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ABSTRACT Previous studies have found that arginine biosynthesis in Staphylococcus
aureus is repressed via carbon catabolite repression (CcpA), and proline is used as a pre-
cursor. Unexpectedly, however, robust growth of S. aureus is not observed in complete
defined medium lacking both glucose and arginine (CDM-R). Mutants able to grow on
agar-containing defined medium lacking arginine (CDM-R) were selected and found to
contain mutations within ahrC, encoding the canonical arginine biosynthesis pathway
repressor (AhrC), or single nucleotide polymorphisms (SNPs) upstream of the native argi-
nine deiminase (ADI) operon arcA1B1DICI. Reverse transcription-PCR (RT-PCR) studies
found that mutations within ccpA or ahrC or SNPs identified upstream of arcAT1B1D1C1
increased the transcription of both arcB1 and argGH, encoding ornithine carbamoyltrans-
ferase and argininosuccinate synthase/lyase, respectively, facilitating arginine biosynthe-
sis. Furthermore, mutations within the AhrC homologue argR2 facilitated robust growth
within CDM-R. Complementation with arcB1 or arcA1B1D1C1, but not argGH, rescued
growth in CDM-R. Finally, supplementation of CDM-R with ornithine stimulated growth,
as did mutations in genes (proC and rocA) that presumably increased the pyrroline-5-car-
boxylate and ornithine pools. Collectively, these data suggest that the transcriptional
regulation of ornithine carbamoyltransferase and, in addition, the availability of intracel-
lular ornithine pools regulate arginine biosynthesis in S. aureus in the absence of glu-
cose. Surprisingly, ~50% of clinical S. aureus isolates were able to grow in CDM-R. These
data suggest that S. aureus is selected to repress arginine biosynthesis in environments
with or without glucose; however, mutants may be readily selected that facilitate argi-
nine biosynthesis and growth in specific environments lacking arginine.

IMPORTANCE Staphylococcus aureus can cause infection in virtually any niche of the
human host, suggesting that it has significant metabolic versatility. Indeed, bioinfor-
matic analysis suggests that it has the biosynthetic capability to synthesize all 20
amino acids. Paradoxically, however, it is conditionally auxotrophic for several amino
acids, including arginine. Studies in our laboratory are designed to assess the biolog-
ical function of amino acid auxotrophy in this significant pathogen. This study
reveals that the metabolic block repressing arginine biosynthesis in media lacking
glucose is the transcriptional repression of ornithine carbamoyltransferase encoded
by arcB1 within the native arginine deiminase operon in addition to limited intracel-
lular pools of ornithine. Surprisingly, approximately 50% of S. aureus clinical isolates
can grow in media lacking arginine, suggesting that mutations are selected in S. aur-
eus that allow growth in particular niches of the human host.
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Growth of S. aureus in Medium Lacking Arginine

taphylococcus aureus is a common cause of community-associated and hospital-

acquired infections (1-3) and, due to the synthesis of a myriad of virulence factors,
has the ability to infect multiple organ systems (4-7). However, to thrive in these
unique niches, S. aureus must regulate its central metabolism to utilize the available
carbon and nitrogen sources (8-11). Indeed, studies have shown that a functional gly-
colytic pathway is essential for S. aureus tissue invasion and overall virulence in a mu-
rine model of infection (12, 13). However, once an infection is established, it is pre-
dicted that S. aureus utilizes secondary carbon sources such as amino acids or peptides
in niches (e.g., abscesses) where glucose is depleted due to the lack of vascularization
and, in addition, rapid glucose consumption via phagocytic cells (14, 15). The milieu of
a staphylococcal abscess is also predicted to be arginine depleted due to the upregula-
tion of inducible nitric oxide synthase (iNOS) and arginase, both of which require argi-
nine as a substrate (14, 16, 17). Indeed, a mutation in the arginine biosynthetic path-
way impaired S. aureus kidney abscess persistence, indicating the importance of
arginine biosynthesis in this niche (17). These observations suggest that the acquisition
and consumption of peptides from host proteins may allow S. aureus to acquire the
precursors required to support arginine biosynthesis in arginine-depleted environ-
ments such as an abscess. In support of this model, recent studies from our laboratory
have revealed that S. aureus secretes proteases that are able to degrade collagen and
encodes a peptide transporter (Opp3; FPR3757 locus SAUSA300_0887; GenBank acces-
sion number CP000255.1) that supports the growth of S. aureus on the degraded colla-
gen peptides (14).

It is well established that S. aureus displays multiple amino acid auxotrophies in vitro,
including arginine, branched-chain amino acids, proline, valine, cysteine, and methionine
(18-22). However, mutants can be isolated that are able to grow in media lacking any of
these amino acids (19, 22), suggesting that all amino acid biosynthetic pathways are present
but repressed during growth in standard laboratory media. S. aureus harbors the genes
encoding the arginine biosynthetic pathway, arg/BCDFGH, responsible for synthesizing argi-
nine from glutamate (23). This canonical pathway is highly conserved and has been exten-
sively studied in model prokaryotic systems, including Bacillus subtilis, Salmonella enterica
serovar Typhimurium, and Escherichia coli (23-25). Studies from Nuxoll et al. documented
that the growth of S. aureus in complete defined medium (CDM) containing 14 mM glucose
but lacking arginine (CDMG-R) is dependent upon a ccpA mutation, thus alleviating carbon
catabolite repression (CCR) (17). However, nuclear magnetic resonance (NMR) and genetic
studies documented that the canonical arginine biosynthetic pathway using glutamate as a
substrate was not utilized, but instead, proline served as the substrate (17). Altogether, these
and other studies (14, 17, 26) documented that proline catabolism is repressed via carbon
catabolite repression but can serve as a carbon source fueling glutamate synthesis when
CcpA repression is alleviated, in addition to serving as a substrate for arginine biosynthesis.
In agreement with previous observations, Halsey et al. found that putA and argGH transcrip-
tion is upregulated in S. aureus JE2 ccpA:tetl, further confirming that arginine biosynthesis
from proline is regulated by carbon catabolite repression (26) (Fig. 1).

Based on the above-mentioned observations, we predicted that robust growth of S.
aureus would be observed in complete defined medium lacking glucose and arginine
(CDM-R) due to the derepression of putA and argGH via the lack of CCR. Surprisingly,
our current studies document that the growth of S. aureus in CDM-R is not robust and
occurs only following ~16 h of incubation. Furthermore, we report here that mutations
in several loci, including ahrC, encoding the canonical arginine biosynthetic pathway
repressor, and single nucleotide polymorphisms (SNPs) in a region upstream of the ar-
ginine deiminase (ADI) operon (arcA1B1DI1CI) facilitated robust growth in CDM-R.
These mutations resulted in the upregulation of both argGH (argininosuccinate syn-
thase/lyase) and arcB1 (ornithine carbamoyltransferase), thus facilitating arginine bio-
synthesis via proline. Furthermore, we found that 53% of S. aureus clinical isolates
could grow in CDM-R but not CDMG-R, suggesting that specific niches are present in
the human host that may select for mutations resulting in arginine biosynthesis.
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FIG 1 Arginine metabolic pathways in Staphylococcus aureus. Proline serves as a substrate for
arginine biosynthesis via PutA, RocD, ArcB1, ArgG, and ArgH. The transcription of putA, rocD, arcB1,
and argGH are repressed by CcpA, whereas arcB1 and argGH are repressed by AhrC and CcpA. The
canonical arginine biosynthetic pathway (in red) is repressed under the conditions studied in this
article. The arginine deiminase pathway (shown in green) generates ATP, CO,, and NH,. All three
pathways utilize ornithine carbamoyltransferase (ArcB1) (shown in purple). TCA, tricarboxylic acid.

RESULTS

Growth of S. aureus in media lacking arginine. Previous studies have demon-
strated that CcpA and carbon catabolite repression (CCR) regulate arginine biosynthe-
sis in S. aureus via the repression of putA, rocD, and argGH (17) (Fig. 1). Consistent with
previous observations (17, 26), S. aureus growth in defined medium containing glucose
but lacking arginine (CDMG-R) is dependent upon a mutation in ccpA (Fig. 2A). As CCR
is alleviated when glucose is depleted from the medium, we hypothesized that S. aur-
eus would grow in complete defined medium lacking both arginine and glucose
(CDM-R). Unexpectedly, S. aureus JE2 exhibited an extended lag phase and a reduced
growth rate in CDM-R; however, enhanced growth was consistently observed after 18
to 24 h of incubation (Fig. 2B). Since the lack of glucose in the media should alleviate
CcpA-mediated repression, we were surprised to find that a ccpA mutation rescued the
growth of JE2 in CDM-R similar to that observed in CDMG-R (Fig. 2A and B). These data
suggest that CcpA is repressing arginine biosynthesis in a glucose-independent man-
ner. To identify other loci that may regulate arginine biosynthesis, S. aureus mutants
with the ability to grow robustly in the absence of arginine were selected by plating
approximately 10° CFU of S. aureus JE2 on CDM-R agar, and two colonies were selected
for further study. As shown in Fig. 2C, these JE2 isolates (JE2 RM1 and RM2) exhibited
rapid growth in CDM-R broth compared to wild-type (WT) JE2. Taken together, our
results suggested that S. aureus does not grow robustly in the absence of arginine
even when glucose is not present in the medium; however, growth can be selected via
the selection of compensatory mutations.
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FIG 2 Mutations are selected in S. aureus facilitating growth in CDM-R. (A) Growth analysis of JE2
and JE2 ccpA:tetl in CDMG and CDMG-R. (B) Growth analysis of JE2 and JE2 ccpA:tetl in CDM and/or
CDM-R. (C) Growth analysis of JE2 and two selected mutants able to grow on CDM-R agar (JE2 RM1
and RM2). Data represent results from three technical replicates per strain. Data are represented as
means * standard errors of the means (SEM).

Mutations in ahrC and SNPs within the arcATB1D1C1 upstream region mediate
robust growth of S. aureus in CDM-R. Whole-genome sequencing was performed on
five independently isolated JE2 isolates that were able to grow on CDM-R agar (see
Table S1 in the supplemental material). Two isolates contained amino acid substitu-
tions in the ahrC gene, encoding the arginine repressor AhrC. In B. subtilis, when bound
to arginine, AhrC functions to repress the biosynthesis of arginine via binding to the
argCAEBD promoter region, thus repressing the canonical arginine biosynthetic path-
way (27, 28). In one of these mutants (mutant 17), JE2 ahrCc,,, a cysteine residue
within the arginine binding pocket that forms hydrogen bonds with the arginine core-
pressor in the B. subtilis orthologue of AhrC was replaced with phenylalanine (27)
(Fig. S1). In a second mutant (mutant 21), JE2 ahrCy,y, a lysine residue that has been
shown to participate in DNA binding by B. subtilis AhrC was replaced by asparagine
(Fig. S1) (27).

In the remaining three isolates, single nucleotide polymorphisms (SNPs) were
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FIG 3 Single nucleotide polymorphisms (SNPs) identified upstream of the arcA1B1D1C1 ATG start site. (A)
Schematic representation of the S. aureus JE2 native arginine deiminase operon (arcA1B1D1CIR1) and the
upstream native argR1. (B) Nucleotide sequence of the native arc operon region located upstream of the
arginine deiminase (arcA) start site. The sequence in light gray represents the region where SNPs were
detected. Predicted Arg boxes and cre site are underlined. RBS, ribosome binding site. (C) Identification of
Parc1, Parc2, and Parc3 SNPs (noted in the light gray region in panel B) compared to WT JE2. The base
pair changes are shown in light gray. (Adapted from reference 64.)

identified at different sites located upstream of the ATG start site of the arcAT gene
(located in the native arginine deiminase operon [23] and not the arginine catabolic
mobile element [ACME] arginine deiminase operon [29, 30]). These SNPs were located
upstream of the proposed ARG boxes or the predicted cre site, both of which were
found upstream of the arcA71 ATG start site (Fig. 3). Mutants in this class were grouped
according to the mutation position and are annotated as Parc1, Parc2, and Parc3. The
organization of the arcATIBID1C1 operon, the predicted arcA1B1D1C1 regulatory
sequence, and the identified mutations are illustrated in Fig. 3.

Arginine biosynthesis is dependent upon proline in JE2 ahrCc,,4¢, JE2 ahrCy,y,
and Parc1, Parc2, and Parc3 mutants. S. aureus harbors the alternative proline catabolic
pathway as well as the canonical glutamate pathway to synthesize arginine (Fig. 1). To inves-
tigate which metabolic pathway contributed to the growth of JE2 ahrCciyue, JE2 ahrCey,
and the Parc mutants in CDM-R, bursa aurealis transposon insertions within putA and argC
from the Nebraska Transposon Mutant Library (31) were transduced into each strain. Our
results demonstrated that growth in CDM-R was dependent upon PutA, but not ArgC, in
JE2 ahrCeyo4e, JE2 ahrCy,y, and the Parc mutants, suggesting that proline was the precursor
for arginine biosynthesis in all strains tested (Fig. 4A to D). Consistent with these observa-
tions, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that
JE2 ahrCe,4¢ (Fig. 4E and F) and JE2 ParcT (Fig. 4G and H) grown in the presence of '3C.-la-
beled proline, but not '*Cs-labeled glutamate, accumulated '*Cs-labeled intracellular argi-
nine, citrulline, and ornithine. Overall, our findings indicate that ahrC mutations and Parc
SNPs mediate arginine biosynthesis via the proline catabolic pathway instead of the canoni-
cal glutamate pathway, which appears to be inactive under the conditions studied.

AhrC negatively regulates arginine biosynthesis in S. aureus. Since our findings
indicate that a mutation in ahrC facilitates the growth of S. aureus in CDM-R, a markerless
AahrC allelic replacement mutant was constructed to confirm these observations. Indeed,
the growth of JE2 AahrC phenocopied those of JE2 ahrCc,,, and JE2 ahrCy,, in CDM-R
(Fig. 5A). The introduction of the ahrC complementation plasmid pNF406 abrogated the
growth of JE2 AahrC in CDM-R (Fig. 5A). To further understand whether AhrC transcription-
ally regulated a gene in the proline arginine biosynthetic pathway, the expression of putA,
rocD, arcB1, and argG (Fig. 1) was assessed by quantitative reverse transcription-PCR (qRT-
PCR) in JE2 ahrCc,,4 JE2 ahrCy,y, and JE2 AahrC grown in CDM and CDM-R and compared
to that in wild-type JE2 in CDM. In addition, since S. aureus encodes three ornithine carba-
moyltransferases (arcB1, arcB2, and argF), the transcription of arcB2 and argF was deter-
mined. Furthermore, the transcription of argD, encoding acetylornithine aminotransferase

May/June 2022 Volume 13 Issue 3

10.1128/mbio.00395-22

mBio

5


https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.00395-22

Growth of S.

aureus in Medium Lacking Arginine

- JE2
B -
JE2 ahrC,
*= ahrCeqaer P
- JE2 ahrCyay .
-~ JE2 ahrCgp4r argC::NZ 0
-~ JE2 ahrCy,y argC::NE 2
-
o
Time (hours)
- JE2 D
- JE2 ahrCeqpsr
-~ JE2 ahrCyyy
-~ JE2 ahrCeqy4r putA::NZ
-o- JE2 ahrCy,y putA::NZ
Time (hours) Time (hours)
E F
60000 2500001 13C; L-Arginine
13Cg L- Ornithine
200000 13C4 L-Citrulline
£ 40000 2 150000+
H 2
]
E 20000 £ 1000001
f\ 50000
0
2 4 6 8 10 12 r T T T T J
. < = 2 4 6 8 10 12
Retention time (min)
G H Retention time (min)
8000 =
13Cg L- Ornithine 200000
|3c Al
6000 1500004 5 L-Arginine
z z
5 7]
2 4000 & 100000{ '3, L-Citrulline
s £
2000 [\ 50000 ’\
o ol
2 4 6 8 10

4 6 8 10 12

Retention time (min)

2

12

Retention time (min)

mBio

JE2

Parc1
Parc2
Parc3

Parc1 argC ::NZ
Parc2 argC ::NZ
Parc3 argC ::gNZ

JE2
Parc1

Parc2
Parc3
Parc1 putA::pNZ
Parc2 putA ::NZ

Parc3 putA ::pNZ

== 13C, L-Proline

*C, L-Glutamate

— 1305 L-Proline

e °C; L-Glutamate

FIG 4 Proline serves as the substrate for arginine biosynthesis in ahrC and Parc mutants. (A and C) CDM-R growth analysis of JE2 ahrCc,,,r and JE2 ahrC,
with bursa aurealis transposon insertions in putA (A) and argC (C). (B and D) CDM-R growth analysis of JE2 Parcl, Parc2, and Parc3 with bursa aurealis
transposon insertions in putA (B) and argC (D). Data represent results from three technical replicates per strain. Data are represented as means * SEM
(n = 3). (E to H) Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of the JE2 ahrC,,, mutant (E and F) and the JE2 Parc1 mutant (G
and H) grown in CDM-R in the presence of either ['*C,]proline or ['*C;lglutamate. Data represent mean peak values from three biological replicates.

(Fig. 1) functioning in the canonical arginine biosynthetic pathway, and rocF, encoding ar-
ginase (Fig. 1), were also assessed. The results demonstrated no change in the transcription
of putA, arcB2, argF, rocF, and rocD (Fig. S2 and S3). However, significant upregulation of
argG (Fig. 5B) and arcB1 (Fig. 5C) was observed in JE2 AahrC, JE2 ahrCc,4¢, and JE2 ahrCe,y
in both CDM and CDM-R. Furthermore, it is well characterized that AhrC represses the
argDCJB operon in B. subtilis (32); however, in agreement with our genetic and LC-MS/MS
data (Fig. 4), no significant change in argD expression in both CDM and CDM-R was noted
for all ahrC mutants tested (Fig. 5D).

CcpA represses arginine biosynthesis in the absence of glucose. Previous studies
have documented that the growth of S. aureus in CDMG-R is dependent upon a muta-
tion in ccpA as CcpA represses the transcription of putA, rocD, and argGH (17, 26, 33).
Indeed, a mutation in ahrC does not facilitate the growth of JE2 in CDMG-R (Fig. 6A),
presumably due to the repression of both putA and rocD via CcpA. In addition, previ-
ous studies document that derepression of both putA and rocD occurs during growth
in media lacking glucose, such as CDM (26). Therefore, since growth in a medium
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*** P < 0.001; ns, no significance.

lacking glucose should relieve CcpA-dependent repression, we were surprised to find
that a mutation in ccpA rescued the growth of S. aureus in CDM-R (Fig. 2B). These
results suggest that CcpA represses arginine biosynthesis in a glucose-independent
manner and presumably at a locus different from putA or rocD. To more fully under-
stand CcpA-dependent repression during growth in CDM and CDM-R, we quantified
the expression of argGH and arcB1 in JE2 ccpA:tetL. Similar to the AahrC mutant, we
observed significant upregulation of arcB1 and argG (Fig. 6B) in JE2 ccpA:tetl when
grown in both CDM and CDM-R. Interestingly, enhanced transcription of both arcB71
and argG was noted in the ccpA mutant during growth in CDM-R compared to CDM.
However, it is difficult to fully interpret these data as CDM-R transcript data were com-
pared against JE2 growth in CDM and not CDM-R, due to the lack of robust growth in
this broth. Taken together, these data indicate that both AhrC and CcpA regulate arcB1
and argGH during growth in both CDM and CDM-R and that CcpA mediates repression
in a glucose-independent manner during growth in CDM-R.

AhrC and CcpA regulate arginine biosynthesis independently. We further hypothe-
sized that the increased expression of argGH and arcB1 in JE2 ccpA:tetl during growth
in CDM-R was because ahrC transcription was CcpA dependent. However, no signifi-
cant change in ahrC expression was noted in JE2 ccpA:tetl in both CDM and CDM-R
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compared to WT JE2 (Fig. 6C), indicating that CcpA functions to repress arginine bio-

synthesis independently of AhrC.

To determine the contribution of both AhrC and CcpA to the regulation of argGH
and arcB1, a JE2 ccpA::tetl AahrC mutant was constructed, and the expression of argGH
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and arcB1 was assessed in CDM and CDM-R. A significant increase in the transcription
of arcB1 (Fig. 6D) and argG (Fig. 6E) was noted in JE2 ccpA:tetL AahrC during growth in
CDM-R in comparison to either JE2 ccpA:tetl or JE2 AahrC alone during growth in
CDM-R, suggesting that the loss of both CcpA and AhrC leads to the further derepres-
sion of arcB1 and argG.

Growth of JE2 argR1 and JE2 argR2 in CDM-R. S. aureus JE2 carries two other ArgR
homologues besides ahrC (SAUSA300_1469; FPR3757 genome; BioProject accession num-
ber PRINA16313): argR1 (SAUSA300_2571) and argR2 (SAUSA300_0066). argR1 is located
just upstream of the native arginine deiminase operon (Fig. 3), whereas argR2 is located
upstream of the arginine deiminase operon located within the ACME pathogenicity island
(34). Therefore, JE2 argR1, JE2 argR2, and JE2 argR1 argR2 were constructed and grown in
CDM-R. In comparison to JE2, no significant CDM-R growth phenotype was noted with JE2
argR1 (Fig. 6F). However, surprisingly, robust CDM-R growth was noted with JE2 argR2 and
JE2 argR1 argR2 in comparison to JE2 and JE2 argR7 (Fig. 5B). These data suggest that
ArgR2, acquired on the ACME pathogenicity island, but not the native ArgR1, functions to
regulate growth in CDM-R, in addition to AhrC.

Parc mutants have enhanced expression of arcB7 and argGH. Based on our find-
ings that JE2 Parc mutants have enhanced growth in CDM-R, we sought to determine the
impact of these SNPs on the transcription of arginine biosynthetic genes. Therefore, we
performed gRT-PCR to assess the arginine biosynthetic gene expression (putA, argD, arcBI,
arcB2, argF, argG, rocF, and rocD) of the Parc mutants grown in CDM and CDM-R. The level
of gene expression was normalized against that of JE2 WT grown in CDM. As predicted, no
change in the transcript levels of putA, arcB2, argF, rocF, and rocD was noted in all three of
the mutants (Fig. S4 and S5). Parc1, Parc2, and Parc3 exhibited a slight (~6-fold), yet signifi-
cant, derepression of arcB71 in CDM (Fig. 7A). In contrast, a substantial increase in arcB1
transcription (~100-fold) was observed in CDM-R compared to CDM (Fig. 7B). Similar to
arcB1 expression, argG expression was strongly upregulated in CDM-R (Fig. 7D), while no
change in expression was observed in CDM compared to WT JE2 (Fig. 7C and D).

The anabolic activity of ornithine carbamoyltransferase (ArcB1) is essential for
arginine biosynthesis in S. aureus. As an SNP in the upstream region of arcA1B1D1C1
alone facilitates growth in CDM-R, we surmised that the generation of citrulline may induce
argGH transcription and, thus, that the critical block in arginine biosynthesis during growth
in CDM-R is ornithine carbamoyltransferase (arcB7) transcription. To test this hypothesis,
the expression plasmids pNF379, containing the argGH operon; pNF378, containing the
arcA1B1D1CT1 operon; and pNF407, containing arcB1, were constructed with a cadmium-in-
ducible promoter (Pcad) and introduced into JE2, and growth was assessed in CDM-R. The
introduction of both arcB1 (pNF407) and arcA1B1D1C1 (pNF378) rescued the growth of JE2
in CDM-R (Fig. 8A), although the induction of arcB7 alone (pNF407) resulted in a higher
growth yield. However, the introduction of argGH (pNF379) did not rescue the growth of
JE2 in CDM-R (Fig. 8B). Furthermore, the addition of the substrate ornithine or the end
product of ArcB1 catalysis, citrulline, rescues the growth of both JE2 and JE2 putA in CDM-
R (Fig. 8C to F). Interestingly, qRT-PCR revealed that the addition of ornithine to CDM-R
increased the expression of catabolic (ArcB1) and not anabolic (ArgF) (Fig. 8G) ornithine
carbamoyltransferase. Therefore, we predicted that increasing the concentration of intra-
cellular ornithine, by increasing the intracellular pyrroline-5-carboxylate (P5C) pools, would
facilitate increased growth of S. aureus JE2 in CDM-R. To address this hypothesis, we grew
JE2 rocA and JE2 proC in CDM-R, both of which have insertions in genes that encode pro-
teins that utilize P5C as a substrate (Fig. 1). As predicted, mutations in both rocA and proC
resulted in robust growth of JE2 in CDM-R (Fig. 8H). Collectively, these results provide evi-
dence that enhanced transcription of arcB1 and the subsequent anabolic activity of the cat-
abolic ornithine carbamoyltransferase ArcB1 are crucial for growth in CDM-R. Furthermore,
increasing the concentrations of ornithine, added either exogenously or via enhancing the
intracellular P5C pools, also facilitates robust growth in CDM-R, presumably by the induc-
tion of arcB1. Finally, the addition of exogenous citrulline also mediates growth in CDM-R,
suggesting that the presence of citrulline may induce argGH transcription.
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FIG 7 gRT-PCR assessing arcB1 and argGH transcription in Parc mutants. Quantitative reverse transcription-PCR
(gRT-PCR) was performed to assess the expression of arcB1 (A and B) and argG (C and D) in JE2 Parc mutants
in both CDM and CDM-R. Data are representative of results from three independent biological replicates
performed with two technical replicates in each experiment. Error bars show means = SEM (n = 3). Statistical
significance was assessed using one-way ANOVA followed by Dunnett’s posttest (A and C) and Tukey’s posttest
(B and D). Asterisks indicate significant differences between WT JE2 and Parc mutants (A and C) and between
Parc mutants in CDM and CDM-R (B and D). *, P < 0.05; **, P < 0.01; ns, no significance.

Growth of S. aureus clinical isolates in CDM-R. To determine if clinical S. aureus
isolates can grow in medium lacking arginine, 200 clinical isolates were selected and
grown in both CDM-R and CDMG-R. One hundred isolates were collected from positive
blood cultures (group 1), and an additional 100 isolates were collected from diverse
sites, including skin and soft tissue, respiratory fluids, and bodily fluids (group 2). The
BioProject accession number for these sequences is PRINA731492 (35). Unexpectedly,
the screen revealed that 54% and 53% of isolates from groups 1 and 2, respectively,
demonstrated robust growth in CDM-R. However, none of the isolates able to grow in
CDM-R could grow in CDMG-R (Fig. $6). Whole-genome sequencing of 40 isolates (20
per group) was performed to determine if SNPs could be identified in ccpA, ahrC, proC,
argR, or the arcA1B1D1C1 upstream region consistent with in vitro-selected mutations
that facilitated arginine biosynthesis. Sequences from each clinical isolate were com-
pared to the S. aureus USA300 FPR3757 genome sequence (GenBank accession number
CP000255.1). Multilocus sequence typing (MLST) of the 40 sequenced isolates identi-
fied 15 sequence types (STs) (Table S3). Surprisingly, 16/40 isolates contained SNPs in
the arcA1BID1C1 upstream region (compared to FPR3757), whereas 10/40 contained
SNPs in both ccpA and the arcAT1B1D1C1 upstream region. Only two of the isolates con-
tained SNPs in ahrC. Fourteen of the isolates had a similar proC V—I substitution at
FPR3757 nucleotide 1605636, and 7 isolates had SNPs in argR homologues. Of the 44
isolates sequenced that had the ability to grow in CDM-R (Fig. S7), 16 did not have
SNPs identified within the interrogated loci (Table S3). Taken together, these data
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FIG 8 Complementation with arcBT or arcAT1B1D1CI rescues the growth of JE2 in CDM-R. (A and B) Growth analysis of JE2/pNF378, JE2/pNF379, and JE2/pNF407
complementation plasmids harboring the arcA1B1ID1C1 operon, the argGH operon, and arcB1, respectively, in CDM-R. Growth of JE2/pBK123 (empty vector) in
CDM and CDM-R was used as a control. (C to F) Growth of JE2 and JE2 putA in increasing concentrations of ornithine (C and D) and citrulline (E and F),
respectively. (G) qRT-PCR assessing the transcripts of argF and arcB1 in WT JE2 in both CDM with ornithine and CDM-R with ornithine. Data are representative of
results from three independent biological replicates performed with two technical replicates in each experiment. Error bars show means * SEM (n = 3). Statistical
significance was assessed using one-way ANOVA followed by Dunnett’s posttest; *, P < 0.05. (H) Growth of JE2, JE2 ccpA, JE2 proC, and JE2 rocA in CDM-R.
Growth data in panels A to F and H represent results from three technical replicates per strain. Data are represented as means * SEM.

indicate that arginine biosynthesis is selected within an in vivo environment. However,
growth in the absence of arginine is still selected against when glucose is present.

DISCUSSION
Extensive studies of the arginine biosynthetic pathway have led to multiple significant
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shifts in thought, including genetic repression, the protein repressor, the regulon, gene
duplication, the reactivation of silent genes through the generation of tandem repeats,
promoter function, and evolutionary divergence (23, 36-41). Indeed, the biosynthesis of ar-
ginine from glutamate is a well-conserved pathway found in various bacteria, including
Escherichia coli, B. subtilis, Pseudomonas aeruginosa, and S. aureus (23, 25, 42, 43). The regu-
lation of genes involved in arginine biosynthesis differs among bacterial species (44-46);
however, all arginine biosynthetic genes are transcriptionally regulated by ArgR-type tran-
scriptional regulators (ArgR [E. coli/Salmonella] or AhrC [B. subtilis]) (27, 47-49). In the pres-
ence of arginine, ArgR/AhrC represses arginine biosynthetic genes by binding to DNA op-
erator sites termed ARG boxes (50-53). Arginine acts as a corepressor for ArgR/AhrC, in
which the binding of an arginine molecule induces a conformational change in the regula-
tor, increasing the affinity for the ARG box (54). Therefore, in the absence of arginine, dere-
pression of the ArgR/AhrC regulon occurs, facilitating biosynthesis using glutamate as a
precursor (23, 49). Experimental evidence suggests that the ArgR/AhrC mechanism of regu-
lation is conserved among Gram-positive, Gram-negative, and extremophilic bacteria (27,
28, 48, 50, 53, 55-57).

However, our data provide evidence that S. aureus synthesizes arginine via proline
and not glutamate. Indeed, the growth of JE2 AahrC in CDM-R was dependent upon
putA and not argC (Fig. 4). Furthermore, our transcriptional analysis revealed that AhrC
represses argGH and arcB1, with no significant change in the gene expression of
argDCJB (Fig. 5; see also Fig. S2 in the supplemental material), indicating the presence
of an additional transcriptional regulator that functions to repress the production of ar-
ginine using glutamate as a substrate. By the selection of mutants on CDM-R agar, we
found that a mutation in AhrC facilitated robust growth in CDM-R. One of these muta-
tions (C124F) was found in the domain that coordinates arginine binding, whereas the
second mutation (K4N) was found in the DNA binding region (Fig. S1). This suggests
that enough free arginine is present in the intracellular environment that binds AhrC
when CDM-R is used as the growth medium or that AhrC can bind to specific cognate
promoters in the absence of arginine. Further studies are required to determine if S.
aureus AhrC functions in a manner different from that described for B. subtilis, E. coli,
Lactococcus lactis, or P. aeruginosa (47, 53, 56, 58-61). In addition, we found that a
mutation in argR2, but not argR1, facilitates the growth of S. aureus JE2 in CDM-R. This
was unexpected since argR2 is located within the acquired arginine catabolic mobile
element (ACME) pathogenicity island, which is found primarily in ST8 USA300 isolates (29).
Further studies are required to determine if ArgR2 functions to regulate arginine biosynthe-
sis in a manner similar to that of AhrC or if they function independently of one another.
We also found that a mutation in ccpA leads to robust growth in CDM-R by upregulating
both arcB1 and argGH. This was not expected as growth in media lacking glucose should
alleviate CcpA-mediated repression. However, previous microarray studies using strain
Newman identified CcpA-regulated genes in medium (LB) lacking glucose (62), including
arcC and argF. Thus, it seems plausible that even though putA and rocD are derepressed
during growth in CDM, CcpA could still repress arcB1 transcription. In addition, the growth
of S. aureus JE2 in CDM-R results in a long lag phase (~16 h), eventually leading to a
growth yield of 0.45 (optical density at 600 nm [ODg]) by 24 h (Fig. 2B). At this point, it is
unclear what the population of cells following 24 h of growth in CDM-R represents.
Unfortunately, growth on solidified CDM or CDM-R is not consistent for unknown physio-
logical reasons, and we are unsure if the CDM-R broth population primarily represents
delayed induction of arginine biosynthesis via ArcB1/ArgGH and/or ornithine availability or
possibly a selection of S. aureus cells with mutations in regulatory loci.

S. aureus converts arginine into ornithine, ammonia, carbon dioxide, as well as ATP via
the arginine deiminase (ADI) pathway (Fig. 1). This pathway consists of three enzymes that
catalyze the catabolism of arginine, arginine deiminase (ArcA), ornithine carbamoyltransfer-
ase (ArcB), and carbamate kinase (ArcC), encoded by the arcAT1BID1C1 operon. The arcD
gene encodes the arginine/ornithine antiporter allowing the exchange of one molecule of
ornithine for each arginine molecule imported (23, 63). The S. aureus USA300 ST8 lineage
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possesses a second copy of the arc operon (arcA2B2D2C2) located on the ACME, a genomic
island horizontally acquired from Staphylococcus epidermidis (34). In S. aureus SH1000, the
native arc operon is induced under anaerobic growth conditions and was shown to be posi-
tively regulated by the transcription regulator ArcR (64). However, the ACME arc operon was
reported to be constitutively expressed in USA300 under both aerobic and anaerobic condi-
tions, promoting survival under acidic conditions (30). Our studies suggest that under the
conditions tested, arcB1 from the native arginine deiminase operon (arcA1BIDI1C1) is
repressed by AhrC during aerobic growth. A significant upregulation of ornithine carbamoyl-
transferase (arcBT1), a potential surrogate for the entire arc operon, was noted in the selected
JE2 ahrC mutants (Fig. 5). However, it is unclear if arcB1 transcription is regulated independ-
ently from the arcAT1B1D1CT operon. We surmise that the derepression of arcB1 is mediated
to fulfill an anabolic function (arginine biosynthesis) rather than a catabolic one. Indeed, the
overexpression of arcA1B1D1C1 facilitated the growth of JE2 when grown in CDM-R
(Fig. 8A). One would presume that the upregulation of arcB1 would also result in the upreg-
ulation of the ADI operon and, thus, the catabolism of arginine via arginine deiminase. The
decreased growth yield observed when the entire arc operon was induced (JE2/pNF378)
(Fig. 8A) in comparison to arcB1 (JE2/pNF407) (Fig. 8A) may indicate that some of the argi-
nine produced was catabolized via ArcA and the ADI pathway. Nevertheless, when arcB1
was artificially induced (via pNF407), a growth yield of an ODg, of 1 was observed, similar
to that of JE2 grown in CDM, indicating that the anabolic activity of ArcB1 is essential for
growth when arginine is limiting.

S. aureus harbors two catabolic ornithine carbamoyltransferases, ArcB1 (native) and ArcB2
(ACME encoded), and a proposed anabolic ornithine carbamoyltransferase (ArgF). The cata-
bolic enzymes typically convert citrulline into ornithine, facilitating catabolism via ADI, while
the anabolic enzyme converts ornithine into citrulline, facilitating biosynthesis via the urea
cycle (Fig. 1). We observed no change in the expression of arcB2 and argF in all JE2 ahrC
mutants (Fig. S2 and S3). In addition, accumulation of citrulline was observed in all the
mutants tested via LC-MS/MS (Fig. 4F and H), indicating that ArcB1 is converting ornithine
into citrulline, thus fulfilling the anabolic activity of ArgF. Furthermore, the addition of orni-
thine to CDM-R induces the expression of arcB1 and not argF (Fig. 8). Based on the above-
described results, we conclude that the low expression of arcB1 contributes to the conditional
arginine auxotrophy, and furthermore, S. aureus utilizes a catabolic instead of an anabolic
enzyme to facilitate arginine biosynthesis via the urea cycle. Interestingly, studies of
Streptococcus gordonii, which lacks an anabolic ornithine carbamoyltransferase, documented
that arcB mutants were unable to grow in the absence of arginine under anaerobic conditions
(65). Furthermore, in P. aeruginosa, an argF mutant defective in the anabolic ornithine carba-
moyltransferase (ArgF) can grow in media lacking arginine after extended incubation, indicat-
ing that ArcB can compensate for ArgF activity (66). Although S. aureus is clearly utilizing
ArcB1 to mediate arginine biosynthesis under the conditions tested, multiple kinetics investi-
gations have shown that the anabolic reaction catalyzed by ArgF is highly efficient and ther-
modynamically favored (67, 68). Therefore, kinetic studies using S. aureus ArcB1, ArcB2, and
ArgF are required to further address the function of ArgF. We hypothesize that ArgF has a
higher affinity for ornithine than for ArcB1. As noted above, S. aureus heavily represses and
tightly regulates arginine biosynthesis. Thus, utilizing the anabolic ArgF may interfere with
adaptive mechanisms acquired by the pathogen to maintain conditional auxotrophy. Thus,
we speculate that S. aureus has been selected to use the less thermodynamically favored cata-
bolic enzyme to more tightly regulate the biosynthesis of arginine, although it is unclear why
conditional auxotrophy may be favored in particular environments. Finally, since the addition
of exogenous ornithine stimulates the growth of JE2 in CDM-R in addition to mutations in
rocA and proG, it is possible that the conversion of P5C to glutamate via RocA (P5C dehydro-
genase) or proline via P5C reductase (ProC) is thermodynamically favored over conversion to
ornithine via RocD (ornithine aminotransferase). Further, since glutamate demand is high due
to its use as a major carbon source during growth in CDM (26), it is also possible that RocD ac-
tivity is limited due to the requirement of glutamate as an amino donor (Fig. 1). If so, this
would result in low cellular ornithine pools, resulting in the poor growth yield observed in
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CDM-R. Indeed, previous NMR studies assessing the growth of S. aureus JE2 in CDM contain-
ing *C-labeled proline noted significant quantities of labeled glutamate and small amounts of
ornithing; no 3C-labeled citrulline or arginine was detected (26). These data suggest that the
ornithine pool is indeed small during growth in CDM-R; in addition, the transcription of the
catabolic ornithine carbamoyltransferase (arcB7) is repressed, further limiting citrulline synthe-
sis. Finally, we were surprised to find that a proC mutation resulted in robust growth in CDM-
R, similar to a rocA mutant. This suggests that ProC is active during PutA-dependent proline
catabolism (Fig. 1). This appears to be a futile cycle; however, a requirement for ProC activity
may be linked to the regulatory activity of or potential toxicity associated with intracellular
concentrations of P5C.

During infection, S. aureus often encounters diverse environments requiring an adjust-
ment of its central metabolism to rapidly changing carbon and nitrogen sources to main-
tain survival and persistence. Along with glucose, amino acids are an important carbon
source for S. aureus growth and proliferation within the host (69). S. aureus encodes path-
ways required for the biosynthesis of all 20 amino acids, in addition to harboring transport-
ers enabling it to acquire amino acids from the host or synthesize them de novo (70).
Recent studies documented that S. aureus relies on aspartate biosynthesis for proliferation
and survival during bone infection due to excess glutamate in infected tissues that inhibits
aspartate acquisition (11). Likewise, S. aureus arginine biosynthesis promotes kidney ab-
scess persistence (17). This indicates that spatial differences in the metabolic requirements
for amino acid biosynthetic pathways exist during infection and suggests that S. aureus
can selectively activate certain biosynthetic pathways while repressing others depending
on the niches that it colonizes. Indeed, our clinical isolate screen suggests that the repres-
sion of arginine biosynthesis is advantageous to growth or survival within certain ill-
defined niches but selected against in others, particularly in niches containing glucose.
Although our genomic sequencing data need to be confirmed using genetic experimenta-
tion, it is interesting to note that many of our clinical isolates have SNPs in loci that confer
the ability to grow in CDM-R.

It remains unclear what selective pressure governs the activation of the arginine biosyn-
thetic pathway or why mutations are required to completely derepress these pathways.
One possibility is that the selection of mutations provides fitness for S. aureus under certain
stress conditions in which arginine might be serving as a signaling molecule/sensor.
Previous studies documented the importance of arginine biosynthesis for multiple patho-
gens, including Mycobacterium tuberculosis, Listeria monocytogenes, and Mycobacterium
bovis. Arginine biosynthetic genes were found to be upregulated and essential for the intra-
cellular growth of L. monocytogenes (71). In addition, de novo arginine biosynthesis was
shown to be highly important for the growth of M. tuberculosis, protecting the pathogen
from DNA damage induced by reactive oxygen species (ROS) generation (72). Furthermore,
t-arginine and t-ornithine supported the intracellular growth of M. bovis (73). Overall, it
appears that arginine biosynthesis is linked to the virulence of multiple microorganisms,
and it is an important component that can influence pathogen survival and persistence
within the host cell. Finally, in B. subtilis, the transcriptional derepression of the arginine bio-
synthetic pathway by AhrC results in the activation of the pathway as well as the autore-
pression of AhrC itself (54). Therefore, AhrC may positively regulate several downstream
effector molecules that are required for growth and survival; hence, transcriptional derepres-
sion might be deleterious for S. aureus. Note that most (63%) of the sequenced clinical iso-
lates contained SNPs within the promoter region of arcA1B1D1C1, thus potentially directly
upregulating arcB1, whereas only two sequenced isolates contained a mutation in ahrC.

In conclusion, our data suggest that the poor growth of S. aureus in CDM-R is
blocked by reduced ornithine carbamoyltransferase (ArcB1) activity and that robust
growth is mediated by either increasing the ArcB1 enzyme concentration or increasing
the substrate concentration (ornithine). At least two regulators were identified (AhrC
and CcpA) that function to repress arcB1 transcription; mutations within these regula-
tors resulted in increased arcB1 transcription and subsequent arginine biosynthesis as
assessed by growth studies and LC-MS/MS. Furthermore, we found that the addition of
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exogenous ornithine and citrulline facilitated robust growth in CDM-R, suggesting that
elevated cytoplasmic ornithine or citrulline concentrations may induce arcB7 and
argGH transcription, respectively. Indeed, exogenous ornithine alone induced arcB71
transcription. Finally, we found that presumably increasing the ornithine pool by
diverting P5C away from glutamate or proline (rocA and proC mutations, respectively)
also resulted in robust growth in CDM-R.

MATERIALS AND METHODS

Bacterial strains and culture conditions. For examination of arginine auxotrophy among S. aureus
clinical strains, 200 deidentified isolates were obtained from the Clinical Microbiology Laboratory at
Nebraska Medicine. Additional S. aureus strains used in this study are listed in Table S2 in the supple-
mental material. Defined bursa aurealis transposon mutants were obtained from the Nebraska
Transposon Mutant Library and backcrossed to JE2 using ®11 (31). JE2 and S. aureus clinical strains were
grown overnight in 5 mL tryptic soy broth (TSB) at 37°C with shaking at 250 rpm. Cultures grown over-
night were washed with phosphate-buffered saline (PBS) twice and inoculated to an optical density at
600 nm (ODy,,) of 0.05. Growth analysis was performed in complete defined medium (CDM) and CDM-R
with no glucose (74) added to a 96-well plate in an Infinite 200 Pro device (Tecan) at 37°C with shaking
at 250 rpm. A total of 14 mM glucose was added when appropriate (CDMG). Plasmids constructed to
express arcA1BDC (pNF378), argGH (pNF379), arcB1 (pNF407), and ahrC (pNF406) utilized the pBK123
plasmid backbone derived from pCN51 (75). Each DNA fragment was amplified from JE2 by PCR using
primers listed in Table S2. Double-stranded DNA (dsDNA) fragments with overlapping ends complemen-
tary to the vector were ligated into the Sall and Xmal sites of pBK123 using Gibson assembly (76, 77).
The expression of arcB1, argGH, and ahrC was induced via a cadmium-inducible promoter (75). The com-
pleted constructs were electroporated into S. aureus RN4220 (78, 79), confirmed using primers noted in
Table S2, and transduced into JE2 via ®11 transduction (80). Growth analysis of JE2/pNF378, JE2/
pNF379, JE2/pNF406, and JE2/pNF407 was conducted in a 96-well plate as described above except that
the TSB culture grown overnight contained 5 ug/mL chloramphenicol, while CDM/CDM-R contained
1 wg/mL chloramphenicol and 100 nM cadmium chloride.

qRT-PCR. Cultures of S. aureus JE2, JE2 ahrC, JE2 AahrC, and JE2 Parc mutants were grown overnight
in 3 mL CDM at 37°C with shaking at 250 rpm. Cultures grown overnight were inoculated to an ODy,, of
0.05 into 25 mL of CDM or CDM-R in a 250-mL flask (1:10 volume-to-flask ratio). Cells were grown aerobi-
cally (250 rpm) to exponential phase and collected at an ODy,, of 0.4 to 0.8. Six milliliters of Qiagen RNA
protect bacterial reagent was added to 3 mL of the collected culture. Cells were incubated for 5 min at
room temperature and pelleted by centrifugation for 10 min at full speed. The pellet was resuspended
in 185 uL of lysis buffer, followed by 15 uL of proteinase K. Samples were incubated on a rotating plat-
form shaker at room temperature for 10 min and then resuspended in 700 uL RLT buffer containing 1%
B-mercaptoethanol. Next, suspensions were transferred to lysing matrix B tubes (MP Biomedicals) and
processed in an FP120 FastPrep cell disrupter (MP Biomedicals) for 45 s at a setting of 6.0. A total of 760
L of the supernatant was transferred into a new tube containing 590 uL of 80% ethanol. The samples
were then processed using an RNeasy minikit, according to the manufacturer’s instructions (Qiagen,
Inc.). cDNA was generated using SuperScript IV Vilo master mix with ezDNase enzyme (Thermo Fisher
Scientific) with 1 pg to 2.5 ug total RNA in each 10-uL reaction mixture. Reactions without reverse tran-
scriptase were also performed for each RNA sample, and the samples were confirmed to be free of con-
taminating genomic DNA by PCR. All primers and probes used in this study are listed in Table S2.
Primer-probe mixes (20x) containing 10 uM each primer and 4 uM labeled probe were prepared. All
qRT-PCRs were performed with a total volume of 20 uL (10 uL TagMan Fast advanced master mix
[Thermo Fisher], 1 uL of 20x primer-probe mix, 4 uL of H,0, 5 uL of diluted template cDNA). Copy num-
bers of each transcript were determined against a standard curve performed with dilutions of plasmid
clones carrying each gene target, and data were normalized against the geometric means for two refer-
ence genes, gyrB (81) and tpiA (82). Standards and diluted cDNA samples were assayed in duplicate with
a QuantStudio 3 instrument (Thermo Fisher Scientific).

Construction of JE2 AahrC. The pNF293 JE2 AahrC allelic replacement construct was first created by
the insertion of an 861-bp ahrC upstream PCR product using primers 1999 and 2000 (Table S2) into the EcoRl
and BamHlI sites of pUC19 (83). Second, a 755-bp ahrC downstream PCR product was amplified using primers
2211 and 2212 (Table S2) and ligated into the BamHI and Pstl sites of the pUC19 polylinker. The tempera-
ture-sensitive pE194 derivative pROJ6448 was ligated into the Pstl site of the plasmid (84). The completed
construct, pNF293, was electroporated into the restriction-deficient S. aureus strain RN4220 (79). pNF293 was
subsequently transduced into S. aureus JE2 using phage 80« as previously described (85). Allelic replacement
was performed using previously described methods (86). Sequencing (Eurofins Genomics) using primers
2944 and 2945 (Table S2) confirmed the in-frame deletion of ahrC in JE2 AahrC.

Liquid chromatography-tandem mass spectrometry sample preparation. Cultures of S. aureus
JE2, JE2 ahrC, and JE2 Parc mutants were grown overnight in 3 mL CDM at 37°C with shaking at 250 rpm. A
total of 1.5 mL of the culture grown overnight was centrifuged, and cell pellets were washed twice with 1 mL
of a 0.85% saline solution and resuspended in 0.5 mL of CDM-R containing 1.3 mM '*C.-labeled proline or 1
mM "*C.-labeled glutamate. Next, cells were inoculated to an ODg, of 0.05 into 25 mL of CDM-R containing
1.3 mM "C.-labeled proline or 1 mM "*C,-labeled glutamate in a 250-mL flask (1:10 volume-to-flask ratio),
grown to exponential phase, and collected when an ODy,, of 0.5 was reached. Ten OD,, units were har-
vested and transferred to a filter system, where they were washed twice with 5 mL of a cold and isotonic
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NaCl solution to guarantee the exact separation of intra- and extracellular metabolites. The filter was subse-
quently transferred to a 50-mL centrifuge tube containing 5 mL of an extraction solution consisting of 60%
ethanol and 2 uM Br-ATP. The solution was hand mixed and alternatively vortexed 10 times to extract the
cells from the filter. A total of 1.5 mL of the cell suspension was transferred to a homogenizer tube with 0.5
mL of glass beads. Each sample was aliquoted into 3 homogenizer tubes to avoid a high ratio of cell biomass
to glass beads. Finally, cells were disrupted with 3 cycles in a Precellys homogenizer for 30 s at 6,800 rpm at
4°C. The homogenized mixture was centrifuged at 12,000 rpm for 10 min, and 4 mL of the supernatant and
pool was collected. Three milliliters of the pooled sample was used for further analysis by liquid chromatogra-
phy-tandem mass spectrometry (LC-MS/MS).

LC-MS/MS separation and quantitation. LC-MS/MS separation and quantitation were carried out
using an XBridge amide 3.5-um (2.1- by 100-mm) column procured from Waters. Mobile phase A con-
tained 10 mM ammonium acetate and 10 mM ammonium hydroxide in water with 5% acetonitrile,
whereas mobile phase B contained 100% acetonitrile. The flow rate was 0.4 mL/min, with a gradient
mode of mobile phases. The column was maintained at 40°C. Detection of metabolites was carried out
using the Qtrap 6500 system (Sciex) in multiple-reaction mode (MRM). All labeled metabolites, such as
canonical and noncanonical amino acid standard mixtures, ['*Cjlarginine, ['*C;]glutamate, and ['*C,]pro-
line, were purchased from Cambridge Isotopes, Inc.

Genome sequencing and multilocus sequence typing. DNA from JE2 strains was extracted using
the DNeasy UltraClean microbial kit (Qiagen, Germantown, MD, USA), and libraries were constructed
using the Kapa HyperPlus library preparation kit (Roche Diagnostics, Indianapolis, IN, USA). Libraries
were quantified using the Kapa library quantification kit for lllumina/Bio-Rad iCycler (Roche Diagnostics)
on a CFX96 real-time cycler (Bio-Rad, Hercules, CA, USA). Sequencing libraries were normalized to 2 nM,
pooled, denatured, and diluted to 20 pM. The pooled samples were further diluted to a final concentra-
tion of 14 pM. Samples were sequenced on the MiSeq system (lllumina, Inc., San Diego, CA) using rea-
gent kit v3 (600 cycles; 2 by 300 bp) (Illumina). Reads were mapped to the JE2 reference genome, and
SNPs were identified using Geneious (v10).

Genomic DNA from clinical S. aureus isolates was prepared for sequencing using the Nextera XT
DNA library prep kit (Illumina) and the associated protocol. Libraries were validated by running 5 uL of
PCR cleanup mix on a 1% agarose gel, bead normalized, and pooled in equal volumes. Pooled normal-
ized libraries (a 2 nM starting concentration was assumed) and PhiX were diluted and denatured accord-
ing to the MiSeq system user’s guide, with a final concentration of 80 pM. The final pool was heated at
96°C for 3 min to ensure denaturation before sequencing on the MiSeq system using a read length of 2
by 300 bp, onboard fastq file generation, and sample demultiplexing, generating 0.6 million to 1.4 mil-
lion paired reads per sample. Reads were processed using CLC Genomics Workbench (v.20.0.4) and the
Microbial Genomics Module (v.20.1.1) “Type a Known Species” workflow. Reads were also mapped to
the USA300 FPR3757 chromosome to identify single and multiple nucleotide variants relative to the lab-
oratory strain. Multilocus sequence typing (MLST) schemes were used to identify mutations shared by a
clonal complex to exclude them from further analysis.

Statistical analysis. All growth curve experiments were repeated three times using three technical
replicates in each experiment. RT-PCR studies were performed using three independent biological repli-
cates performed with two technical replicates in each experiment. Statistical analysis was performed
using GraphPad Prism 9. Data were analyzed for normality and subsequently analyzed using one-way
analysis of variance (ANOVA) with Tukey’s or Dunnett’s posttest and Student's t test, as appropriate.
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