Skip to main content
. 2022 Jun 21;2022:7084514. doi: 10.1155/2022/7084514

Table 2.

Different options for improving the developed ANN and RF models.

Parameter Available options Optimum option
Q i model EUR model
ANN model
Number of hidden layers 1–3 Single hidden layer Single hidden layer
Number of neurons in each layer 5–40 8 8
Training/testing split ratio 70%–90% (Training/testing) 70/30% (Training/testing) 70/30%
Training algorithms Trainlm, trainbfg, trainrp, trainscg, traincgb, traincgf, traincgp, trainoss, traingdx “Trainbr” “Trainbr”
Transfer function Tansig, logsig, elliotsig, radbas, hardlim, satlin “Logsig” “Logsig”
Learning rate 0.01–0.9 0.05 0.05

RF
Maximum features [“Auto,” “sqrt,” “log2”] sqrt Auto
Maximum depth [3, 4, 5, ..., 30] 20 30
Number of estimators [3, 4, 5, ..., 150] 150 100