and Men’s Health Studies. No single nucleotide poly-
morphisms reached genome-wide significance across all samples. However, the top associations from the meta-analysis 
included single-nucleotide polymorphisms in the known 2-AAA pathway gene DHTKD1, and single-nucleotide polymorphisms 
in genes involved in mitochondrial respiration (NDUFS4) and macrophage function (MSR1). We used a Mendelian randomi-
zation instrumental variable approach to evaluate relationships between 2-AAA and cardiometabolic phenotypes in large 
disease genome-wide association studies. Mendelian randomization identified a suggestive inverse association between 
increased 2-AAA and lower high-density lipoprotein cholesterol (P=0.005). We further characterized the genetically predicted 
relationship through measurement of plasma 2-AAA and high-density lipoprotein cholesterol in 2 separate samples of indi-
viduals with and without cardiometabolic disease (N=98), and confirmed a significant negative correlation between 2-AAA and 
high-density lipoprotein (rs=−0.53, P<0.0001).

CONCLUSIONS: 2-AAA levels in plasma may be regulated, in part, by common variants in genes involved in mitochondrial and 
macrophage function. Elevated plasma 2-AAA associates with reduced levels of high-density lipoprotein cholesterol. Further 
mechanistic studies are required to probe this as a possible mechanism linking 2-AAA to future cardiometabolic risk.

Key Words: 2-aminoadipic acid ■ genome-wide association study ■ HDL cholesterol ■ Mendelian randomization analysis

Cardiometabolic disease, including cardiovascular 
disease and type 2 diabetes (T2D) is a major global 
health concern, associated with a high incidence 

of comorbidities and significantly increased mortality.1 
These complex chronic diseases are polygenic and 
multifactorial; the underlying causes of disease are 
only partially delineated in most cases. Metabolites are 

emerging as useful biomarkers for both disease predic-
tion and understanding disease etiology. Higher levels 
of the novel metabolite biomarker, alpha-aminoadipic 
acid (2-AAA) were found to increase the risk of incident 
diabetes in the FHS (Framingham Heart Study) partic-
ipants,2 and development of coronary artery calcifica-
tion in participants in the Veterans Affairs Diabetes Trial 
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and Follow-Up Study.3 Associations were independent 
of known risk markers (eg, age, sex, body mass index, 
glycemic control, family history, diet),2 suggesting 
this metabolite may represent novel disease-related 
biology.

2-AAA is a mitochondrial metabolite, generated 
from the catabolism of the essential amino acid ly-
sine. Little is known about the function of 2-AAA or 
the determinants of variability between individuals. 
We hypothesized that 2-AAA levels are, in part, ge-
netically determined and that genetic interrogation of 
this metabolite would reveal novel underlying biology 
of cardiometabolic disease. We examined the genetic 
contribution to plasma 2-AAA variation in a GWAS 
(genome-wide association study) and meta-analysis 
among multiple ancestries, using data from the FHS) 
(N=1452), the DPPOS (Diabetes Prevention Program 
Outcomes Study, N=1612), the JHS (Jackson Heart 
Study, N=1884), and the Shanghai Women’s and Men’s 
Health Studies (N=508). We examined the association 

between genetic predictors of 2-AAA and cardiomet-
abolic disease phenotypes through Mendelian ran-
domization (MR) and phenome-wide association study 
(PHEWAS) and validated a genetically predicted rela-
tionship with high-density lipoprotein (HDL) cholesterol 
by direct measurement.

METHODS
Data and Materials Availability Statement
Several of the data sets used in the article are pub-
licly available; the details for accessing these are indi-
cated in the relevant sections. Other data that support 
the findings of this study are available from the corre-
sponding author upon reasonable request.

Study Populations
The FHS is a prospective, observational, community-
based cohort of cardiovascular disease. Genome-
wide analysis of plasma metabolites in European 
ancestry participants of the FHS Offspring Cohort 
who attended the fifth examination (1991–1995) and 
underwent metabolic profiling and genome-wide 
genotyping has been published previously.4 We ob-
tained summary statistics for the GWAS of 2-AAA in 
1452 participants.

The JHS is a longitudinal population-based ob-
servational study designed to prospectively investi-
gate determinants of cardiovascular disease in Black 
individuals.5 A total of 5306 men and women (63.4% 
female, age range 21–94 years, mean age 55) in the 
Jackson, MS metropolitan area were recruited be-
tween September 2000 and March 2004. Medical 
history and physical examination, blood and urine 
samples, and information on diet, physical activity, so-
cioeconomic factors, and health care access were col-
lected for all participants. We obtained data for 1884 
individuals with genome-wide single nucleotide poly-
morphism (SNP) genotyping data and plasma 2-AAA 
measurement.6

The SWHS (Shanghai Women’s Health Study) and 
the SMHS (Shanghai Men’s Health Study) are ongo-
ing prospective cohort studies that recruited 75  000 
women and 61  500 men of Chinese ancestry, aged 
35 to 75 years, from Shanghai, China.7,8 Women were 
recruited from 1996 to 2000 and men from 2002 to 
2006. At baseline, detailed information was collected 
on dietary intake, personal lifestyle habits, and med-
ical history, and blood samples were obtained from 
75% of study participants. Plasma 2-AAA was mea-
sured as part of an untargeted metabolomics panel by 
Metabolon, Inc. (Raleigh, NC)9 and was available for 820 
participants. After quality control (QC), we included data 
from 508 individuals with plasma 2-AAA measurement 
and genotypes for subsequent GWAS analysis.

CLINICAL PERSPECTIVE

What Is New?
•	 Alpha-aminoadipic acid levels in plasma may be 

partly regulated by common variants in genes 
involved in mitochondrial and macrophage 
function, including DHTKD1 and MSR1.

•	 Elevated plasma alpha-aminoadipic acid asso-
ciates with reduced levels of high-density lipo-
protein cholesterol.

What Are the Clinical Implications?
•	 Elevated alpha-aminoadipic acid may be an 

early marker of lipoprotein dysregulation.
•	 Further mechanistic studies may establish 

alpha-aminoadipic acid as a potential target in 
cardiometabolic disease.

Nonstandard Abbreviations and Acronyms

2-AAA	 alpha-aminoadipic acid
DPPOS	 Diabetes Prevention Program 

Outcomes Study
FHS	 Framingham Heart Study
JHS	 Jackson Heart Study
MR	 Mendelian randomization
PhEWAS	 phenome-wide association study
PS	 polygenic score
SMHS	 Shanghai Men’s Health Study
SWHS	 Shanghai Women’s Health Study
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The DPP (Diabetes Prevention Program) was a ran-
domized clinical trial that aimed to investigate whether 
lifestyle changes or metformin could effectively delay 
diabetes in overweight and obese adults at high risk 
of diabetes.10 The DPPOS measured plasma 2-AAA 
as part of metabolite analyses,11 and completed me-
tabolomic GWAS analyses. We obtained summary 
statistics for the GWAS for 2-AAA in 1612 participants 
of self-identified European (70%), African (19%), Asian 
(4%), and other includes Native American and mixed 
ancestry (7%).

Measurement of Alpha-Aminoadipic Acid
Measurement of plasma 2-AAA in FHS, JHS, and DPP 
was carried out as part of a metabolite profiling panel 
at the Broad Institute as previously described.11–13 
Briefly, metabolites were extracted from plasma 
using acetonitrile and methanol and separated using 
a 100×2.1  mm XBridge Amide column (Waters). A 
high sensitivity Agilent 6490 QQQ MS (Agilent) was 
used to profile metabolites in the negative ion mode 
via multiple reaction monitoring scanning, and hydro-
philic interaction liquid chromatography coupled to 
tandem mass spectrometry (MS) was used to ana-
lyze polar metabolites in the positive ion mode using 
a 4000 QTRAP triple quadrupole mass spectrometer 
(AB Sciex, Foster City, CA) coupled to either an 1100 
Series pump (Agilent Technologies, Santa Clara, CA) 
or an HTS PAL autosampler (Leap Technologies, 
Carrboro, NC) equipped with a column heater. Raw 
data were processed using MassHunter Quantitative 
Analysis Software (Agilent). Metabolite measurements 
were normalized to pooled plasma samples and inter-
nal standards.

Measurement of 2-AAA in SWHS and SMHS was 
carried out at Metabolon (Metabolon Inc., Morrisville, 
NC) as part of a global metabolomics profiling panel 
conducted using multiple mass spectrometry tech-
niques. Briefly, proteins were precipitated with meth-
anol under vigorous shaking for 2 minutes (Glen Mills 
GenoGrinder 2000) followed by centrifugation and re-
moval of organic solvent (TurboVap®; Zymark). Extracts 
were divided into fractions for analysis: 2 for analysis 
by 2 separate reverse phase/ultra-high performance 
liquid chromatography (UPLC)-MS/MS methods with 
positive ion mode electrospray ionization (ESI), 1 for 
analysis by reverse phase/UPLC-MS/MS with neg-
ative ion mode ESI, and 1 for analysis by hydrophilic 
interaction/UPLC-MS/MS with negative ion mode ESI. 
Sample extracts were stored overnight under nitro-
gen before preparation for analysis. Raw data were 
extracted, peak-identified, and QC processed using 
Metabolon’s hardware and software. All methods used 
a Waters ACQUITY UPLC and a Thermo Scientific Q-
Extractive high-resolution/accurate mass spectrometer 

interfaced with a heated ESI source and Orbitrap mass 
analyzer operated at 35 000 mass resolution. Peaks 
were quantified using area under the curve. The raw 
peak intensity was rescaled to set the median across 
all samples equal to 1 to establish a normal distribution 
and values below the limit of detection were imputed 
with the lowest observed value in the data set.

Genome-Wide SNP Genotyping and 
Genetic QC Steps
In FHS, genotyping was carried out using the 
Affymetrix 500K mapping array and the Affymetrix 
50K gene-focused molecular inversion probe array as 
described.4,14 Genotypes were called using Chiamo 
(http://www.stats.ox.ac.uk/~march​ini/softw​are/gwas/
chiamo.html). SNPs were excluded if they had a call 
rate <95%, Hardy-Weinberg equilibrium P<1×10−6, or 
minor allele frequency (MAF) <1%. Imputation was 
performed (HapMap CEU, release 22, build 36) using 
a hidden Markov model in MACH (v.1.0.15). Principal 
components were calculated using Eigenstrat.15

In JHS, genotyping was performed as described16 
using the Affymetrix 6.0 SNP Array (Affymetrix, Santa 
Clara, CA). SNPs were excluded if they were geno-
typed successfully in <90% of samples; subjects were 
removed if <95% of SNPs were genotyped success-
fully. No SNPs were removed owing to deviation from 
Hardy-Weinberg equilibrium expectations because the 
Black population is an admixed population, which may 
result in departures from Hardy-Weinberg equilibrium 
expectations even under ideal conditions. Imputation 
to the 1000 Genomes project reference panel (Phase 
I, Version 3, March 2012 release) was performed using 
MACH 1.0 and minimac 38. Imputed data were filtered 
for a sample missingness rate <2%, and a SNP miss-
ingness rate <4%. Principal components (PCs) were 
calculated using the SNPRelate package.17

In SWHS/SMHS genotyping was carried out 
using the Asian MEGA, Affymetrix 6, and Illumina 
Hap500/Illumina 660W panels. Imputation to the 1000 
Genomes reference panel (Phase 3) was performed 
using Minimac on the Michigan Imputation Server. 
Variants with poor imputation quality (r2<0.3) or with a 
MAF <1% were excluded. PCs were calculated using 
the SNPRelate package.17

In DPP genotyping was performed using the Illumina 
Human Core Exome genotyping array (547  622 ge-
netic markers across the genome, including 265 919 
exome-focused markers) at the Genomics Platform 
at the Broad Institute. Genotypes were called using 
Birdsuite https://www.broad​insti​tute.org/birds​uite). 
QC steps filtered for discrepant sex information, low 
call rates for individuals (<98%), pairs of samples with 
low inbreeding coefficients, SNP call rates <95%, and 
SNPs with Hardy-Weinberg equilibrium P<10−8 in any 

http://www.stats.ox.ac.uk/%223Cmarchini/software/gwas/chiamo.html
http://www.stats.ox.ac.uk/%223Cmarchini/software/gwas/chiamo.html
https://www.broadinstitute.org/birdsuite
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ethnic group. A 2-stage imputation procedure con-
sisting of prephasing the genotypes into whole chro-
mosome haplotypes followed by imputation itself was 
conducted. The prephasing was performed using 
SHAPEIT2.18 The reference panel comprised 1000 
Genomes Phase3 haplotypes,19 and the genotype 
imputation was done using IMPUTE2.20 This resulted 
in 9 276 901 imputed SNPs with MAF >1% and info 
scores >0.882 (r2>0.8).

Genome-Wide Association Study
GWAS of common variation (MAF >0.01) was carried 
out in each cohort individually and tailored to the spe-
cific characteristics of each study. All cohorts were an-
alyzed by linear regression under an additive genetic 
model, with mixed-effects models applied to cohorts 
with related individuals (FHS and JHS) and to SWHS/
SMHS.

For FHS, GWAS was conducted as described,4 
using normalized residuals of 2-AAA, using linear mixed-
effects models to accommodate pedigree data under 
an additive genetic model, adjusted for age and sex. 
GWASs were performed in R using the lmekin function 
in the kinship package. Population stratification in this 
well-characterized European ancestry population was 
accounted for by adjusting for PC1 if P<0.0001. The final 
genomic control parameter lambda was 1.02. Results 
were filtered for MAF >5% and imputation rate of >0.80.

JHS used a mixed linear model-based leave 1 chro-
mosome out association analysis approach on inverse 
normal transformed 2-AAA, which was implemented 
in GCTA 1.93.0 beta software tool. The advantages of 
the mixed-linear-model association method include the 
prevention of false positive associations due to popula-
tion stratification and interindividual relatedness and an 
increase in power obtained through the application of 
a correction that is specific to this structure.21 Models 
were adjusted for age, sex, and 10 PCs. The final ge-
nomic control parameter lambda was 1.01.

SWHS/SMHS used a linear mixed-effects model 
on inverse normal transformed 2-AAA, assuming an 
additive genetic model and adjusting for age, sex, and 
10 PCs, which was implemented in PLINK v2.00α2LM 
software tool. The final genomic control parameter 
lambda was 1.02.

For DPP, a linear regression model was run on in-
verse normal transformed 2-AAA, assuming an addi-
tive genetic model, adjusting for age, sex, and 10 PCs. 
Analyses were run using the GWASTools package from 
R Bioconductor. The final genomic control parameter 
lambda was 0.99.

GWAS Meta-Analysis
The FHS, DPP, JHS, and SWHS/SMHS cohort-specific 
genome-wide association results were meta-analyzed 

using the sample size–weighted Z score approach 
in METAL software.22 This approach allows SNP as-
sociations to be combined across studies when the 
β-coefficients and standard errors from the individual 
studies are in different units, as was the case in these 
analyses because of the differences in metabolite pro-
filing platforms. The approach combines Z scores for 
each allele across studies in a weighted sum, with 
weights proportional to the square-root of the study’s 
sample size for each. As this approach does not pro-
vide combined effect size estimates, effect size esti-
mates used for MR and polygenic score (PS) analyses 
were based on SNP weights from FHS for European 
ancestry, and JHS for African ancestry.

Phenome-Wide and Cardiometabolic 
Disease Data Sets and Analyses
BioVU: The Vanderbilt BioVU resource is a deidenti-
fied DNA biobank linked to the Synthetic Derivative, a 
deidentified version of the Vanderbilt electronic health 
record.23 Genotyping in stored DNA samples was per-
formed by the Vanderbilt Technologies for Advanced 
Genomics according to standard protocols on the 
MEGAEX array. QC steps for the BioVU population have 
been previously described.24 Genotype data were im-
puted with IMPUTE4,20 version 2.3.0 (University of 
Oxford), using the October 2014 release of the 1000 
Genomes cosmopolitan reference haplotypes; vari-
ants imputation quality scores <0.3 were excluded. 
One participant from each related pair (pi-hat >0.2) 
was randomly excluded. PCs were calculated using 
the SNPRelate package.17 For this study, analyses were 
restricted to European ancestry individuals (N=74 760) 
and African ancestry individuals (N=16 182) who were 
defined by principal components analyses in conjunc-
tion with HAPMAP reference populations. The use of 
BioVU and other deidentified data presented in these 
analyses was approved by the Vanderbilt University 
Medical Center Institutional Review Board.

The UKBB (UKBiobank) is a British population-
based self-reported study that is composed of ≈0.5 mil-
lion participants aged 37 to 73 at recruitment.25 GWAS 
summary statistics for 2173 UKBB phenotypes26 were 
downloaded from the study by Bycroft et al.27

Other data sets: Summary statistics for cardiomet-
abolic phenotypes were obtained from existing large-
scale GWAS in European Ancestry, including GIANT 
(Genetic Investigation of Anthropometric Traits)28,29 
(body mass index, waist circumference, height; 
https://porta​ls.broad​insti​tute.org/colla​borat​ion/giant/​
index.php/GIANT_conso​rtium_data_files); Global lip-
ids consortium phenotypes30 (HDL, low-density lipo-
protein [LDL], total cholesterol, triglycerides); MAGIC 
(Meta-Analyses of Glucose and Insulin-Related 
Traits Consortium)31 (fasting glucose, fasting insulin; 

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
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www.magic​inves​tigat​ors.org); DIAGRAM (Diabetes 
Genetics Replication and Meta-Analysis)32 (T2D; 
http://diagr​am-conso​rtium.org/downl​oads.html); 
CARDIOGRAMplusC4D33 (coronary artery disease) 
and CRP (C-reactive protein).34

Polygenic Score
A genetic predictor for 2-AAA was calculated using 
weighted genetic risk scores according to the following 
formula:

where the allele dosage is a value ranging from 0 and 2 
and wi is the change in 2-AAA levels (ß coefficient) for 
each copy of the effect allele. Only independent SNPs 
(r2<0.05) that passed QC and reached significance of 
P<5×10−4 in the meta-analysis, with the effect in the 
same direction in at least 3 of the 4 studies were in-
cluded in the PS.

Heritability Analysis
We applied linkage disequilibrium (LD) score regres-
sion35 using 2-AAA summary statistics from the meta-
analysis of FHS and DPP GWAS (majority European 
ancestry, n=3064) to probe the SNP heritability of the 
trait (the proportion of phenotypic variance explained 
by all SNPs). The slope obtained from linkage dis-
equilibrium score regression provides an estimate of 
2-AAA heritability.

PHEWAS of BioVU
A multivariable logistic regression adjusting for 5 PCs, 
the median age in the electronic health record, and sex 
was performed to test the associations between the 
polygenic risk score and each PHEWAS phenotype 
(pheCode) as the main predictor. Analyses were per-
formed using the PheWAS R package.36 A false discov-
ery rate P<0.1 was considered statistically significant.

MR Analysis
We ran instrumental variable analysis to ascertain for 
associations between genetically determined 2-AAA 
levels and selected phenotypes using an MR approach. 
When certain assumptions are met, MR can ascertain 
associations between an exposure and an outcome.37 
In this case, our exposure was plasma 2-AAA, whereas 
the outcomes included 11 cardiometabolic traits (body 
mass index, waist circumference, HDL-C, LDL-C, total 
cholesterol, triglycerides, fasting glucose, fasting in-
sulin, T2D, coronary artery disease, CRP). To infer 
relationships between exposures and outcomes, MR 
analyses assume (1) the genetic instrument associated 

with 2-AAA; (2) the association between the genetic 
instrument and 2-AAA was independent of potential 
confounders; (3) the genetic instrument was not plei-
otropic, and could only affect the outcome through 
2-AAA; and (4) the effect was homogeneous. To con-
struct our 2-AAA genetic instrument, we selected in-
dependent SNPs associated with plasma 2-AAA with 
P<5×10−4 and the same effect direction from at least 
3 of the 4 data sets included in the meta-analysis and 
tested the association with cardiometabolic outcomes 
using the inverse-variance weighted average meta-
analysis (IVWA) method. Because the 2-AAA metabo-
lite was measured using different technologies, it was 
not possible to harmonize the effect sizes across data 
sets, even after applying a common transformation to 
each data set. Thus, SNP weightings for the PS were 
based on the largest European ancestry (FHS) and 
largest African ancestry (JHS) cohorts. The pleiotropy-
robust MR-Egger and Weighted Median methods were 
used as sensitivity analyses and to confirm the magni-
tude and direction of associations identified by IVWA. 
To assess effects of our outcomes on 2-AAA, we also 
ran the reverse MR, using cardiometabolic traits as the 
exposure and 2-AAA as the outcome. The genetic in-
strument for each trait was constructed using SNPs 
P<5×10−8 in their respective GWAS, except for fast-
ing insulin, where no SNPs passed the GWAS signifi-
cance threshold, so we applied a nominal threshold of 
P<5×10−4. All MR methods were calculated using the 
Mendelian Randomization R package.38 Bonferroni-
adjusted P<0.0046 (0.05/11) by IVWA was considered 
significant.

Chronic Kidney Disease Validation Study
We obtained plasma samples from 62 individuals with 
or without chronic kidney disease (CKD), from an exist-
ing study.39 We measured 2-AAA by liquid chromatog-
raphy MS at the Vanderbilt Mass Spectrometry Core. 
Samples were spiked with internal standard (Arginine-
15N4, Sigma Aldrich), extracted with methanol, and 
derivatized with dansyl chloride (Sigma Aldrich) be-
fore analysis. The dansyl derivative of 2-AAA ([M+H]+ 
395.1271) was measured by targeted selected ion 
monitoring using a Vanquish UPLC system interfaced to 
a QExactive HF quadrupole/orbitrap mass spectrom-
eter (Thermo Fisher Scientific). Data acquisition and 
quantitative spectral analysis were conducted using 
Thermo-Finnigan Xcaliber version 4.1 and Thermo-
Finnigan LCQuan version 2.7, respectively. Calibration 
curves were constructed by plotting peak area ratios 
(2-AAA/Arg-15N4) against analyte concentrations for 
a series of 2-AAA standards. ESI source parameters 
were tuned and optimized using an authentic 2-AAA 
reference standard (Sigma Aldrich) derivatized with 
dansyl chloride and desalted by solid phase extraction 

Weighted genetic risk scores =

#SNPs
∑

i=1

(

wi ×
[

Allele dosage
]

i

)

http://www.magicinvestigators.org
http://diagram-consortium.org/downloads.html


J Am Heart Assoc. 2022;11:e024388. DOI: 10.1161/JAHA.121.024388� 6

Shi et al� 2-AAA Genetics and HDL

before direct liquid infusion. Fasting insulin was meas-
ured by radioimmunoassay (Millipore, St. Charles, MO). 
The study was approved by the Vanderbilt institutional 
review board, and all participants provided informed 
consent.

Diabetes and Ischemia Validation Study
We obtained data for plasma 2-AAA and HDL choles-
terol in 38 individuals with or without T2D from a pre-
vious study of experimental ischemia.40 2-AAA was 
measured in plasma as part of the metabolite pro-
filing panel at the Broad Institute as described here 
and previously.40 During analysis we removed data 
for 2 individuals who were outliers for 2-AAA (>2 SD 
from mean), and present data for the relationship be-
tween 2-AAA and HDL in 36 (n=19 healthy controls, 
n=17 T2D). The study was approved by the Human 
Research Committees of the Brigham and Women’s 
Hospital, and all participants provided informed 
consent.

RESULTS
We conducted GWAS of plasma 2-AAA levels using 
available data in 4 separate studies, including the 
FHS (N=1452, results previously published4), the 
DPP (N=1612), the JHS (N=1884), and the SWHS/
SMHS (N=508). Characteristics of the study partici-
pants are presented in Table S1. Several loci reached 
genome-wide significance in individual studies (FHS: 
rs11802990 and rs10158605 located within the 
SPATA6 gene, P<5×10−8; JHS: intergenic rs13403315 
and rs12918656 in CNTNAP4, P<5×10−8), but these 
associations were not replicated in the other studies 
(Figure S1).

We hypothesized that the absence of robust 
genome-wide significant signals might be due to high 
polygenicity and a small sample size. To test this hy-
pothesis, we estimated the additive genetic heritability 
linkage disequilibrium score regression. We found that 
the heritability of 2-AAA in predominantly European 
ancestry participants was ≈28% (95% CI, 2–55%, 
N=3064), confirming a polygenic contribution to 2-
AAA variability.

We hypothesized that SNPs with modest, but bi-
ologically relevant effects on 2-AAA would have ef-
fects that were consistent across different ancestry 
groups and ran a meta-analysis across all 4 studies. 
Although there were no loci reaching genome-wide 
significance, there were suggestive signals with con-
sistent directions of effect across multiple studies. Of 
the top associations, 38 SNPs were associated with 
2-AAA at P<5×10−6 (Table S2). Notably, one of these 
top loci was near the DHTKD1 gene, which encodes 
a protein downstream of 2-AAA in the lysine catabolic 

pathway and has been previously linked to 2-AAA lev-
els in both humans and animals.41,42 We also identified 
SNPs in the region of other genes with known mito-
chondrial or cardiometabolic disease biology, includ-
ing NADH:Ubiquinone Oxidoreductase Core Subunit 
S1 (NDUFS4) and Macrophage Scavenger Receptor 
1 (MSR1).

We constructed a PS using the SNPs identified 
in the transethnic meta-analysis at P<5×10−4, and a 
requirement of effects in the same direction in at least 
3 studies (Table S2) and probed its association with 
disease phenotypes using the Vanderbilt BioVU elec-
tronic health record resource (European and African 
ancestries) and UKBB. However, there were no phe-
notypes significantly associated after correction for 
multiple testing (Tables S3 and S4). We further probed 
associations between the 2-AAA PS and cardiomet-
abolic disease phenotypes using well-characterized 
GWAS including Global Lipids Genetics Consortium 
(HDL, LDL, triglycerides), and CARDIoGRAM (MI, 
coronary artery disease) (Table  S5). MR analysis 
using the IVWA method suggested a nominal associ-
ation between elevated plasma 2-AAA and reduced 
HDL cholesterol (P=0.005, Figure  1). This finding 
was consistent when examined using the weighted 
median method. The direction was inconsistent with 
the MR-Egger method, but the intercept P value was 
nonsignificant, suggesting the IVWA estimate was 
not biased. There was no significant association 
between 2-AAA and LDL cholesterol and a nominal 
positive association between 2-AAA and triglycerides 
(P=0.04). There was no significant association when 
applying the reverse MR, to assess the effect of HDL 
PS on 2-AAA (Table S6), implying no effect of HDL 
cholesterol on 2-AAA levels. There was also a signif-
icant association between 2-AAA and fasting insulin 
(P=0.001). We conducted multivariable MR with 2-
AAA and fasting insulin and found that both remained 
significantly associated with HDL (Table S7). Reverse 
MR highlighted a potential association between the 
insulin genetic instrument and 2-AAA (Table S6), sug-
gestive of reciprocal regulation between 2-AAA and 
insulin that may be independent of a 2-AAA–HDL 
relationship.

The significance of the HDL association was 
just below the multiple testing threshold. We used 
orthogonal methodologies to assess the validity 
and reproducibility of this association. To confirm 
whether the genetically-predicted association be-
tween 2-AAA and HDL cholesterol could be validated 
using measured values, we analyzed the relationship 
between plasma 2-AAA and plasma HDL choles-
terol in 2 independent samples, comprising 98 in-
dividuals in total. Of these, 62 were recruited to a 
study of CKD, and comprised 21 healthy controls, 
20 individuals with CKD stage 3 to 5 and not yet on 
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hemodialysis and 21 individuals with CKD stage 5 on 
hemodialysis. A separate study included 36 individ-
uals in a study of T2D, including 19 healthy controls 
and 17 individuals with T2D. Because 2-AAA was 
measured using 2 different platforms, we analyzed 
each study separately. In both samples, there was a 
significant linear correlation between higher 2-AAA 
and lower HDL (rs=−0.53, P<0.0001 CKD sample; 
rs=−0.36, P=0.03 T2D sample; Figure  2). This was 
apparent both within the healthy individuals and in 
individuals with established disease, suggesting that 
this relationship is not disease dependent. In the 
CKD sample (n=62), we investigated whether the 
2-AAA–HDL relationship was modulated by fasting 
insulin. Consistent with the results from the genetic 
approach, the associations between both insulin 

and 2-AAA with HDL remained significant in a multi-
ple linear regression model (insulin P=0.002, 2-AAA 
P=0.03).

DISCUSSION

Plasma 2-AAA has been associated with cardiometa-
bolic disease; however, the determinants of elevated 
2-AAA are unknown. We probed the genetic determi-
nants of 2-AAA through GWAS and meta-analysis of 
plasma 2-AAA levels in epidemiological cohorts. Some 
previous genetic studies of metabolites have included 
2-AAA, but without replication and in small numbers.4,43 
Our sample represents the largest GWAS of 2-AAA to 
date and the only one to include multiple ancestries. 

Figure 1.  Mendelian randomization supports causal role between elevated 2-AAA and low HDL 
cholesterol.
Predicted negative association between alpha-aminoadipic acid (2-AAA) and HDL cholesterol, P=0.005. 
Single nucleotide polymorphisms (SNPs) from transethnic meta-analysis of 2-AAA with P<5×10−4 (n=272 
SNPs) and an effect in the same direction in 3 data sets were selected as the exposure. SNPs from Global 
Lipids Consortium Genome-Wide Association Study for HDL were used as the outcome. HDL indicates 
high-density lipoprotein.
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Although we did not detect significant signals at the 
genome-wide significance threshold, we highlight sev-
eral suggestive regions of interest including a known 2-
AAA pathway gene, DHTKD1. Interrogation of a 2-AAA 
PS revealed a nominal genetic association between 
elevated 2-AAA and reduced HDL cholesterol, which 
we validated experimentally.

The determinants of high 2-AAA within the popula-
tion have not yet been established; however, genetic 
approaches are emerging as useful tools to probe 
novel biomarkers,44 with utility to identify novel disease-
related biology even for biomarkers under complex 
multifactorial control. Variants in the 2-AAA pathway 
gene DHTKD1 have been associated with Mendelian 
cases of 2-aminoaciduria,41 whereas this same gene 
has been associated with elevated 2-AAA in mouse 
models.42 Heritability estimates for metabolites vary; 
heritability of 2-AAA was previously estimated at 
≈48%.43 Analysis in our sample confirmed a heritable 
component, estimated at 28%, albeit with a wide CI 
of 2% to 55%. The estimate suggests there may be 
comparable heritability for 2-AAA as for other circu-
lating biomarkers such as LDL cholesterol (≈17%).45 
Thus, plasma 2-AAA levels are influenced by heritable 
genetic variation.

Our analysis suggested a putative association be-
tween 2-AAA and DHTKD1. The dehydrogenase E1 
and transketolase domain containing 1 (DHTKD1) 
gene encodes part of a mitochondrial super com-
plex that catalyzes the conversion of 2-oxoadipate to 
glutaryl-CoA within the 2-AAA catabolic pathway.41 A 
mouse genetic reference study42 found that variation 
in Dhtkd1 was associated with hepatic expression of 

Dhtkd1 at the mRNA and protein level, as well as with 
serum 2-AAA. Knockout of Dhtkd1 in mouse results in 
increased 2-AAA in brain and liver.46 Mendelian vari-
ation in DHTKD1 is associated with 2-aminoadipic, 
2-ketoadipic, and 2-oxoadipic aciduria41,47 and with 
Charcot-Marie-Tooth disease.48 Our data highlight as-
sociations between common variants in DHTKD1 and 
2-AAA, suggesting that direct modulation of the 2-AAA 
pathway by DHTKD1 may be a contributor to circulat-
ing levels of 2-AAA.

Our analysis also revealed suggestive candidate 
genetic associations with plasma 2-AAA, including 
between SNPs in NDUFS4 and 2-AAA. This gene, 
NADH:ubiquinone oxidoreductase subunit S4, en-
codes the complex I subunit of the mitochondrial 
membrane respiratory chain NADH dehydrogenase, 
and as such plays a key role in mitochondrial oxidative 
phosphorylation. Interestingly, 2-AAA was reported to 
be significantly reduced in muscle of Ndufs4 knockout 
mice, confirming a biological relationship49 and fur-
ther highlighting a relationship between altered levels 
of 2-AAA and mitochondrial dysfunction. Other genes 
implicated in the analysis included TRAML1, a translo-
cation associated membrane protein with limited func-
tional characterization, which has been associated 
with obesity.50 The mechanistic relevance of this gene 
to 2-AAA remains to be determined.

We also identified candidate associations with 
SNPs mapping in an intergenic region near FGF20 and 
MSR1. FGF20 (fibroblast growth factor 20) is involved 
in multiple cellular processes and has been associated 
with Parkinson’s disease.51 Of note, 2-AAA has also 
been implicated in Parkinson’s disease.52 Macrophage 

Figure 2.  Measured plasma 2-AAA inversely correlates with HDL cholesterol in 2 independent data sets.
A, N=62 individuals with or without chronic kidney disease (rs=−0.53, P<0.0001). B, N=36 individuals with or without type 2 diabetes 
(rs=−0.36, P=0.03). 2-AAA indicates alpha-aminoadipic acid; and HDL, high-density lipoprotein.
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scavenger receptor 1 (MSR1), also known as class 
A scavenger receptor (SR-A), plays a role in macro-
phage endocytosis and uptake of cholesterol esters53 
and has been implicated in several disease processes, 
including atherosclerosis.54 MSR1 has been associ-
ated with both lipoprotein and glucose metabolism,55 
highlighting potential mechanistic links underlying the 
association between 2-AAA and both type 2 diabetes 
and atherosclerosis. Given our findings linking 2-AAA 
to HDL cholesterol, this is a particularly interesting av-
enue for future mechanistic interrogation.

Based on MR analysis using a risk score for 2-AAA 
derived from the meta-analysis, we confirmed a rela-
tionship with fasting insulin2 and identified a sugges-
tive association between elevated 2-AAA and reduced 
HDL. There was no association between a genetic 
risk score for HDL and 2-AAA, suggesting that high 
2-AAA may lead to reduced HDL cholesterol rather 
than the inverse. However, this remains to be probed 
experimentally. Further, although insulin itself associ-
ates with HDL, our data suggest that the association 
between 2-AAA and HDL is partially independent of 
modulation of insulin levels. Although there remains 
uncertainty surrounding the relative importance of 
HDL levels compared with HDL function as a causal 
factor in disease development,56,57 HDL cholesterol 
metabolism is thought to play a crucial role in both 
diabetes and atherosclerosis.58,59 We validated the 
predicted relationship through direct measurement 
and confirmed a negative correlation between 2-AAA 
and HDL. Although this does not establish causality, 
taken together these data suggest that elevated 2-
AAA in individuals may contribute to cardiometabolic 
risk through modulation of HDL cholesterol levels. 
Further mechanistic studies are required to probe this 
relationship.

Our study had a number of strengths but also some 
limitations. Despite being the largest GWAS meta-
analysis ever conducted of plasma 2-AAA, we are likely 
underpowered to detect genetic signals at genome-
wide significance. The 2-AAA measurements and ge-
notyping in the different cohorts were conducted at 
different times and on different platforms, limiting our 
ability to fully harmonize analyses or directly compare 
measurements across cohorts. Previous metabolite 
GWAS often did not include measurement of 2-AAA, 
limiting our ability to further meta-analyze our results 
with published studies. However, review of sugges-
tive loci confirmed an association between variation in 
DHTKD1 and 2-AAA, which is supported by multiple 
independent lines of evidence and could be consid-
ered as a positive control. Thus, we consider that our 
suggestive loci, including MSR1 and NDUFS4, may be 
biologically relevant in mediating the relationship be-
tween 2-AAA and disease. Future larger studies are 
required to confirm this. Because the GWAS did not 

identify strong SNP associations, we constructed 2-
AAA genetic instruments using subsignificant SNPs, 
which can introduce bias to an MR analysis, including 
false positive associations. Given the diverse represen-
tation of ancestries and platforms and small sample 
sizes, we could not accurately determine how much 
of the 2-AAA variability was captured by the 2-AAA 
genetic instruments. Thus, the MR genetic instrument 
was susceptible to violating the first assumption of MR 
(instrument validity) and weak instrument bias. Further, 
there remain other limitations, common to MR studies, 
such as potential for pleiotropy, heterogeneity, reverse 
causation, or presence of confounders, which can lead 
to inaccurate inferences and cannot be fully excluded. 
Our MR analysis identified a relationship between 2-
AAA and HDL cholesterol. Given the limitations of the 
MR genetic instrument, we validated this experimen-
tally; however, we caution that neither the MR or the 
correlation analyses establish causality. Further stud-
ies are required to establish the mechanistic basis of 
the association between 2-AAA and HDL. Our analysis 
included individuals of European, African, and Asian 
ancestry. Non-White individuals have increased risk of 
diabetes given the same risk factors as White individ-
uals.60 Studying non-White populations is important, 
both to address health and research disparities in un-
derstudied populations and because studying individ-
uals with diverse genetic ancestry improves ability to 
detect causal genetic variation.61

In conclusion, genetic analysis of plasma 2-AAA 
revealed several loci of potential relevance to car-
diometabolic disease. Further, our data predicted an 
association between 2-AAA and HDL cholesterol, 
which we confirmed through direct measurement. 
Further in-depth mechanistic studies are required; 
however, these data provide a link between 2-AAA and 
lipoprotein metabolism and may represent a mecha-
nism whereby elevated 2-AAA associates with future 
risk of T2D and atherosclerosis.
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Table S1. Characteristics of the study participants included for genome-wide association 

analysis of plasma 2-AAA 

 

TRAIT FHS DPP JHS SWMHS 

N 1,452 1,612 1,884 508 

ANCESTRY European Mixed* African 

American 

Chinese 

N FEMALE (%) 731 (50) 1054 (65.4) 1160 (61.6) 376 (74) 

AGE, MEAN (SD) 55.6 (9.6) 53.4 (10.3) 56.4 (12.7) 56.8 (9.1) 

BMI, MEAN (SD) 27.8 (4.9) 33.4 (6.2) 31.8 (7.3) 24.9 (3.5) 

DIABETES N (%) 82 (5.6) 0 (0%) 457 (24.3) 31 (6.1) 

CHD N (%) 85 (5.8) 238 (16.1)† 216 (11.5) 21 (4.1) 

CURRENT SMOKING (%) 257 (17.7) 103 (6.4) ‡ 245 (13.2) 91 (17.9) 

 

* European American (70%), African American (19%), Asian American (4%), Other (7%) 

†132 of 1612 missing baseline status for history of CHD 

‡1194 of 1612 missing baseline smoking status 

 

 

 

 

 

 

 



 
 

Table S2. 

SNPs significantly associated with plasma 2-AAA at p<5x10-4 with consistent direction of 

effect in at least 3 of the 4 studies analyzed through trans-ethnic meta-analysis. Beta represents 

the effect per allele on 1SD of normalized 2-AAA values. 

 

Table S3. 

PheWAS of 2-AAA: European Ancestry; cases for each phenotype defined by individual having 

2 or more instances of a given Phecode in the HER 

 

Table S4. 

PheWAS of 2-AAA: African Ancestry; cases for each phenotype defined by individual having 2 

or more instances of a given Phecode in the EHR 

 

Table S5. 

Mendelian Randomization to test effect of 2-AAA genetic instrument on cardiometabolic 

outcomes 

 

Table S6. 

Reverse Mendelian Randomization to test effect of cardiometabolic disease genetic instrument 

on plasma 2-AAA 

 

Table S7. 

Multi-variable MR to test independence of the effects of 2-AAA and insulin on HDL 



 
 

Figure S1. Manhattan plots of 2-AAA GWAS in the individual studies. 
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