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ABSTRACT The gut microbiome exerts a powerful influence on human health and dis-
ease. Elucidating the underlying mechanisms of the microbiota’s influence is hindered by
the immense complexity of the gut microbial community and the glycans they forage.
Despite a wealth of genomic and metagenomic sequencing information, there remains a
lack of informative phenotypic measurements. Pudlo NA, Urs K, Crawford R, Pirani A, et al.
(mSystems 7: e00947-21, 2022, https://doi.org/10.1128/msystems.00947-21) decode this
complexity by introducing a scalable assay to measure specific carbohydrate utilization in
the dominant microbiota phylum Bacteroidetes. The results reveal a mosaic structure of
glycan utilization, both genetic and functional, underpinning niche construction in the
human gastrointestinal tract. This Commentary highlights the significance of their findings
in connection to the field’s growing appreciation for competition, cooperation, and hori-
zontal gene transfer in shaping the highly complex microbial community.
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he human gastrointestinal tract is home to a vastly complex microbial community termed

the gut microbiota—an assembly of protozoa, archaea, fungi, viruses, and, by mass,
predominantly bacteria (1). The microbiota is now appreciated to play pivotal roles in human
health and disease, including influencing host metabolism (2), shaping immune system devel-
opment (3), governing susceptibility to infections, and affecting a broad range of noncommu-
nicable diseases (4, 5), such as inflammatory bowel disease (6). The functional capacity (what
they can do) of the microbiota is influenced strongly by its composition (who is there), which,
in turn, is determined primarily by the availability of nutrients and the capacity of the microbial
community to consume them (2). The need to rationally modulate microbiota functions via
dietary intervention has sparked intense interest in understanding how the nutrient land-
scape shapes the composition, and thus the functions, of the gut microbiome (7-10). While
the guiding principle that intestinal bacteria feast on dietary and host-derived glycans in the
distal intestine is well illustrated (11, 12), defining how specific glycans influence microbiome
structure has remained a significant challenge in the field. Endeavors to illuminate which
microorganisms consume which specific nutrients have been met with challenges in (i) the
complexity of the gut bacterial community; (i) culturing specific microbiota species; (iii) the
immense chemical diversity of dietary, microbial, and host-derived glycans; and (iv) the im-
pressive armament of glycan-degrading enzymes encoded by individual bacterial genomes
(13). Pudlo et al. (14) offer the field a significant step in closing this gap. They present a scal-
able, high-throughput assay for measuring the carbohydrate utilization in over 300 mem-
bers of Bacteroidetes, a dominant saccharolytic phylum of the human gut (15). This platform
revealed characteristic roles among species, as well as a high level of diversity in carbohy-
drate utilization, comprising a mosaic genetic structure. The level of mosaic heterogeneity
suggests the occurrence of interspecies horizontal gene transfer (HGT). Ten years in the mak-
ing, this data set and the authors’ interpretations present a significant advance for the field
of intestinal microbial interactomics.
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Commentary

To shed light on how specific nutrients sustain specific lineages in Bacteroidetes,
Pudlo et al. developed a custom phenotyping array to characterize the carbohydrate uti-
lization of 354 strains across 29 species in this prominent phylum. This data set alone rep-
resents a valuable resource for the gut microbiome field. Glycans are the most chemically
diverse class of molecules in living systems. Glycans’ chemical diversity and abundance
in the human diet make them a powerful driving force for the genome evolution and diver-
sification of the microbiota. The authors elucidate the population distribution of functional
polysaccharide utilization loci (PULs; or glycan utilization loci [GULs]) in the microbiota, pro-
viding phenotypic evidence to finely define mechanisms underlying niche specification
within the gut. In doing so, they advance our understanding of the evolutionary past, pres-
ent, and future of carbohydrate niches in the intestinal environment. The authors observed
similar preferences for carbohydrate sources among closely related species, along with par-
adoxically high diversity in PUL distribution. Their findings complement the discovery by
Park et al. that Bacteroides fitness is, in part, determined by context-dependent inhibition
by the metabolite butyrate, depending on the specific sugars utilized by individual strains
(16). Integrating these groups’ data sets could even further inform our understanding of
carbohydrate utilization and its evolution in the intestine. Finally, while the purchase or cus-
tom purification of all of the required substrates could be significant barriers, the formula-
tion/design of this growth assay is openly accessible and is applicable to additional mem-
bers of the human gut microbiota, as well as to additional carbohydrates or other nutrients
of interest. This assay, substantiated by its resultant data set, provides a much-needed road-
map in translating the highly sequenced-based data of the microbiome field into pheno-
type-based functional metabolomics, forming the basis of precision dietary modulation of
the gut microbiome.

In analyzing Bacteroidetes PULs via pangenomic reconstruction, the authors discov-
ered a highly diverse genetic landscape. The PUL-based clustering of species does not
correlate to the overall Bacteroidetes phylogeny. Frye et al. observed a similar phenom-
enon among the vitamin B, transport loci of Bacteroidetes (17). Both groups suggest
the occurrence of interspecies HGT as a likely explanation. Indeed, Frye et al. demon-
strated the existence of functional corrinoid transport loci on conjugative transposons
within the phylum. Additionally, Hehemann et al. discovered integrative and conjuga-
tive elements (ICEs) carrying PULs that enable the catabolism of algal glycans, common
in seaweed products, that likely originated from marine bacteria (18). However, Pudlo
et al. did not observe any typical indicators of ICEs. Instead, they present evidence in
favor of HGT based on intergenomic homologous recombination. This model would
allow bacteria to share advantageous genes with closely related species while exclud-
ing more distant relatives without the requisite level of sequence homology required
for recombination, “underscoring the notion that individual gut symbiont genomes are
not just highly variable, but dynamically so.” Furthermore, the mosaicism revealed by
this data set may inform our ecological understanding of the gut microbiome. As spe-
cific glycan utilization shapes the competition and cooperation among Bacteroidetes,
this dynamic genome variability underpinning carbohydrate utilization could serve an
integral role in the assembly and stability of the gut as an ecological system (19). Thus,
while HGT has already been shown to be highly prevalent in the gut ecosystem (20),
Pudlo et al., Frye et al., and Hehemann et al. together construct a model in which HGT
plays an essential role in shaping nutrient competition, niche formation, and potential
cooperation among microbiota populations. Ultimately, future studies of intestinal HGT
may illuminate key processes that impact the composition and functions of the intesti-
nal microbiota and, by extension, human health.

Pudlo et al. provide the field with an innovative growth assay and a resultant data set that
contribute to the growing appreciation for the important role of HGT in the microbiome.
Additional applications of this assay to new phyla or new nutrients promise to yield further
understanding of this incredibly important microbial ecosystem. With a renaissance in cultur-
ing techniques and a shrinking gap between sequence data and phenotypic analyses, it is an
exciting time to be involved in microbiome research.
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