Table 3.
Statistical modeling results between N1 and N2 gene concentrations and total COVID-19 cases during the 5-week lag time study period in city of Detroit, as well as Wayne, Macomb, and Oakland counties (* is shown in Fig. 5.)
Lag time |
Model |
N1-based results |
N2-based results |
||||
---|---|---|---|---|---|---|---|
RMSE |
RMSE |
||||||
Unit of N1/N2 gene | gc/L | gc/d | gc/L of sanitary flow | gc/L | gc/d | gc/L of sanitary flow | |
3 week | Linear | 7.22 | 135.76 | 11.78 | 12.40 | 926.30 | 5.62 |
Autoregression | 135.65 | 780.00 | 250.52 | 341.27 | 901.23 | 700.34 | |
Autoregression+ time effect | 10.18 | 10.18 | 10.97 | 11.34 | 12.34 | 15.33 | |
Vector Autoregression | 8.32 | 7.85 | 8.97 | 8.89 | 9.90 | 9.90 | |
4 week | Linear | 7.26 | 123.56 | 9.18 | 16.37 | 104.45 | 8.33 |
Autoregression | 182.92 | 234.90 | 635.69 | 132.35 | 730.74 | 500.62 | |
Autoregression+ time effect | 7.50 | 7.47 | 7.20 | 9.75 | 7.39 | 7.33 | |
Vector Autoregression | 8.00 | 7.99 | 8.62 | 6.88 | 8.31 | 7.62 | |
5 week | Linear | 1.83 | 48.97 | 2.62 | 13.95 | 36.19 | 2.36 |
Autoregression | 105.81 | 417.57 | 642.83 | 548.14 | 570.56 | 100.95 | |
Autoregression+ time effect* | 1.47* | 1.60 | 1.60 | 3.21* | 1.60 | 1.42 | |
Vector Autoregression* | 0.35* | 0.53 | 4.44 | 7.57* | 4.37 | 1.03 |