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Abstract
Identifying the general mechanics behind the equilibration of a complex isolated quantum system towards a state
described by only a few parameters has been the focus of attention in non-equilibrium thermodynamics. And several
experimentally unproven conjectures are proposed for the statistical description of quantum (non-)integrable models.
The plausible eigenstate thermalization hypothesis (ETH), which suggests that each energy eigenstate itself is thermal,
plays a crucial role in understanding the quantum thermalization in non-integrable systems; it is commonly believed
that it does not exist in integrable systems. Nevertheless, integrable systems can still relax to the generalized Gibbs
ensemble. From a microscopic perspective, understanding the origin of this generalized thermalization that occurs in
an isolated integrable system is a fundamental open question lacking experimental investigations. Herein, we
experimentally investigated the spin subsystem relaxation in an isolated spin–orbit coupling quantum system. By
applying the quantum state engineering technique, we initialized the system with various distribution widths in the
mutual eigenbasis of the conserved quantities. Then, we compared the steady state of the spin subsystem reached in
a long-time coherent dynamics to the prediction of a generalized version of ETH and the underlying mechanism of
the generalized thermalization is experimentally verified for the first time. Our results facilitate understanding the
origin of quantum statistical mechanics.

Introduction
Statistical mechanics predicts that an isolated classical

system relaxes to a thermal state which is determined only
by its energy and independent of the other details of its
initial conditions1–3. This “universality” of thermalization
has been well-understood by utilizing ergodicity in clas-
sical theories (Fig. 1a). Unfortunately, due to the general
absence of ergodicity in quantum systems, this successful
theoretical framework cannot be directly applied to the
quantum scenarios4,5. Therefore, the origin of thermali-
zation in an isolated quantum system must fundamentally
differ from that of its classical counterpart.

For an isolated quantum system, its thermalization is
usually revealed by the long-time average of the obser-
vables of interest, which can also be directly calculated
from an ensemble of its energy eigenstates6. Further, since
the expectation of the observables in a thermal state can be
obtained by averaging on a uniformly distributed micro-
canonical ensemble (ME), which is constructed within the
constant-energy manifold and independent of the initial
details, this alleged “diagonal ensemble”, which depends
on the details of the initial energy distributions, is explicitly
conflicted. To explain the elimination of the initial infor-
mation in the thermalization process of an isolated
quantum system, some new insights into the quantum
theory are needed. Actually, understanding the origin of
the “universality” of the equilibrium states in isolated
quantum systems has become one of the central problems
in the subject of quantum non-equilibrium physics7.
Among the numerous efforts, the eigenstate thermaliza-

tion hypothesis (ETH)6,8,9, which states that thermalization
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occurs at the level of a single energy eigenstate of a given
Hamiltonian (Fig. 1b), plays a key role in explaining the
quantum thermalization. More concretely, based on ETH, if
the expectation of a local observable in the energy eigen-
states continuously changes along with the energy, its long-
time average for any superposition state of the eigenstates
with similar energy is independent of the details of the
initial states, and this can be efficiently calculated by aver-
aging in the corresponding ME. It is generally believed that
generic quantum many-body systems, except some special
ones with many-body localization10,11, should satisfy the
ETH and can be thermalized6,12–21.
However, extensively theoretical investigations, ran-

ging from one-dimensional hard-core bosons to
transverse-field Ising chain22–27, have confirmed that
the celebrated ETH is broken down in such integrable
quantum systems, which have a non-trivial set of con-
served quantities and cannot consequently thermalize.
Nevertheless, the integrable systems can still relax to the
maximum entropy state with given constants of motion,
which is generally called the generalized Gibbs ensemble

(GGE)22, and exhibit the generalized thermalization27,28.
Admittedly, the GGE is not a thermal state and conse-
quently cannot be directly understood using the ETH.
However, its underlying mechanism has been found to
be explicable by employing the generalized version of
ETH (GETH)28, in which the conventional energy
eigenstates are upgraded to the mutual ones of the
Hamiltonian and a set of conserved quantities of the
quantum system (Fig. 1c). Although significant devel-
opments have been achieved by applying quantum
simulation29–37, even the GGE has been observed in a
degenerate one-dimensional Bose gas38. The GETH,
previously introduced to explain the generalized ther-
malization of integrable models, still lacks a direct
experimental verification because of the challenges in
generating the given superposition states of the system’s
mutual eigenstates39 and requiring long-time coherent
dynamics.
In this study, in an integrable quantum system with

spin–orbit coupling, we experimentally verified the GETH
from the spin relaxation by applying an asymptotic method.

Coherence

Initial State

Incoherence

Thermal StateDephasing
Time

Thermal
Thermal

Thermal

Thermal
Thermal

Thermal

Initial State

E

Thermal StateChaos
Time

Coherence

Initial State

Incoherence

GGE StateDephasing
Time

Generalized Thermal

E
T
H

G
E
T
H

a
Classical Systems

b
Non-Integrable Quantum Systems

c
Integrable Quantum Systems

E
rg

od
ic

ity

Generalized Thermal

E

Ea Ea
Eb Ec

Eb Ec

ka ka

kb

Ea
Eb Ec

kb

Ea
Eb

Ec

Fig. 1 Mechanism of the thermalization and the generalized thermalization. An illustration of the following three points: a the ergodicity in
classical systems, b the ETH supporting the thermalization in non-integrable quantum systems6, and c the GETH supporting the generalized
thermalization in integrable quantum systems
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The experiment was carried out in our large-scale photonic
discrete-time quantum walk (QW)40. The system can be
well-isolated and consequently can maintain a long-time
coherent evolution41,42 to explore the pure state quantum
statistical mechanics43. More importantly, as the key tech-
niques for investigating the GETH, both the ability to
engineer the initial states44,45 and the full reconstruction of
the spinor eigenvectors of a given Hamiltonian40 are
accessible in our framework. Benefiting from these unique
techniques, we monitored the spin subsystem relaxation
after preparing the whole system with different distribution
widths on the mutual eigenstate basis of the conserved
quantities. Our experimental results demonstrated that the
long-time-averaged spin state from the superposition of the
mutual eigenstates with the similar conserved quantities can
be predicted by the generalized ME, and explicitly support
the GETH in the integrable systems.

Theoretical background
The model of QW
Herein, we consider a discrete-time version of QW46–48

that describes the coherent hopping of a single micro-
scopic particle on a discrete infinite lattice, where a
quantum coin determines the transition amplitudes.
Consequently, the system contains two interacted sub-
systems: the coin (spin) and lattice, as shown in Fig. 2a.
We take the lattice as bath B and the spin as the sub-
system of interest S (i.e., the local observables of interest
are on the spin), whose relaxation is investigated to reveal
the equilibration and generalized thermalization.
The dynamics of the whole system can be described as

a stroboscopic operation Ut with U representing a
single step of walk and the time t 2 Z being in a dis-
crete scenario. Effectively, the unitary time evolution
can be expressed as eiHeff t in terms of an effective
Hamiltonian Heff . For a split-step version49, the effec-
tive Hamiltonian reads (see Methods): Heff θ1; θ2ð Þ ¼R π
�πdk E kð ÞnH kð Þ �~σ½ � � kj i kh j, where θ1 and θ2 are the

control parameters of the coin-tossing operators, E(k)
gives the (quasi-)energy band with nH kð Þ denoting the
corresponding spinor eigenvector for the (quasi-)
momentum k, and ~σ ¼ σx; σy; σz

� �
is the Pauli matrix.

The interchange of energy between subsystem S and
bath B is implemented via the spin–orbit coupling. This
typical integrable model has been extensively applied to
investigate the general properties of the spin-orbital
coupling system, especially its topological characters50.
Herein, we explore the GETH and generalized ther-
malization in this model.

Equilibration of the spin subsystem
As shown in Supplementary Section A, the long-

time-averaged state of the spin subsystem in the QW
can always relax to a steady state51,52: ρst ¼

P
k2 �π;π½ �

1
2

Iþ P kð Þ ni � nHð ÞnH �~σ½ �, where I is the 2 × 2 identity
matrix, P kð Þ represents the initial probability dis-
tribution in momentum space, and ni denotes the
initial Bloch vector. Moreover, the steady state can be
obtained by tracing out bath B from the “diagonal
ensemble”6 or be directly calculated by averaging the
long-time dynamics of the spin subsystem43 (for
details, see Supplementary Section A). Since the spin
subsystem reaches a steady state, all the local obser-
vables on the spin are obviously equilibrated. Gen-
erally, the steady state ρst explicitly depends on P kð Þ
and ni; thus, it remains the details of the system’s initial
conditions. Without further insights, we cannot predict
the steady state through the system’s conserved quan-
tities, which are supposed to be substantially fewer
than the number of degrees of freedom of the whole
system.

Failure of the ETH
From the perspective of the “universality” of thermaliza-

tion, the prediction of the steady state of the spin subsystem
gets a loss of effectiveness, which can be observed from the
breakdown of ETH in QW. Conventionally, the ETH states
that each energy eigenstate can be thermal, that is, any
eigenstate with energy Eα locally equals the uniformly dis-
tributed ME, which can be expressed as53

TrB Eαj i Eαh j½ � ¼ TrB
IHδEME

dim HδEMEð Þ

� �
ð1Þ

where TrB takes the trace over the bath, dim HδEMEð Þ
denotes the dimension of the Hilbert subspace HδEME

spanned by the eigenstates whose energy belongs to the
energy window ½Eα � δEME;Eα þ δEME�, and IHδEME

is
the identity matrix defined on this subspace. Addition-
ally, the energy window whose size is determined by
δEME should be macroscopically small to make energy
fluctuation small but microscopically large to cover
enough energy levels. The ETH guarantees that any
superposition state of the energy eigenstates with
similar energy can give the same local reduced density
matrix, recovering the “universality” of the thermaliza-
tion. While the ETH is sufficient for understanding the
thermalization in non-integrable quantum systems, the
existence of the non-trivial conserved quantities and
energy degeneracy breaks the validity of this hypothesis
down in integrable systems14. For the case of the QW
model, since the energy eigenstates with opposite
momentum ±k have the same energy, without loss of
generality, the system’s eigenstate in the degenerate
subspace with energy E0 can be represented as E0j i ¼
aþ nHðk0Þj i � k0j i þ a� nHð�k0Þj i � �k0j i, where a± are
the normalized complex amplitudes. However, as
shown in Supplementary Section C, the reduced
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density matrix of this eigenstate explicitly depends on
the details of the amplitudes a±, indicating a failure of
the ETH.

Generalized thermalization in QW
Even though the spin subsystem cannot relax to a

thermal state, we show herein that the steady state ρst can
still be predicted by the generalized micro-canonical
ensemble (GME)28,54 and exhibits generalized thermali-
zation (see the Supplementary Section D for details). To
understand this generalized thermalization28, the ETH
should be extended by generalizing the system’s energy
eigenstates to the mutual eigenstates of the Hamiltonian
Heff and the additional non-trivial conserved quantity --
momentum K ¼

P
k2½�π;π� k kj i kh j with k in the first

Brillouin zone. According to the GETH, each mutual
eigenstate Eα; kβ

�� �
with the energy Eα and momentum kβ

can be generalized thermal, that is, the mutual eigenstate
with energy Eα and momentum kβ locally equals the GME

state, which can be expressed as54

TrB Eα; kβ
�� �

Eα; kβ
� ��	 


¼ TrB
IHfδEGME ;δkGMEg

dim HfδEGME;δkGMEg
� �

" #

ð2Þ
where HfδEGME;δkGMEg is the Hilbert subspace, which is
spanned by the eigenstates whose energy and momentum
are within the energy window ½Eα � δEGME; Eα þ δEGME�
and momentum window ½kβ � δkGME; kβ þ δkGME�
respectively, and IHfδEGME ;δkGMEg

is the identity matrix in
this subspace. Moreover, these windows of conserved
quantities should also be macroscopically small but
microscopically large. For convenience, we label the
reduced density matrix of the spin subsystem on the
right-hand side of Eq. (2) as ρGETHðEα; kβÞ. Based on the
GETH, any superposition state of the mutual eigenstates
with similar conserved quantities can locally relax to the
same reduced state, which is independent of the details of
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Fig. 2 Quantum walk model and the experimental setup. a A diagram of an isolated QW for investigating the generalized thermalization, which
contains two parts: the discrete infinite lattice B and spin (coin) subsystem S, coupled by the spin–orbit interaction. b The experimental realization of
QW involves the following four modules. (1) Pairs of photons are generated via the spontaneous parametric down-conversion (SPDC) in the BBO2
crystal, where a photon from each pair is directly detected by the APD1 as a trigger and the other signal one as the walker is sent to the subsequent
module. (2) First, a localized state is initialized via a PBS-HWP-QWP setting. Second, the signal photons go through at most six steps of walk with each
step involving two SU(2) coin tossings achieved by the combination QWP-HWP-QWP and two shift operators achieved by the calcite crystals. An
arbitrary Gaussian wavepacket over the lattice space can be obtained after projecting the coin on an unbiased basis þj i using an HWP and PBS. (3)
After re-initialization of the coin state (here the time step is also re-initialized as t= 0) and sending the signal photons into a 10-step walk whose coin-
tossing rotations along the y-axis and achieved by utilizing the HWP, the relaxation evolution of the coin state can be monitored through a coin
analyzer. (4) The time-evolving probability distributions, i.e., the pulse train of signal photons with a time interval of approximately 5 ps, can be
analyzed by utilizing the up-converted detector, which comprised a frequency upconversion in the BBO3 crystal, a 4-f system for filtering the
spectrum, and a PMT detector. The 4-f system includes a prism for introducing dispersion, a knife-edge for blocking the noise photons whose
wavelength is longer than 395 nm, and a mirror reflecting the up-converted signal photons to the PMT. List of the abbreviations: lens (L); β-BaB2O4

(BBO); avalanche photodiode detector (APD); dichroic mirror (DM); polarization-dependent beam splitter (PBS); half-wave plate (HWP); quarter-wave
plate (QWP); photomultiplier tube (PMT). Detailed descriptions are provided in the Methods
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the initial state. Consequently, the “universality” of the
steady state ρst can be recovered. Particularly, the
degeneracy of the energy eigenstate causing the failure
of the ETH disappears in the mutual eigenstate under
GETH. Herein, in a photonic discrete-time QW, we will
experimentally verify the GETH and generalized therma-
lization. As an isolated integrable quantum system, its
energy level has two-fold degeneracy, and there exist
additional non-trivial conserved quantities.

Experimental results
Observation of the spin subsystem equilibration
The photonic QW was implemented based on the time-

multiplexing protocol depicted in Fig. 2b. We took the two
pseudo-spin states HðV Þj i $ " ð#Þj i of a single photon to
composite the spin (coin) subsystem, where HðV Þj i
denotes the horizontal (vertical) polarization, and adopted
its arriving time to engineer the lattice subsystem. Initially,
the walker is localized at the original site (x= 0); after an n-
step walk, it will occupy the sites xj j � n and Pð xj j>nÞ ¼ 0.
As discussed above, to verify the validity of the GETH, an

essential and quite challenging step is to initialize the sys-
tem to the superposition states of the mutual eigenstates of
two conserved quantities fH;Kg within small windows. As
illustrated in Fig. 2b and detailedly described in the
“Methods”, we initialized the system in a product state by
applying the quantum state engineering technique, which

reads: Ψð0Þj i ¼ ψ0

�� �
S� ψ0

�� �
B¼ ak0 n

u
k0

��� E
þ bk0 n

d
k0

��� Eh i
�P

x e
ixk0

ffiffiffiffiffiffiffiffiffi
PðxÞ

p
xj i. The nuðdÞ

k0

��� E
denotes the eigenstates of

nHðk0Þ �~σ with the corresponding eigenvalue ±1, ak0 and

bk0 are the complex coefficients satisfying ak0j j2þ bk0j j2¼ 1,
PðxÞ is a Gaussian distribution peaked around the original
site x ¼ 0j i and with a standard deviation Δx, and eixk0 gives
the local phase of each site. Consequently, the initial state in
the momentum space takes the form of a Gaussian wave-
packet peaked around k0 and with a standard deviation
Δk ¼ 1=ð2ΔxÞ. In addition, when Δk ! 0 and bk0 ¼ 0
(ak0 ¼ 0), the initial state can obviously approach the upper

(lower) band mutual eigenstate nuðdÞ
k0

��� E
� k0j i whose energy

is EuðdÞ
k0

¼ ±EðkÞ and momentum is k0, satisfying the
condition in the GETH. Benefiting from the quantum state
engineering technique, we can verify the GETH by
asymptotically reducing Δk. It is noteworthy that the Δk in
our experiments also plays a similar role as the half-width of
the conserved quantity window δkGME in Eq. (2).
In the left two panels of Fig. 3a, we plot the experi-

mentally measured distributions P(x) of the system’s two
initial states, both of which occupy seven sites and have a
Gaussian fitting with Δx ¼ 0:9 and Δx ¼ 0:5, respectively.
Besides, the global wavefunction can also be recon-
structed using an interferometric measurement
approach40. Thus, by applying a Fourier transform, we can
further obtain the associated wavefunction in the
momentum space and its probability distribution PðkÞ
centered at k0= 0, which are shown in the right two
panels. After preparing the bath state, the coin state of
interest can further be initialized in jψ0iS ¼ j#yi.
Relaxing the spin subsystem of interest, which is cou-

pled to a bath (discrete infinite lattice), can then be
investigated after the proper initialization. The dynamical

Relaxation Evolution Steady Statet=0Initial State Preparation

1.0

Δk = 0.56

Δk = 1.0

0.9

0.8

0 2 4 6 8 10

Number of Time Steps

a c z

y

x

x

y

z

b

MomentumSites
-3 -2 -1 0 1 2 3

0.0

0.5

1.0P
(x

)

P
(k

)0.0

0.5

1.0

0 �–�

 Theory  Experiment

0.0

0.5

1.0
0.0

0.5

1.0
 Theory  Experiment

F
(�

t|�
D

E
)

Δk = 0.56

Δk = 0.56Δx = 0.9

Δx = 0.5 Δk = 1.0

2�k

2�k

Δk = 1.0

Fig. 3 Observing the spin subsystem equilibration. a Measured initial Gaussian distributions (orange bars in the left two panels) PðxÞ with
corresponding Δx ¼ 0:9 and Δx ¼ 0:5 in the lattice space, and the associated distributions (solid orange lines in the right two panels) PðkÞ with
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evolution of the whole system is chosen to be governed by
an effective Hamiltonian Heffð7:9π=9; 8π=9Þ. The
spin–orbit coupling results in the mixture of the spin
subsystem, whose time-averaged state ρt finally relaxes to
a steady state and is in the vicinity of it in most of the time
steps, indicating the equilibration of the subsystem51,52.
As depicted in Fig. 3b, we presented the measured fidelity

at different time steps, which is defined as F ρtjρDE
� �

¼

Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDE

p
ρt

ffiffiffiffiffiffiffi
ρDE

pph i2
(where ρDE denotes the state

obtained by tracing the bath from the “diagonal ensemble”
of the mutual eigenstates) and gives the degree of the
overlap between the two states. After a relaxation of a six-
step walk, the measured fidelity approaches 1 and can
maintain this maximal overlap in the subsequent time
steps, showing that the spin subsystem can equilibrate to
the prediction of a diagonal ensemble. Actually, the steady
state of any initial state (arbitrary Δk here) can always be
predicted by the diagonal ensemble, which depends on
the details of the initial conditions when the GETH is not
incorporated. We further plot the ten-step-averaged coin
states ρ10 (represented by the black points) and the
diagonal ensemble predictions (pointed by the orange
arrows) in Fig. 3c. Their congruence in the Bloch sphere
gives an experimental equivalence between the steady
state obtained by the time average and diagonal ensemble
prediction. The equilibrium time scale of the spin sub-
system Teq is dependent on the local observable of

interest, initial state, and Hamiltonian parameters55 (for
details, see Supplementary Section B). To balance the
clearness of the experimental phenomena and the
experimental challenge for maintaining coherence, here
we choose the proper set of fθ1; θ2g with Teq being small
and thus a 10-step QW is enough for the spin subsystem
equilibrium.

Verification of the generalized ETH
To verify the GETH in our integrable system, the initial

state of the system takes the form of a Gaussian wavepacket
peaked around k0 ¼ 6π=13 with a width Δk, whose coin

state is set to be nd
k0

��� E
. The following spin subsystem

relaxation, which was effectively governed by two Hamil-
tonians with fθ1; θ2g equaling fπ=9; 6π=9g and
fπ=9; 4π=9g, was experimentally observed. We compared
its steady state ρst that was experimentally estimated by ρ10
with the GME prediction ρGETHðEd

k0
; k0Þ, and the measured

fidelity FðρstjρGETHÞ as a function of initial Δk is plotted as
points in Fig. 4a. The GME is chosen within a momentum
window centered at k0 with a half-width δkGME ¼ 0:4 (the
associated energy window half-width δEGME can be further
determined based on the function E(k)), as exhibited in the
inset. Herein, we suppose that the lattice space is infinite
and Pð xj j>nÞ ¼ 0 in real space, where n is the total number
of steps taken by the walker. Consequently, within a proper
momentum window, the macroscopically small but
microscopically large condition can always be satisfied.
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show the results for Heffðπ=9; 6π=9Þ and Heffðπ=9; 4π=9Þ, respectively. The colored dashed lines give the theoretical results for ρGETHðEdk0 ; k0Þ, and
the translucent shadings illustrate the statistical errors
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Besides, by choosing a different Δk, that is, the initial state
corresponding to different superposition states of the
mutual eigenstates within the window δk, we observed that
the FðρstjρGETHÞ approximates 1 and gets stable. This
occurs when the initial Δk is smaller than a value Δmax

k ,
which is guided by the vertical dashed line and can be
theoretically estimated based on the maximal value of the
momentum standard deviation of the GME ΔkGME, as
shown in Supplementary Section D. Thus, the results
directly indicate the “university” of the local steady state,
that is, it is independent of the detailed form of the
superposition state and only depends on the conserved
quantities fEd

k0
; k0g when Δk is small enough (<0:340 in this

situation). In addition, FðρstjρGETHÞ approaches 1 when
Δk ! 0 gives a direct verification of the GETH. For large
Δk, the lower fidelity indicates that the steady state differs
from the prediction of the GME, signifying its failure.
Further, the expectation of a local observable almost

does not fluctuate between the mutual eigenstates that
have a similar value of the conserved quantities with each

other6,27 is another verification of the validity of the
GETH. In our system, the spinor eigenvectors nHðkÞ can
be experimentally obtained through the dynamics of spin
state40, from which we can further get the expectations of
the spin observables along with the energy-momentum of
the system. In Fig. 4b, we plot the expectations of
fσx; σy; σzg of nHðkÞ within the energy-momentum win-
dow. Note that both the momentum and energy windows
are necessary to the tiny fluctuation of the expectations.
Thus, if we only limit one conserved quantity (such as
energy in ETH), and have no information about the other
quantity (momentum), then nHðkÞ have two different
choices (±k) because of its degeneracy. Therefore, the
expectations of observables can have large fluctuation.
However, using both of the two conserved quantities, the
tiny fluctuation of the expectations can be guaranteed, as
shown in Fig. 4b.

Observation of the generalized thermalization
Besides the superposition state of mutual eigenstates

with conserved quantities in a small connected window,
the GETH can also be employed to understand the
generalized thermalization of the superposition state of
mutual eigenstates in two separated windows28

(for details, see Supplementary Section E).
As an example (for another example, see Supplementary

Section E), we investigated the relaxation of the coherent

superposition of the mutual eigenstates given by Ψð0Þj i ¼P
jk�k0j<δk ak nu

k

�� �
þ bk nd

k

�� �	 

�

ffiffiffiffiffiffiffiffiffiffi
PðkÞ

p
kj i. Experimen-

tally, the initial state remains a Gaussian wavepacket
peaked around k0 ¼ 6π=13 with different standard

deviations Δk and the coin state ψ0

�� �
S is prepared in #y

�� E
,

as shown in the inset of Fig. 5a. Moreover, we observed
the following evolution, which is governed by an effective
Hamiltonian Heffð7π=9;π=9Þ, and plot the measured
fidelity FðρtjρGMEÞ for five initial states with different Δk

in Fig. 5a. Note that ρGME denotes the local reduced state
obtained by tracing the bath from the GME, whose
energy-momentum window is shown in the inset.
Besides, the experimental results show that the mea-

sured fidelity reaches a steady value, indicating the steady
state of the spin subsystem. The steady state should match
ρDE for any initial state, and all the experimentally mea-
sured values of fidelity between them are greater than
99:42% represented by the dashed line in Fig. 5b.
Similar to the situation in a connected window, when

the initial Δk is large (for example, Δk ¼ 1:0, 0.7, and 0.6)
where the GME prediction fails as experimentally
demonstrated before, the steady states estimated by ρ10
cannot be properly predicted by ρGME, as shown in the
Fig. 5b. However, when Δk is sufficiently small
(Δk <Δmax

k ¼ 0:340), such as Δk ¼ 0:3 and 0.25, due to the
validity of the GETH, the steady states agree with the
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Fig. 5 Observing the generalized thermalization. a Fidelity (dots)
between the measured time-averaged coin states ρt and GME
prediction ρGME against the time steps, and b their values (opaque
bars) after a ten-step walk. The initial Gaussian states have five
different widths Δk but the same coin state #y

�� �
, and then evolve

governed by Heffð7π=9;π=9Þ. The colored solid lines in (a) and
transparent bars in (b) represent the theoretical simulations. The inset
in (a) shows the effective band structures (solid green lines with left-
hand scale), the occupations of the two bands for one initial state with
Δk ¼ 0:3 as an example (gray curves with right-hand scale). The
expected energy and momentum of the initial state is E0 and k0,
respectively. After expanding the initial state, the shift of the mean
momentum of each band occupation relative to the k0 takes the
following form:

P
δk PðkÞOðk � k0Þ, where O denotes the order of

the function. Moreover, the vertical gray and horizontal green regions
depict the chosen momentum window with δkGME ¼ 0:4 and
associated energy window, respectively. The dashed line in (b)
indicates the lower bound (99.42%) of the measured Fðρ10jρDEÞ
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prediction of the GME. Thus, the validity of the GETH
can also render the diagonal ensemble and the GME to be
locally equivalent in this extended situation.

Discussion
Herein, in an isolated integrable quantum system, we

experimentally observed that the relaxation of the spin
subsystem of interest always agrees with the prediction of
the “diagonal ensemble” of the mutual eigenstates.
Importantly, by applying the quantum state engineering
and eigenvectors reconstruction techniques, the GETH
has been verified for the first time in an asymptotic
method by comparing the steady spin state, starting from
the initial states with different distribution widths, with
the GME prediction. We further demonstrated that the
combination of the GETH and the diagonal ensemble can
be used to understand the generalized thermalization in
integrable systems. Although these results in our work
utilize the quantum coherence involving the two inner
degrees of freedom of the photons, it doesn’t rely on
whether the system involves the higher-order coherence
and can then be used to promote understanding of the
quantum thermalization in a many-body version. More-
over, our novel setup with low transmission loss also has
the potential to implement protocols involving high-order
coherence. We believe our experimental findings as well
as the creative platform could enable the understanding of
the basic theory of quantum statistical mechanics in a
general quantum system.

Materials and methods
Discrete-time QW
The unitary operator for a complete step of QW is given

by U ¼ T "R2T "R1, where the coin-tossing R1ð2Þ acting on
coin space can be any operator from the SU(2) group, and
T "ð#Þ ¼

P
x x± 1j i xh j � " ð#Þj i " ð#Þh j þ xj i xh j � # ð"Þj i #hð

ð"ÞjÞ denote the spin-dependent hopping operators. The
exact form of the effective HamiltonianHeff depends on the
details of the coin-tossing. Given the rotations along the y-
axis, i.e., R1ð2Þ ¼ Ryðθ1ð2ÞÞ with θ1ð2Þ representing the rota-
tion angles, we can get the momentum-dependent energy
cos½EðkÞ� ¼ cosðθ1=2Þ cosðθ2=2Þ cos k � sinðθ1=2Þsinðθ2=2Þ
and the corresponding spinor eigenvector49

nxHðkÞ ¼
sinðθ1=2Þ cosðθ2=2Þ sin k

sin½EðkÞ�

nyHðkÞ ¼
sinðθ1=2Þ cosðθ2=2Þ cos kþcosðθ1=2Þ sinðθ2=2Þ

sin½EðkÞ�

nzHðkÞ ¼
� cosðθ1=2Þ cosðθ2=2Þ sin k

sin½EðkÞ�

8>>><
>>>:

ð3Þ

Heralded single-photon source
The pulsed laser emitting from a Ti:Sapphire source

(Mira 900) has a central wavelength at 800 nm, a repeti-
tion rate of 76MHz, and a pulse duration of 150 fs, and it

is focused by applying L1 to pump a piece of nonlinear
crystal BBO1. Moreover, the type-I second harmonic
occurring in BBO1 then generates the frequency-doubled
ultraviolet laser with a central wavelength of 400 nm and
an average power of 150mW, which is horizontally
polarized and focused to pump the second crystal BBO2.
The type-II beam-like SPDC that occurs in BBO2 gen-
erates correlated photon pairs, where the signal and idler
photons are centered at 780 and 821 nm, respectively. The
photon pairs are collimated using L4 with a focal length
f= 150 mm, and the signal photons heralded by the idler
photons are adopted as the walker and guided to the QW
module.

Photonic time-multiplexing implementation
QW has been implemented in various physical sys-

tems56. Among them, linear optics plays a pivotal role in
implementing QW, where the spatial57, temporal47, and
orbital angular momentum58 degrees of freedom of pho-
tons have been utilized. Previous time-multiplexing con-
figuration employing fiber loop is very compact and
enables the realization of large-scale QW. However, the
existence of an unavoidable high photon loss necessitates
the use of an attenuated coherent laser. In our time-
multiplexing implementation, the spin–orbit coupling
was realized using the birefringent calcite crystal colli-
nearly cut, whose length is designed to be 8.98 mm
yielding a time shift of 5 ps between the two orthogonal
polarizations. Thus, a single-photon pulse train having an
equal interval of 5 ps comprises the lattice space. More-
over, this QW protocol is compact, and without its extra
loss, guaranteeing its applicability to single-photon sce-
narios. A coin-tossing R 2 SUð2Þ can be achieved by
employing the universal single-qubit gate acting on
polarization, which is usually a set of wave plates, i.e.,
QWP-HWP-QWP in sequence. For the case of rotating
along the y-axis, the set of wave plates can be reduced to a
single HWP.

Initial state preparation
QW with time-dependent SU(2) coins can be applied to

engineer arbitrary high-dimensional quantum state (qudit)
over the lattice space44,45. To engineer the qudit state, the
walker is initially located at the original site
( x ¼ 0j i) with its coin encoded in Hj i, and at the end of the
walk, the coin is projected into an unbiased base þj i ¼
1ffiffi
2

p Hj i þ Vj ið Þ. Moreover, the set of the time-dependent
coin operators are found using a numerical optimization,
thereby maximizing the fidelity (as a function of the rotation
angles) between the target state and final lattice state after
the coin projection. In our implementations, the target state
is a Gaussian wavepacket with standard deviation Δx and the
local phase of each site eixk0 . By applying a Fourier transform,
it can also be described in the associated momentum space
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as ψ0

�� �
B¼ A0

P
k2½�π;π� e

�ðk�k0Þ2=ð2ΔkÞ2 kj i peaked around
the momentum k0, where Δk denotes the standard deviation
and A0 is a normalization constant. The initial coin state
ψ0

�� �
S can be arbitrarily set using the wave plates.
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