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Learning representations of chromatin contacts
using a recurrent neural network identifies genomic
drivers of conformation
Kevin B. Dsouza1✉, Alexandra Maslova2, Ediem Al-Jibury 3,4, Matthias Merkenschlager3, Vijay K. Bhargava1 &

Maxwell W. Libbrecht 2✉

Despite the availability of chromatin conformation capture experiments, discerning the

relationship between the 1D genome and 3D conformation remains a challenge, which limits

our understanding of their affect on gene expression and disease. We propose Hi-C-LSTM, a

method that produces low-dimensional latent representations that summarize intra-

chromosomal Hi-C contacts via a recurrent long short-term memory neural network

model. We find that these representations contain all the information needed to recreate the

observed Hi-C matrix with high accuracy, outperforming existing methods. These repre-

sentations enable the identification of a variety of conformation-defining genomic elements,

including nuclear compartments and conformation-related transcription factors. They fur-

thermore enable in-silico perturbation experiments that measure the influence of cis-

regulatory elements on conformation.
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The organization of the genome in 3D space inside the
nucleus is important to its function. Chromosome con-
formation capture (3C) techniques, developed in the last

couple of decades, have enabled researchers to quantify the
strength of interactions between loci that are nearby in space. Hi-
C1 uses a combination of chromatin conformation capture and
high-throughput sequencing to assay pairwise chromatin inter-
actions genome-wide. This rich source of data promises to help
elucidate the influence of 3D structure on gene expression and
thereby on development, evolution and disease. However, we lack
a complete understanding of how the 1D genome influences 3D
conformation.

The machine learning technique of representation learning2

provides a way to link the 1D genome to 3D conformation.
Representation learning aims to summarize high dimensional
datasets into a low-dimensional representation. It has become a
valuable tool for finding compact and informative representations
that disentangle explanatory factors in diverse data types.
Representation learning has recently driven advances in a variety
of tasks including speech recognition3, signal processing4, object
recognition5, natural language processing6,7 and domain
adaptation8. Representation learning has recently been applied to
genomic sequences9,10 and Hi-C data11–14.

In order to understand the 1D–3D relationship and thereby
link 3D conformation to genetic variation and disease, we need
representations for Hi-C data that can summarize the contact
map into a locus-level summary. Such a representation would
encapsulate all the contacts from each genomic position to the
others into a small number of features per locus, such that the
contacts can be reproduced using just the features. Reducing the
Hi-C map to locus-level representations in this way would allow
us to study the effect of sequence elements on chromatin con-
formation, identify genomic drivers of 3D conformation and
predict the effect of genetic variants.

Two methods for representation learning of Hi-C data have
previously been developed, SNIPER11 and SCI12. SNIPER uses a
fully connected autoencoder15 to transform the sparse Hi-C inter-
chromosomal matrix into a dense one row-wise, the bottleneck of
which is assigned as the representation for the corresponding
row. SCI12 treats the Hi-C matrix as a graph and performs graph
embedding16, aiming to preserve the local and the global struc-
tures to form representations for each node.

These existing methods for Hi-C representations have two
weaknesses that limit their applicability. First, SNIPER takes only
inter-chromosomal contacts as input and therefore its repre-
sentations cannot incorporate intra-chromosomal contact pat-
terns that are most important for the regulation of gene
expression, such as topological domains and promoter-enhancer
looping. Second, the Hi-C representations produced by both
SNIPER and SCI do not account for the inherent sequential
nature of the genome. As we demonstrate in this work, these two
weaknesses limits existing methods’ informativeness and makes
them unable to accurately identify conformation-defining ele-
ments or predict how those elements influence structure.

Hi-C-LSTM primarily forms Hi-C representations. Learning
methods like SNIPER11 and SCI12 have been proposed that can
form representations of Hi-C. SNIPER forms Hi-C representa-
tions using a feed-forward neural network autoencoder. While
SNIPER predicts high-resolution Hi-C contacts using low-
resolution contacts as input, Hi-C-LSTM predicts Hi-C contacts
using just the genomic positions as input. SCI forms Hi-C
representations by performing graph network embedding on the
Hi-C data. SCI is similar to Hi-C-LSTM in that it can be used to
identify elements, however, it differs in the underlying structure it
uses to represent the genome. SCI represents the genome using a
graph, whereas Hi-C-LSTM treats the genome as a sequence. We

compare Hi-C-LSTM with these two methods as they are most
similar to what we are trying to achieve.

The first Hi-C representations were formed using principal
component analysis (PCA)-based methods, introduced in
Lieberman-Aiden et al. 1. These methods cluster the Hi-C matrix
into A and B compartments based on the first principal component
of the intra-chromosomal contact matrix. Imakaev et al. 17 later
showed that PCA-based reduction is inaccurate at classifying
compartments and Rao et al. 18 used a Gaussian hidden Markov
model (HMM) to obtain latent features that were better at locating
compartments. We treat the PCA-based method developed in
Lieberman-Aiden et al.1 as a baseline.

Some methods form chromatin representations but are not
directly comparable to ours. REACH-3D19 forms internal Hi-C
representations using manifold learning combined with recurrent
autoencoders, however, these are three dimensional and mainly
used for 3D chromatin structure inference. MATCHA14 forms
representations using hypergraph representation learning and
uses them to distinguish multi-way interactions from pairwise
interaction cliques. We do not compare Hi-C-LSTM with
MATCHA because MATCHA works with multi-way interaction
data (SPRITE and ChIA-Drop) whereas we use pair-wise inter-
action data (Hi-C).

Another related task is that of imputing unseen Hi-C data sets,
for which several methods have been developed. Such imputation
methods include SNIPER11, DeepHiC20, HiCPlus21, Higashi22,
and scHiCluster23. SNIPER imputes high-coverage Hi-C using
moderate-coverage Hi-C at the input. DeepHiC predicts high-
resolution Hi-C contact maps from low-coverage sequencing data
using generative adversarial networks. HiCPlus infers high-
resolution Hi-C matrices from low-resolution Hi-C data using
deep convolutional neural networks. Both DeepHiC and HiCPlus,
do not form position specific representations that accomplish
various downstream tasks, therefore, are not comparable to our
method. Higashi enhances scHi-C data quality using hypergraph
representation learning. scHiCluster studies cell type-specific
chromosome structural patterns in scHi-C. These methods (apart
from SNIPER) cannot be used for the task of bulk Hi-C repre-
sentation learning because they do not form position-specific
representations and, in the case of Higashi and scHiCluster,
require single-cell data.

Note that, while existing methods for Hi-C representation
learning (including SCI, SNIPER and Hi-C-LSTM) utilize a
reconstruction loss that aims to reconstruct the input Hi-C data,
they cannot in general be used for imputation.

Many methods have been proposed for predicting Hi-C contacts.
Some methods try to predict the chromatin contacts by using either
the nucleotide sequence or chromatin accessibility and histone
modifications or both24–31. Akita in particular31, is a convolutional
neural network that predicts chromatin contacts from the nucleo-
tide sequence alone, and can be used to perform in-silico predic-
tions. In addition to these, the maximum entropy genomic
annotation from biomarkers associated to structural ensembles
(MEGABASE) coupled with an energy landscape model for chro-
matin organization called minimal chromatin model (MiChroM),
generates an ensemble of 3D chromosome conformations32.
Though these methods are similar to Hi-C-LSTM in that they
predict Hi-C contacts, we do not compare Hi-C-LSTM with them
as none of them produce Hi-C representations.

In addition, many approaches have been developed to identify
genomic features, such as histone modifications or other ChIP-
seq measurements, that influence chromatin conformation33–38.
This task is similar to conformation representation learning in
that it links 1D to 3D genomic features. However, using histone
modifications as a summary of the chromatin-defining features of
a given locus may not fully encapsulate the conformation.
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In this work, we propose a method called Hi-C-LSTM that
produces low-dimensional representations of the Hi-C intra-
chromosomal contacts, assigning a vector of features to each
genomic position that represents that position’s contact activity
with all other positions in the given chromosome. Hi-C-LSTM
defines these representations using a sequential long short-term
memory (LSTM) neural network model which, in contrast to
existing methods like SNIPER and SCI, accounts for the
sequential nature of the genome. A second methodological
innovation of Hi-C-LSTM is that, instead of learning an encoder
to create representations, we learn our representations directly
through iterative optimization. We find that this approach pro-
vides a large improvement in information content relative to
existing non-sequential methods, enables the use of intra-
chromosomal interactions, and enables the model to accurately
predict the effects of genomic perturbations (Fig. 1, see the sec-
tion “Results”).

We demonstrate the utility of Hi-C-LSTM’s representations
through several analyses. First, we show that our representations
have information needed to recreate the Hi-C matrix and that this
recreation is more accurate using an LSTM than alternatives.
Second, we show that our representation captures cell type-
specific functional activity, genomic elements, and regions that
drive conformation. Third, we show that feature attribution of
Hi-C-LSTM can identify sequence elements driving 3D con-
formation, such as binding sites of CTCF and Cohesin
subunits39,40. Fourth, we show Hi-C-LSTM can perform in-silico
perturbation of CTCF and Cohesin binding sites. Fifth,

we simulated a previously assayed 2.1 Mbp structural variant at
the SOX9 locus and found that Hi-C-LSTM correctly reproduces
experimentally derived contacts.

Results
Hi-C-LSTM representations capture the information needed to
create the Hi-C matrix. Hi-C-LSTM assigns a representation to
each genomic position in the Hi-C contact map, such that a
LSTM41 that takes these representations as input can predict the
observed contact map (Fig. 2). The representation and the LSTM
are jointly trained to optimize the reconstruction of the Hi-C
map. This process gives us position-specific representations
genome-wide (see the “Methods” section for more details).

We find that Hi-C-LSTM achieves higher accuracy when
constructing the Hi-C matrix compared to existing methods
(Fig. 3a, c). The inferred Hi-C map matches the observed Hi-C
map (Fig. 3g) closely, and differs from it by about 0.25 R-squared
points on average. We adapt SNIPER to our task by replacing the
feed-forward decoder that converts low-resolution Hi-C to high-
resolution Hi-C with a decoder that reproduces the observed
input Hi-C. We call this SNIPER-FC. Hi-C-LSTM outperforms
SNIPER (SNIPER-FC) convincingly, by 10% higher R-squared on
average (Fig. 3a). Hi-C-LSTM also outperforms SCI (SCI-LSTM)
by 12% higher R-squared on average (Fig. 3a).

Two hypotheses could explain Hi-C-LSTM’s improved recon-
structions: (1) that Hi-C-LSTM’s representation captures more
information, or (2) that an LSTM is a more powerful decoder.
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Fig. 1 Overview of approach. Hi-C-LSTM learns a K-length vector representation of each genomic position that summarizes its chromatin contacts, using
an LSTM embedding neural network. The representations and LSTM decoder are jointly optimized to maximize the accuracy with which the decoder can
reproduce the observed Hi-C matrix given just the representations. The resulting representations identify sequence elements driving 3D conformation
through integrated gradients (IG) analysis, and they enable a researcher to perform in-silico perturbation experiments by editing the representations and
observing the effect on predicted contacts.
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We found that both are true. To distinguish these hypotheses, we
split each model, respectively, into two components—its
representation and decoder—and evaluated each possible pair
of components. We train the representations (Hi-C-LSTM, SCI,
SNIPER) on all chromosomes and couple them with selected
decoders (LSTM, CNN, FC). Using the representations as input,
we re-train these decoders with a small subset of the chromo-
somes and test on the rest. (see the “Methods” section for more
details). We compute the average R-squared value for creating the
Hi-C contact matrix using each combination of selected
representations and decoders

We found that the choice of decoder has the largest influence
on reconstruction performance. Using a LSTM decoder performs
best, even when using representations derived from SNIPER or
SCI (improvement of 0.14 and 0.12 R-squared points on average
over fully connected decoders, respectively, Fig. 3a). Furthermore,
we found that Hi-C-LSTM’s representations are most informa-
tive, even when using decoder architectures derived from SNIPER
or SCI (Fig. 3a).

Though the Hi-C-LSTM representations capture important
information from a particular sample, we wanted to verify

whether they capture real biological processes or irreplicable
experimental noise. To check the effectiveness of Hi-C-LSTM
representations in creating the Hi-C contact map of a biological
replicate, we train the representations on one replicate (replicate
1), repeat the decoder training process on replicate 2 (see the
“Methods” section for more details), and compute the average R-
squared value for creating the Hi-C contact map of replicate 2
(Fig. 3b, d). The average R-squared reduces slightly for inference
of replicate 2 due to experimental variability; however, the
performance trend of the representation–decoder combinations is
largely preserved (Fig. 3b, d). These results show that Hi-C-
LSTM’s improved performance is not merely driven by
memorizing irreplicable noise.

We discovered a relationship between sequencing depth and
model performance after training and evaluating Hi-C-LSTM on
Hi-C datasets from GM12878 with a combined filtered reads of
300 million and 216 million (compared to Hi-C data from Rao
et al. which had 3 billion combined filtered reads). We saw that
Hi-C-LSTM R2 worsened with reduced read depth, however, the
reconstruction performance trend over distance was preserved
(Fig. 3e, f).

We also trained and evaluated Hi-C-LSTM on data from 3
other tier 1 cell types from the 4DN Data Portal apart from
GM12878, namely, H1-hESC (embryonic stem cell) (Fig. 3c, d),
HFF-hTERT (foreskin fibroblast immortalized cell) (Supplemen-
tary: Fig. 1a, b), and WTC11 (induced pluripotent stem cell
derived from skin leg fibroblast) (Supplementary: Fig. 1c, d). We
found that difference in performance across these cell types can
be explained by their differing read depths. These data sets have
varying read depths, ranging from 150 million (HFFhTERT) to
900 million (H1hESC) filtered reads. We saw that the R2 fell by
0.03 points on average when reads reduced from 3 billion to 1
billion (Fig. 3e). The performance further reduced by 0.4 on
average when the reads reduced to 150 million. This amounted to
a total R2 decrease of 0.7 points on average with very low
sequencing depth (Fig. 3e). We additionally found that the
reconstruction performance trend between models is preserved
across cell types (Supplementary: Fig. 1).

Hi-C-LSTM representations locate functional activity, genomic
elements, and regions that drive 3D conformation. Considering
that a good representation of Hi-C should contain information
about the regulatory state of genomic loci, we evaluated our
model by checking whether these genomic phenomena and
regions are predictable from only the representation. Specifically,
we test whether the position specific representations learned via
the Hi-C contact-generation process are useful for genomic tasks
that the model was not trained on, such as classifying genomic
phenomena like gene expression42 and replication timing43–46,
locating nuclear elements like enhancers, transcription start sites
(TSSs)47 and nuclear regions that are associated with 3D con-
formation like promoter–enhancer interactions (PEIs)48–50, fre-
quently interacting regions (FIREs)51,52, topologically associating
domains (TADs), subTADs, and their boundaries18, loop
domains and subcompartments18. We compared two classifiers, a
boosted decision tree (XGBoost) model53 to predict binary
genomic features of GM12878 from representations, for each task
separately, and a multi-class multi-label model with a simple
linear layer and sigmoid, to predict all tasks from the repre-
sentations simultaneously (see the “Methods” section for more
details regarding comparison methods, baselines and classifiers).

We use mean average precision (mAP) (see the “Methods”
section) to quantify classification performance (for additional
classification metrics like area under the receiver operating
characteristic curve (AuROC), F-score, and Accuracy, refer to the
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Fig. 2 Overview of the Hi-C-LSTM model. A trained Hi-C-LSTM model
consists of a K-length representation Ri for each genomic position i and
LSTM connection weights (see the “Methods” section). To predict the
contact vector of a position i with all other positions, the LSTM iterates
across the positions j∈ {1…N}. For each (i, j) pair, the LSTM takes as input
the concatenated representation vector (Ri Rj) and outputs the predicted
Hi-C contact probability Hi,j. The LSTM hidden state h is carried over from
(i, j) to (i, j+ 1). This process is repeated for all N rows of the contact map
by reinitializing the LSTM states. The LSTM and the representation matrix
are jointly trained to minimize the reconstruction error.
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Supplementary, see the “Methods” section for definitions). We
find that the models built using the intra-chromosomal
representations achieve higher classification performance overall
relative to ones trained on inter-chromosomal representations
when predicting gene expression, enhancers and TSSs (Fig. 4a, b).
This trend is likely due to the relatively close range of the
elements involved in prediction. We verify this observation by
running Hi-C-LSTM at different resolutions (see the section
“Resolution”). In contrast, SNIPER is slightly better at predicting
replication timing when compared to the rest of the intra-
chromosomal models except Hi-C LSTM (SNIPER-INTER,
Fig. 4a, b). While all methods achieve low absolute scores at
predicting promoter–enhancer interactions, Hi-C-LSTM per-
forms best (0.5 units on average, 0.1 unit higher on average than
SCI) (Fig. 4a, b, d).

Both methods perform comparably in predicting the other
interacting genomic regions like FIREs, TADs, subTADs, loops
domains, and subcompartments (Fig. 4a, b). SNIPER-INTRA as
well as SNIPER-INTER do not perform as well as Hi-C-LSTM
and SCI on these tasks. One caveat of the model is that it loses
CTCF interaction dots at loop boundaries because of its
sequential prediction streaks (Supplementary Fig. 2).

The only task on which other methods outperform Hi-C-
LSTM is at predicting subcompartments. Subcompartments were
originally defined based on inter-chromosomal interactions, so
representations based on such interactions outperform those

based on intra-chromosomal interactions such as Hi-C-LSTM
(see Supplementary: Fig. 3 for confusion matrix). Also
subcompartment-ID (SBCID) methods achieves perfect mAP by
virtue of its design (Fig. 4a, b). Among the rest of the methods, we
find that methods which were designed to predict subcompart-
ments such as SCI and SNIPER-INTER, perform better than the
others (Fig. 4a, b). Hi-C-LSTM does perform marginally better
than SNIPER-INTRA. Overall, although Hi-C LSTM performs
better than other models on most of the tasks, the performance of
SCI and SNIPER are comparable to Hi-C-LSTM and all three
models perform significantly better than the baselines on average
(Fig. 4a, b).

Similar to reconstruction, when comparing classification
performance across cell types, we saw that Hi-C-LSTM accuracy
worsened with reduced read depth. However, the classification
performance trend over tasks was preserved (Fig. 4c). We include
results for all available data sets for each cell type. We omitted
WTC11 from this analysis because most data sets are not
available (see the “Methods” section for details regarding element
specific data in cell types). We observed that the accuracy reduced
by 0.6 units on average when the reads reduced to 150 million
(Fig. 4c). Next, we compared the classification performance of Hi-
C-LSTM with other methods (SCI, SNIPER) and baselines (PCA,
SUBCOMPARTMENT-ID) in these cell types (Supplementary
Figs. 4–6). Similar to R2, we saw that the prediction score trend of
methods is preserved across all these cell types.

a b c d

e f

g

Fig. 3 Accuracy with which representations reproduce the observed Hi-C matrix. a, b The Hi-C R-squared computed using the combinations of
representations from different methods and selected decoders for replicate 1 and 2 (GM12878). The horizontal axis represents the distance between
positions in Mbp. The vertical axis shows the reconstruction accuracy for the predicted Hi-C data, measured by average R-squared. The R-squared was
computed on a test set of chromosomes using selected decoders with the representations trained all chromosomes as input. The legend shows the
different combinations of methods and decoders, read as [representation]-[decoder]. c, d Same as (a, b), but for H1-hESC. e, f Hi-C R-squared computed for
different cell types. g A selected portion of the observed Hi-C map (upper-triangle) and the predicted Hi-C map (lower-triangle) in GM12878. The portion
is selected from chromosome 21, between 40 and 43Mbp. Diagonal black lines denote Hi-C-LSTM's frame boundaries (see the “Methods” section).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31337-w ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3704 | https://doi.org/10.1038/s41467-022-31337-w |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Understanding what kind of interactions the model is more
likely to capture is vital. TADs are identified with a higher
accuracy in all cell types compared to other larger chromatin
structures like subcompartments (Fig. 4a, b; Supplementary:
Fig. 4–6). On the other hand, Promoter-Enhancer interactions are
hard to classify in all cell types (Supplementary: Fig. 4,5,6). This
means that Hi-C-LSTM representations achieve higher accuracy
for medium-scale structures such as TADs than for small-scale
structures like promoter–enhancer interactions. This could be
due to many factors including data resolution, model architec-
ture, and conservation across cell types.

Hi-C-LSTM recapitulates structures at different Hi-C resolu-
tions. To check if Hi-C-LSTM works at different resolutions of
Hi-C data, in addition to our model trained at 10 kbp, we trained
Hi-C-LSTM at three other resolutions of 2, 100, and 500 kbp. As
expected, models at different scales detect different elements,
classify differently, and attribute importance to different sites

depending on the resolution. The models achieved these by
forming representations that allowed them to construct the Hi-C
map at the given resolution. We investigate how these repre-
sentations differ from the ones learned at 10 kbp.

To train the model at 2 kbp, we used only a subset of
chromosomes due to memory and compute constraints but trained
on the whole genome at other resolutions. A selected portion in
chromosome 21 (Fig. 5a) shows that the predicted Hi-C values
capture the fine structure of Hi-C even at 2 kbp resolution. The
sparsity of available data at 2 kbp is a major constraint in enhancing
the performance of the model at this resolution. Hi-C-LSTM captures
the Hi-C macro-structures accurately at 500 kbp (Fig. 5b) and
100 kbp (Fig. 5c). This is because operating at this resolution with our
sequence length allows it to span entire smaller chromosomes.

We found that representations at different resolutions predict
chromatin structures of different scales. The classification
performance (as measured in mAP) with gene expression,
enhancers, TADs, subTADs, and subcompartments of models
trained at different resolutions (Fig. 5d), shows that for small

Fig. 4 Genomic phenomena and chromatin regions are classified using the Hi-C-LSTM representations as input. a Prediction accuracy for gene
expression, replication timing, enhancers, transcription start sites (TSSs), promoter–enhancer interactions (PEIs), frequently interacting regions (FIREs),
loop and non-loop domains, and subcompartments in GM12878. The y-axis shows the mean average precision (mAP), the x-ticks refer to the prediction
targets, and the legend shows the different methods compared with. b Same as (a), but for targets in H1-hESC. c mAP using Hi-C-LSTM for targets
compared across cell types. d The Precision-Recall curves of Hi-C-LSTM for the various prediction targets in GM12878. The y-axis shows the Precision, the
x-axis shows the Recall, and the legend shows the prediction targets.
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scale phenomena and expression like gene expression and
enhancers, the cumulative prediction score worsens with coarser
resolution as expected. For enhancers, the prediction score drops
by 0.22 units when the resolution goes from 2 to 500 kbp
(Fig. 5d). Both with TADs and subTADs, the model at 100 kbp
has the best prediction score, closely followed by the model at
10 kbp (Fig. 5d). We attribute this performance to the fact that
these resolutions, combined with our frame length of 150, are
close to the to the averages sizes of both these elements. The
model at 500 kbp performs best at identifying subcompartments
given that the average size of subcompartments is 300 kbp

(Fig. 5d). These results point to the idea that aggregating
representations learnt at different Hi-C resolutions will likely
increase prediction performance across elements of all sizes. Such
aggregation will also potentially help in alleviating computational
bottlenecks, as a model at a particular resolution need not take
the broader context into account (see the section “Discussion”).

Feature attribution reveals association with genomic elements
driving 3D conformation. Given that our representations capture
elements driving 3D conformation, we should be able to identify

Fig. 5 Hi-C-LSTM applied at different resolutions. a Hi-C-LSTM predictions at 2 kbp resolution. A selected portion of the observed Hi-C map (upper-
triangle) and the predicted Hi-C map (lower-triangle) in GM12878. The portion is selected from chromosome 21, between 43.2 and 48.1 Mbp. b Hi-C-
LSTM predictions at 500Kbp resolution. The observed Hi-C map (upper-triangle) and the predicted Hi-C map (lower-triangle) in GM12878 for
chromosome 21. c Hi-C-LSTM predictions at 100 kbp resolution. The observed Hi-C map (upper-triangle) and the predicted Hi-C map (lower-triangle) in
GM12878 for chromosome 21. d The classification performance (as measured in mAP) with gene expression, enhancers, TADs, subTADs, and
subcompartments of models trained at different resolutions.
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those elements using our representations. To validate the ability of
our representations to locate genomic regions that drive chro-
matin conformation, we identified which genomic positions have
the largest impact on Hi-C contacts, using the technique of feature
attribution. Feature attribution is a technique that allows us to
attribute the prediction of neural networks to their input features.
In this case, it identifies which genomic positions influence which
Hi-C contacts. We ran feature attribution analysis on the Hi-C-
LSTM and aggregated the feature importance scores across all the
dimensions of the input representation to get a single score for
each genomic position (see the “Methods” section for more
details). We expected to see higher feature attribution for the
genomic elements, regions, domains, and transcription factors
(TFs) that are crucial for chromatin conformation.

The variation of the aggregated feature importance across
interesting genomic regions helps us distinguish boundaries of
domains and genomic regulatory elements (Fig. 6a, b). We
observe the variation of the feature importance signal across

TADs and a selected portion of chromosome 21 (28–29.2 Mbp)54

to check if we can isolate the boundaries of domains, genes and
other regulatory elements. To deal with TADs of varying sizes, we
partition the interior of all TADs into 10 equi-spaced bins and
average the feature importance signal within these bins. We plot
this signal along with the signal outside the TAD boundary
50 kbp upstream and downstream, averaged across all TADs
(Fig. 6a). The feature importance has largely similar values in the
interior of the TAD, noticeably peaks at the TAD boundaries, and
slopes downward in the immediate exterior vicinity of the TAD
(Fig. 6a). This trend validates the importance of TADs and TAD
boundaries in chromatin conformation. We also consider a
candidate region in chromosome 21 that is referred to in ref. 54 to
observe the variation of feature importance across active genomic
elements (Fig. 6b). For this selected region in chromosome 21, as
we do not have to deal with domains of varying sizes, we just
average the feature importance signal within a specified number
of bins and plot this in the UCSC Genome Browser along with

Fig. 6 Hi-C-LSTM representations identify genomic elements involved in conformation through integrated gradients (IG) feature importance analysis.
a The IG feature importance averaged across different TADs of varying sizes. The vertical axis indicates the average IG importance at each position and the
horizontal axis refers to relative distance between positions in kbp, upstream/downstream of the TADs. b The IG feature importance for a selected
genomic locus (chr21 28–29.2Mbp) along with genes, regulatory elements, GC percentage, CTCF signal, and conserved TFBS among others in the UCSC
genome browser. We see that the feature importance scores peak at known regulatory elements, higher GC percentage, and CTCF peaks. c Violin plots of
aggregated feature attribution scores for top ranked transcription factor binding sites (TFBS). The x-axis shows the labels/elements and the y-axis displays
the z normalized feature importance scores from Integrated Gradients. Both at loop and non-loop regions, the scores shown are aggregated only at shared
sites. d Violin plots of aggregated feature attribution scores for selected elements. The x-axis shows the labels/elements and the y-axis displays the z
normalized feature importance scores from Integrated Gradients. The scores for CTCF and Cohesin subunits are aggregated genome wide. In c, d, Violin
plots present summary statistics where the white dot is the median, thick gray bar is the inter-quartile range, and thin gray line is the rest of the
distribution. Kernel density estimation is shown on either side of the line. Sample size for the genomic elements are calculated genome wide by considering
all observations of elements according to element specific data.
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genes, regulatory elements, GC percentage, CTCF signal, and
conserved TFBS among others. The feature importance peaks
around genes, regulatory elements and domain boundaries
(Fig. 6b), showing that they play a more important role in
conformation than other functional elements. The feature
importance peaks also correlate with CTCF peaks and GC
percentage peaks (Fig. 6b).

We analyzed importance scores at TF binding sites (TFBS)55

and saw that some TFBS have a larger positive importance score
compared to others (Fig. 6c). Our motif enrichment analysis
showed that the top 5 TFs according to importance score were:
CTCF, ZNF143, FOXG1, SOX2, and XBP1 (Fig. 6c). As Cohesin
is a known partner of CTCF, we looked for Cohesin-binding sites
in the ranked list and found them in the top 15. The full ranked
list of transcription factors is attached as a Supplementary file. All
TFs in the top 5 are known to play a role in chromatin
conformation. The genome folds to form “loop domains", which
are found to be a result of tethering between two loci bound by
CTCF and Cohesin subunits RAD21 and SMC340. Among the
many models of genome folding, Cohesin ring-associated
complex that extrudes chromatin fibers and is delimited by
CTCF is most promising. This extrusion model explains why
loops do not overlap39.

We found that CTCF+Cohesin sites at loop anchors show
10% higher mean importance score than CTCF+Cohesin sites at
non-loop regions (we only considered the case where CTCF and
Cohesin share sites) and in both cases they have a spread that is
predominantly positive (Fig. 6c). Note that CTCF and Cohesin
sites usually overlap, so we analyze them together. Specifically,
98% of loop anchor CTCF ChIP-seq peaks also harbor Cohesin
peaks; 92% non-loop CTCF peaks do so56,57. The high feature
importance scores observed at CTCF and Cohesin-binding sites
reaffirms the crucial role they play in loop formation39,40. The
importance of CTCF is further validated by the aggregated feature
importance (Fig. 6d), showing a markedly positive score near
CTCF-binding sites given by Segway58, particularly the strong
ones (mean importance score of 0.45).

Apart from CTCF, the other TFs in the top 5 are also known to
play a role in conformation (Fig. 6c). There is a widespread role of
C2H2-ZF proteins in chromatin structure and organization59.
These TFs are known to promote local chromatin loosening, local
chromatin condensation60, and control chromatin accessibility
through the recruitment of chromatin-modifying enzymes59.
ZNF143 (2nd-most important) is a C2H2-ZF protein. It is known
to bind directly to promoters, connect promoters to distal
regulatory enhancers61, and plays a partner role in establishing
conserved chromatin loops61. Similarly, many FOXG1 (3rd-most
important) and related TFs are considered pioneer factors which
open closed chromatin and facilitate the binding of other
TFs62,63. The last two TFs in our top 5, SOX2 and XBP1, are
also known to play a role in conformation. SOX2 loss is seen to
decrease chromatin interactivity genome-wide64, and the genomic
distribution of XBP1 peaks shows that it binds promoters and
potential enhancers65,66.

Along with the aforementioned TFs, we saw that the model
places high importance on regulatory elements, particularly
enhancers (mean importance score of 0.4) (Fig. 6d). The active
domain types had a higher mean score and a spread that largely
occupies the positive portion of the feature importance plot when
compared to the inactive regions (Fig. 6d). This is further verified
by segway-gbr67 feature importance scores (Supplementary
Fig. 7). This suggests that active regions may play a dominant
role in nuclear organization, where the movement of repressed
regions to the periphery is a side-effect.

Aggregated feature importance also demonstrates the largely
positive feature attribution of genomic regions that are an integral

part of 3D conformation like FIREs, topologically associating
domain (TAD) boundaries with and without CTCF sites, loop
and non-loop domains (Fig. 6d). TAD boundaries enriched with
CTCF show a 20% higher mean importance score compared to
TAD boundaries not associated with CTCF, pointing to the
importance of CTCF sites at domain boundaries in conformation
(Fig. 6d). Moreover, loop domains show a 20% higher mean
importance score compared to non-loop domains, which is
expected because of the increased contact strength on average and
the presence of CTCF sites (Fig. 6d). P-values from the relevant
comparisons for each group can be referred to in the
Supplementary: Table 1.

Hi-C-LSTM accurately predicts effects of a 2.1Mbp duplica-
tion at the SOX9 locus. To validate Hi-C-LSTM as a tool for in-
silico genome alterations, we simulated a structural variant at the
SOX9 locus that was previously assayed by Melo et al. 68. This
variant was observed in an individual with Cook’s syndrome and
comprises the tandem duplication of a 2.1 Mbp region on chro-
mosome 17 that includes regulatory elements of SOX9
(chr17:67,958,880–70,085,143; GRCh37/hg19, Fig. 7a). To simu-
late a Hi-C experiment on a genome with this variant, we made a
new Hi-C-LSTM representation matrix that includes a tandem
copy of the representation at the locus in question and passed this
representation matrix through the original Hi-C-LSTM decoder
to produce a simulated Hi-C matrix on a post-duplication gen-
ome (Fig. 7b). Because Hi-C reads cannot be disambiguated
between the two duplicated loci, we simulated mapping reads to
the observed hg19 reference by summing reads originating from
the two copies (see the “Methods” section). We evaluated Hi-C-
LSTM’s predictions according to the agreement between
this predicted matrix and a Hi-C experiment performed by Melo
et al. 68 (Fig. 7c).

We found that Hi-C-LSTM accurately predicted the effect of
the duplication. The domains that existed pre-duplication (D1, D2,
D3, Fig. 7a) are correctly captured post-duplication. In addition, a
new chromatin domain (DNew) that was introduced by the
duplication is correctly predicted by Hi-C-LSTM (Fig. 7b). To
quantitatively evaluate our predictions, we compared them to a
baseline that predicts the observed pre-duplication Hi-C for the
interactions between the upstream, downstream and duplicated
regions, and the genomic average for the interactions of the
duplicated region with itself (see the “Methods section). We found
that Hi-C-LSTM’s predictions significantly outperform this base-
line overall (Fig. 7d). Note the baseline is a slightly better predictor
of contacts between the upstream and downstream regions.

Hi-C-LSTM’s predictions have the advantage that they describe
contacts on the true post-duplication genome, in contrast to the
reference genome used to map reads (Fig. 7c). Hi-C-LSTM’s
contacts recapitulate the post-duplication topological domain
structure hypothesized by Melo et al. These duplication
experiments validate the ability of Hi-C-LSTM to perform in-
silico insertion and duplication.

Note that Hi-C-LSTM can simulate only cis effects such as
structural variants, but not trans effects that arise from loss of
diffusible entities such as transcription factors.

Hi-C-LSTM can simulate knockout of transcription factor
binding sites and TAD boundaries. As Hi-C-LSTM is able to
perform in-silico insertion/duplication (see the section “Dupli-
cation”), we wanted to investigate whether knockout or deletion
of certain genomic loci would produce reliable changes in the
resulting Hi-C contact map. In-silico knockout experiments have
gained prominence lately, mainly in intercepting signal flows in
signaling pathways69 and drug discovery70–72. A Hi-C in-silico
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manipulation tool is of great value it enables researchers to
identify the importance and influence of any genomic locus of
interest to 3D chromatin conformation.

It is an open question how to simulate small-scale perturba-
tions. We performed knockout using four different techniques at
CTCF plus Cohesin-binding sites (see the section “Discussion”).
The difference in inferred Hi-C between the CTCF plus Cohesin
knockout and the no knockout using shifted representations (see

the section “Methods”) shows the decrease in contact strength
(7% lower on average) in the immediate neighborhood of the KO
site (Fig. 8a). Other ways to simulate knockout like using the
padding, zero and average representations (Supplementary: Fig. 8)
exploit different properties of the model. We believe there is no
one right way to perform knockout, however, we prefer the
method of shifting all downstream representations from the
knockout site upward (see the “Methods” section).

Fig. 7 In-silico duplication of a 2.1Mbp region on Chromosome 17. In all subplots, upper and lower triangles denote observed and predicted Hi-C contact
probabilities respectively, and diagonal black lines denote Hi-C-LSTM frame boundaries. a Observed and predicted Hi-C before duplication. D1, D2 and D3

indicate the three pre-duplication topological domains. b Predicted Hi-C after duplication on a simulated reference genome that includes both copies.
Lower triangle indicates Hi-C-LSTM predicted contacts. The true Hi-C contact matrix on this reference genome is not observable because the read mapper
cannot disambiguate between the two copies. The upper triangle depicts the post-duplication topological domain structure hypothesized by Melo et al,
which includes a novel topological domain DNew. c Observed and predicted Hi-C on the observed pre-duplication reference genome. Upper triangle shows
observed post-duplication Hi-C data assayed by Melo et al. Lower triangle shows Hi-C-LSTM predictions, mapped to the pre-duplication reference by
summing the contacts for the two copies (see the section “Results”). d Average mean-squared error (MSE) in predicting the observed data by (lower
triangle) Hi-C-LSTM, and (upper triangle) a simple baseline (see the section “Results”) at the upstream, duplicated, and downstream regions.
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Previous work showed that altering even a single base pair near
the loop anchors can make many loops and domains vanish,
altering chromatin conformation at the megabase scale39. Given
the crucial role played by CTCF and Cohesin subunits in
conformation at loop anchors (see sections “Classifica-
tion”, “Attribution”), we hypothesized that knocking out CTCF
and Cohesin subunit binding sites will alter the Hi-C contact map
in the neighborhood. The average difference in predicted contact
strength between no knockout and knockout at the site under
consideration as a function of genomic distance is observed
(Fig. 8b). After the combined CTCF and Cohesin knockouts, the
average contact strength reduces by 7% in a 200 kbp window
when compared to the no knockout case (Fig. 8b). CTCF
knockout is seen to affect insulation and reflect possible loss of
loops at 200 kbp (Fig. 8b). The knockout of CTCF and Cohesin
subunit binding sites at non-loop regions56,57 (just like feature

attribution, we only considered the case where CTCF and
Cohesin share sites, and ignored the cases where CTCF binds
alone, and Cohesin binds alone) produces markedly different
effects with 2% lower average inferred strength after knockout at
200 kbp, hinting at the relative importance of loop and non-loop
binding factors (Fig. 8b).

Along with CTCF, we knocked out the other 4 TF binding sites
(TFBS) in the top 5 TFs according to the ranked list, namely,
ZNF143, FOXG1, SOX2, and XBP1 (Fig. 8b). We see that the
average predicted contacts after genome-wide knockout partially
reflects the importance attributed to each TF by integrated
gradients. FOXG1 binding site knockout reduces contacts by 7%
on average, XBP1 binding site knockout reduces contacts by 4%
on average, whereas ZNF143 and SOX2 binding site knockouts
reduce contacts between 4% and 5% on average at 200 kbp. Most
knockouts cause an increase in contacts at 300Kbp and a gradual

Fig. 8 In-silico deletion of transcription factor binding sites (TFBS), orientation replacement of CTCF binding sites and TAD boundaries with and
without CTCF. a The average difference in predicted Hi-C contact strength between CTCF+ Cohesin knockout (KO) and no knockout in a 2Mb window.
We simulate deletion by shifting the downstream representations upward. b Average difference in contact strength of the inferred Hi-C matrix between
knockout and no knockout (y-axis) for varying distance between positions in Mbp (x-axis). The knockout experiments include TFBS knockout and
convergent/divergent CTCF replacements (legend). c The genome-wide average difference in predicted Hi-C contact strength between TAD boundaries
knockout and no knockout with CTCF (upper-triangle) and without CTCF (lower-triangle).
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increase in contacts after 400 kbp. These results validate that Hi-
C-LSTM knockout of TFBS captures the general idea of contacts
depleting within the domain and connecting regions outside the
domain.

The CTCF sites at loop anchors occur mainly in a convergent
orientation, with the forward and reverse motifs together,
suggesting that this formation maybe required for loop
formation18,73–78 (see Supplementary Fig. 9 for illustration). To
check how important the orientation of CTCF motifs is to
conformation, we conducted CTCF orientation replacement
experiments at loop boundaries. The average difference in
predicted contact strength between no replacement and replace-
ment at the site under consideration as a function of genomic
distance is observed (Fig. 8b). The replacement of convergent
with the divergent orientation around loops is seen to behave
similar to the case of CTCF knockout thereby validating
observations made in79 (Fig. 8b). On the other hand, replacement
of divergent with the convergent orientation is seen to preserve
loops at 200 Kbp and behave similar to the control (Fig. 8b).

TADs anchored with CTCF at their boundaries have a
differential role to play in conformation compared to the TADs
without CTCF. We wanted to check if Hi-C-LSTM can capture
this differential behavior of TADs by knocking out their
boundaries. To deal with TADs of varying sizes, we partition
the interior of all TADs into 10 equi-spaced bins and average the
predicted contacts within these bins. We show these along with
the regions outside the TAD boundary 100Kbp upstream and
downstream, averaged across all TADs (Fig. 8c). The average
difference in inferred Hi-C between the knockout at TAD
boundaries and the no knockout (Fig. 8c) shows largely decreased
contacts for both TADs with and without CTCF in a 200 kbp
window (3% lower on average). Within the TAD, however, we see
increased contacts for TADs without CTCF (5% higher on
average) and decreased contacts with CTCF (4% lower on
average) (Fig. 8c).

Simulating loop anchor deletions at the TAL1 and LMO2 loci
Hi-C-LSTM predicts measured 5C data. To further validate the
ability of Hi-C-LSTM to predict experimental perturbations, we
simulated the deletion of loop anchor regions at the TAL1 and
LMO2 neighborhood boundaries in human embryonic kidney cells
(HEK-293T) previously conducted by Hnisz et al.80. These deletions
were observed in T-cell acute lymphoblastic leukemia (T-ALL)
patients. The TAL1 anchor deletion was seen on chromosome 1 in
the neighborhood of 47.7 Mbp (GRCh37/hg19, Fig. 9a), and the
LMO2 anchor deletion was seen on chromosome 11 in the
neighborhood of 34Mbp (GRCh37/hg19, Fig. 9b)80. Both deletions
included loop boundary sites. The authors hypothesized that dele-
tions of loop boundary sites at these loci could cause activation of
inactive proto-oncogenes within the loops80. To simulate a Hi-C
experiment on a genome with these deletions, we first obtained the
trained model from GM12878 and retrained it on the 5C data from
the TAL1 and LMO2 segments80. We then made a new repre-
sentation matrix that shifted the representations downstream from
the knockout sites upward, and passed this representation matrix
through the retrained Hi-C-LSTM decoder to produce a simulated
Hi-C matrix (Supplementary Fig. 10a, b, lower-triangle) (see the
“Methods” section for more details) and compared this with the 5C
experiment performed by Hnisz et al. 80 (Supplementary Fig. 10a, b,
upper-triangle).

They authors saw that the insulated neighborhoods of TAL1
and LMO2 were disrupted, which allowed activation of these
elements by regulatory elements outside the loop, and caused
rearrangement of interactions around the neighborhood. We
found that Hi-C-LSTM’s predicted contacts correlate with the

post-deletion interactions hypothesized by Hnisz et al. To
evaluate our predictions, we investigated whether there is a
correlation in the differences of knockout and no knockout
between the observed and the predicted contacts (Fig. 9c, d). We
found a noticeable correlation between Hi-C-LSTM’s prediction
differences between knockout and no knockout and the observed
assayed contacts for TAL1 (Fig. 9c). The interactions across
domain boundaries that did not exist pre-deletion in the TAL1
neighborhoods were correctly captured by Hi-C-LSTM (Fig. 9c).
The correlation for LMO2 was not as strong as TAL1 (Fig. 9d)
and the discrepancy was particularly at points where the post
knockout contacts were same as the pre-knockout or higher. We
see that Hi-C-LSTM accurately predicts decrease in post knock-
out contacts as decrease, but wrongly attributes some points of
no-change and increase as decrease (Fig. 9d).

These anchor deletion experiments reaffirm that Hi-C-LSTM
can perform in-silico alterations with moderate accuracy. More-
over, the results also point to the transfer learning ability of Hi-C-
LSTM in cell types with limited data (see the section
“Discussion”).

Discussion
In this work, we have proposed a recurrent model that uses intra-
chromosomal contacts to form position-specific representations
of chromatin conformation. These representations are able to
capture a variety of genomic phenomena and elements and at the
same time distinguish genomic regions, transcription factors and
domains that are known to play an important role in chromatin
conformation. They also elucidate the interplay between genome
structure and function. The classification and feature attribution
results validate the ability of the representations to locate vital
regions such as CTCF and Cohesin-binding sites.

The primary contribution of this work is the application of a
recurrent LSTM to the problem of forming representations for
intra-chromosomal interactions. The Hi-C-LSTM not only out-
performs the existing models like SCI and SNIPER that form
representations in predicting genomic phenomena but also
locates elements driving 3D conformation as revealed by feature
importance analysis. In addition to these, the Hi-C-LSTM has few
distinct advantages over its counterparts. One, it can be used as a
contact generation model. It’s observed that the Hi-C-LSTM
representations are more informative in this regard and that
sequential models like the LSTM perform much better at contact
generation. Two, a low-dimensional Hi-C-LSTM representation
is powerful enough to reasonably recreate the Hi-C matrix (see
the section “Hyperparameters”). Three, the Hi-C-LSTM frame-
work allows us to conduct in-silico experiments like insertion,
deletion and reversal of elements driving 3D conformation and
observe changes in contact generation. This would be extremely
useful in fully understanding the role of CTCF and Cohesin-
binding sites, other transcription factors, and TADs and their
boundaries in chromatin conformation.

Although we do a good job of identifying TADs, we cannot use
our method as a computational TAD caller (like Arrowhead,
GMAP, HiCseg among others)81 because we need a gold standard
training set to train our classification model, which we obtain
from the aforementioned TAD callers. As a result, we also cannot
compare our TAD classification performance with these TAD
callers.

We noticed that performing knockout of specific single geno-
mic sites is not as straightforward as performing insertion of a
larger genomic segment (as seen in the section “Duplication”) for
Hi-C-LSTM. This is primarily because of two reasons. First,
because the row representation is fed throughout the column
sequence, Hi-C-LSTM decoder is more dependent on the row
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representations than the column representations. Therefore, Hi-
C-LSTM is less susceptible to manipulation of column repre-
sentations alone, which is the case when inferring contacts for
rows around the knockout site, and more reliable for the row
pertaining to the knockout site. This issue of robustness to
manipulation of column representations is less prominent during
insertion because a contiguous segment gets inserted and in the
post-insertion genome both the row and the column repre-
sentations are affected. Second, single locus knockout is harder
than knockout of a larger genomic segment because the
sequential model is robust to slight perturbations in the input.

Moreover, there is no accepted standard way of simulating in-silico
knockout in the Hi-C community in the context of manipulating
sequential representations. There are four ways one can simulate the
knockout of a locus. One, by replacing the representation by the zero
representation. Two, by replacing the representation by the average
representation in the neighborhood. Three, by replacing the repre-
sentation by the representation of the padding input, and four,
by shifting all downstream representations upward (see the

“Methods” section). We tried all four techniques and found shifting
the representations to be most convincing.

An important limitation of Hi-C-LSTM’s in silico experiment
is that it can simulate only cis effects. Variation in chromatin
structure can be caused either by cis or trans effects. Cis effects are
caused by genetic variants on the same DNA molecule, whereas
trans effects arise from diffusible elements like transcription
factors. Hi-C-LSTM can model only cis effects because trans-
acting cellular machinery is captured within the Hi-C-LSTM
decoder, which cannot be easily modified. An example of a cis-
effect is the duplication at the SOX9 locus, in which case we
showed Hi-C-LSTM correctly models the resulting neo-TAD (see
the section “Duplication”)68. Hi-C-LSTM cannot model trans
effects such as recent investigation of the removal of RAD2140

and CTCF82,83. To directly validate the cis-knockout of CTCF-
binding sites, to the best of our knowledge, there is no reliable
post-CTCF-binding site knockout Hi-C available in our cell types
of interest in humans. There are Hi-C experiments available after
CTCF protein depletion82–86. There are also Cohesin depletion

Fig. 9 In-silico anchor deletions at the TAL1 and LMO2 loci. a, c TAL1 anchor deletion on chromosome 1. a Observed Hi-C contacts before deletion
(upper-triangle), and predicted Hi-C contacts before deletion (lower-triangle). c Scatter plot of differences in contacts after and before TAL1 deletion. The
x-axis shows observed differences, and the y-axis shows predicted differences. b, d LMO2 anchor deletion on chromosome 11. b Observed Hi-C contacts
before deletion (upper-triangle), and predicted Hi-C contacts before deletion (lower-triangle). d Scatter plot of differences in contacts after and before
LMO2 deletion. The x-axis shows observed differences, and the y-axis shows predicted differences, KO knockout, WT wild-type.
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experiments40. However, these experiments cannot be used to
compare with our binding site knockout experiments as depleting
the protein itself is not the same as knocking out the binding site
the protein can bind to. There is one work that performs post
CTCF-binding site knockout Hi-C, but this experiment is con-
ducted in mice87. Therefore, instead of looking for a post-CTCF
binding site knockout Hi-C, we decided to further verify our
model using data from duplications (see the section “Duplica-
tion”) and anchor deletions (see the section “Anchor”).

Single-cell Hi-C (scHi-C) datasets are becoming increasingly
valuable in providing us with cell level resolution of contacts. Hi-C-
LSTM cannot utilize single-cell Hi-C data—unless that data is
aggregated into pseudo-bulk Hi-C—because it takes as input a single
Hi-C matrix. Additionally, the model would have to be trained on
such data by taking into consideration the data resolution, mapping
it to appropriate bins and mapping the contacts between those bins.
The main challenge when analyzing scHi-C is that the data is
extremely sparse. Pseudo-bulk scHi-C, where many cells are clus-
tered into groups of similar types and pooled in silico, allows for the
statistical validation of chromatin patterns. We trained and eval-
uated Hi-C-LSTM on a subset of chromosomes (15–22) using
pseudo-bulk scHi-C data from Ramani et al. 88 (see the “Methods”
section for details). A representative heatmap from chromosome
21 shows that Hi-C-LSTM is able to reconstruct contacts faithfully
(Supplementary Fig. 11), however, the sparsity of scHi-C data might
be a potential concern when using the representations from scHi-C
models for other downstream tasks like classification and in-silico
manipulation.

Transfer learning is an important goal for the Hi-C community
because of the availability of a variety of disparate and sparse Hi-
C datasets. Instead of training a new model from scratch for every
new Hi-C, using existing models from other cell types can dras-
tically speed up the training process and also deal with the
sparsity of available data. We are able to perform Hi-C inference
of fragments in a new cell type (HEK-293T) by using partial 5C
fragments as input for retraining (Fig. 9a, b). Hi-C-LSTM accu-
rately captures both the TAL1 and LMO2 5C observed fragments
(Fig. 9a, b: upper-triangle) in its predicted Hi-C contacts (Fig. 9a,
b: lower-triangle). This will allow the model to be rapidly used in
cell types and tasks where the available contact data is scarce.
Users can use transfer learning to apply Hi-C-LSTM to new data
sets by fine-tuning the pre-trained model on the new data sets.
However, if the amount of new data available is large, it may be
preferable to train a fresh Hi-C-LSTM model.

Hi-C-LSTM, in its current form, is not designed to handle data
from multiple cell types. We acknowledge that imputation is an
important goal that deserves consideration, however, our goal
with Hi-C-LSTM is not to impute data in new cell types but
rather form cell type and position specific representations.
Learning representations that help you reconstruct the Hi-C map
can be useful for multiple reasons, namely, (a) the resulting model
becomes a contact generation framework, (b) the resulting
representations capture conformation defining elements, (c) the
representations coupled with the model can be used for in-silico
manipulation of genomic elements, and (d) the process can give
us insights about which genomic sites are most important in
construction. It is also important to note that we learn the
representations in the process of reconstructing the matrix, i.e.,
reconstruction does not bring biological insight but is part of the
process that forms the representations. The Hi-C reproduction
evaluation shows how well these representations capture the
information in the Hi-C matrix.

To reconstruct, we chose a shorter frame length of 150 because
(1) LSTMs can typically work with sequences of lengths in
the order of 100s but cannot handle very long sequences in the
order of 1000s because of issues with gradient propagation.

(2) A shorter frame length helps us fit our model in memory and
speeds up training time drastically. (3) At our choice of 10 kbp
resolution it allows us to identify other important large chromatin
structures like loop domains, TADs, and subTADs. A shorter
frame length is one of the reasons our model does not do well at
identifying long-range interactions like subcompartments, how-
ever, our goal is not just to identify long-range interactions but
design a model that can identify both short and long range
interactions satisfactorily. Hi-C-LSTM is able to achieve this
trade-off because of its shorter frame length. In future work, we
plan to work with longer sequences efficiently by: (1) Creating
hierarchical representations from initial representations. (2)
Using models like Transformers that can handle longer sequen-
ces. (3) Aggregating representations learnt at different Hi-C
resolutions.

The good performance of Hi-C-LSTM suggests several avenues
for future work. First, extending the mode to incorporate data
from multiple cell types and the resulting representations may
yield insights into differences in chromatin organization across
development. Extending this framework to work with multiple
cell types at the same time may be possible with the addition of
“cell type id" as an input parameter. Second, an in-depth analysis
of Hi-C-LSTM performance on scHi-C warrants a detailed report
of its own. Third, combining representations from models trained
at varying resolutions to form a common representation would
allow us to not only discover new elements at different scales but
also form a comprehensive scale agnostic representation. Fourth,
the success of a LSTM model suggests trying other sequential
neural network models that can handle longer sequences such as
Transformers89, coupled with learning hierarchical representa-
tions. Fifth, a modified version of Hi-C-LSTM may be able to
infer a 3D structure of chromatin. The Hi-C representations that
we form currently are embedded on a lower-dimensional mani-
fold that does not have any direct physical significance. However,
a Hi-C-LSTM-like model trained to produce three-dimensional
representations may be able to reproduce the true nuclear posi-
tions of chromatin.

Methods
The code and data repository for this project, including training, evaluation, data
handling, and generated data can be found in our GitHub repository90.

Data sets. We generated the intrachromosomal Hi-C data set on the hg19 human
reference genome assembly91 at 10 kb resolution with KR (Balanced)
normalization92 using juicer tools with the command java -jar jui-
cer_tools.jar dump observed KR data/chr.hic chr chr BP 10000
chr.txt, where chr refers to the chromosome being extracted. To extract data at
2, 100, and 500 kb, we simply replaced the resolution field in the juicer command.
See the section “Data availability” for links to Hi-C datasets.

Following SCI12, to mitigate the extreme range of magnitudes present in Hi-C
read counts, we transformed Hi-C values into contact probabilities between 0 and
1. We calculated contact probabilities according to the exponential transformation
(Eq. (1))

cf ¼ 1
v þ δ

CP ¼ expð�a � cf Þ;
ð1Þ

where v is the raw input contact strength, δ is a very small positive real number (we
set δ to be 10−10), cf is the coefficient obtained, a is the coefficient multiplier, and
CP is the resulting contact probability. We chose a= 8 because it appeared to
provide a good separation of low and high contact values.

For the classification task, each gene was considered to be active if its log mean
expression value across the gene was >0.593,94. See the section “Data availability”
for links to gene expression data.

Frequently interacting region (FIRE) scores were converted to binary indicators
using 0.5 as a threshold following95. See the section “Data availability” for links to
FIRE data.

We could not find PEI, FIRE, and replication timing data for H1-hESC and
HFF-hTERT, and hence excluded these elements from classification performance
evaluation in H1-hESC and HFF-hTERT.
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We ran FIMO96 to get the CTCF motif instances using the command fimo -oc
output_directory motif_file.meme sequence_file.fna. We use all
default options while running fimo including the p-value threshold (–thresh) of
10−4. We ran FIMO after obtaining the human genome sequence file under
mammals and the hg19 genome assembly. See the section “Data availability” for
more details.

To classify CTCF and Cohesin peaks based on loop and non-loop regions, we
used loop domain data for GM12878. We then segregated them as
CTCF+ Cohesin, CTCF only and Cohesin only sites in both loop and non-loop
regions based on thresholds used in Hansen et al.56. See the section “Data
availability” for more details.

For a full list of links to relevant datasets, refer to the section “Data availability”
and Table 2 in the Supplementary.

LSTM. Long short-term memory (LSTM) networks were proposed as a solution to
the vanishing gradient problem97 in recurrent neural networks (RNNs)98. They are
known to be a good candidate for modeling sequential data and have been widely
used for sequential tasks99–101. An LSTM is made up of a memory state (ht), a cell
state (ct), and three gates that control the flow of data: input (it), forget (ft) and
output (ot) gates. The input and the forget gates together regulate the effect of a
new input on the cell state. The output gate determines the contribution of the cell
state on the output of the LSTM.

Let matrices W and U be the weights of the input and recurrent connections,
and b refer to the biases. There are four sets of weight matrices and biases in the
LSTM. These include one for each of the three gates—forget gate (Wf, Uf, bf), input
gate (Wi, Ui, bi) and output gate (Wo, Uo, bo)—and one to form the cell state (Wc,
Uc, bc). The current cell state (ct) is formed by the modulation of the previous cell
state (ct−1) by the forget gate (ft) and combining it with the modulation of the
current input (xt) and the previous memory state (ht−1) by the input gate (it).
Finally, the current memory state (ht) is formed by the modulation of the current
cell state (ct) by the output gate (ot). The current memory state (ht) is fed into a
linear layer with a sigmoid function at each step which produces the final output
interacting frequency at that step.

An LSTM’s output is determined by the following series of operations41.

f t ¼ σðW fxt þ U fht�1 þ bf Þ
it ¼ σðW ixt þ U iht�1 þ biÞ
ot ¼ σðWoxt þ Uoht�1 þ boÞ
ct ¼ f t � ct�1 þ it � σðWcxt þ U cht�1 þ bcÞ
ht ¼ ot � σðct Þ

ð2Þ

where ∘ is the Hadamard product and σ refers to the sigmoid activation function.

Hi-C-LSTM. Hi-C-LSTM creates a representation given a pair of genomic positions
in the Hi-C contact matrix using an embedding neural network layer (for an
illustration see Supplementary Fig. 12) and predicts the contact strength at that
particular pair via a LSTM41 that takes these representations as input (Fig. 2). Hi-
C-LSTM takes as input a N ×N intra-chromosomal Hi-C contact matrix (RN ´N ),
for each chromosome, where N is the chromosome length.

A trained Hi-C-LSTM model consists of LSTM parameters (see section
“LSTM”) and a representation matrix R 2 RN ´M , where M is the representation
size. At each genomic position, (i, j) pair is given as input to an embedding layer,
which indexes the row and column representations Ri;Rj 2 RM and feeds these
two vectors as input to the LSTM. The output of the LSTM is the predicted Hi-C
contact probability Ĥi;j for the given (i, j) pair.

The hidden states of the LSTM are carried over from preceding columns
thereby maintaining a memory for the row. For the sake of memory usage, the
hidden states are reinitialized after every each frame of 1.5 Mbp or 150 resolution
bins (see section “Modeling Choices”). This process is repeated for each row of the
Hi-C matrix (Eq. (3)).

Ĥi;j ¼ LSTMððRi;RjÞ; hj; cjÞ for j ¼ 1; 2; ¼ ;N

for i ¼ 1; 2; ¼ ;N
ð3Þ

where hj and cj are reinitialized at the beginning of each new frame.
The LSTM and the embedding neural network layer are jointly trained using the

mean squared error (MSE) loss function which facilitates the faithful construction
of the Hi-C intra-chromosomal matrix (Eq. (4)).

MSEi ¼
1
N

∑
N

j¼1
Hi;j � Ĥi;j

� �2
� �

for i ¼ 1; 2; ¼ ;N ð4Þ

At the end of all the training iterations, the output of the embedding neural
network layer at each row i (Ri) is treated as the representation for that row. The
Hi-C-LSTM framework infers the Hi-C contact matrix from pairs of position IDs
and therefore is a transformation from linear sequential space to the Hi-C space.
The linear position IDs are a convenient and useful modeling assumption which
builds a framework that does not make any other transfer function assumptions.

Modeling choices and training. The LSTM model required us to make a few
design choices. As layer normalization can significantly reduce the training time
and is effective at stabilizing the hidden state dynamics in LSTMs, we used a
unidirectional layer norm LSTM102 with one hidden layer. We found that variants
such as the bidirectional LSTM103 and LSTM with multiple layers provided a
marginal increase in test performance (Supplementary Fig. 13). The variants were
also prone to overfitting. Therefore, we chose the single-layer unidirectional model
over these variants accounting for computational efficiency and good general-
ization. Gradient clipping97 and the softsign activation104 were used at all nodes
owing to their mitigating effect on hidden state saturation. The design choices were
made after conducting ablation experiments which are elaborated in the following
section “Hyperparameters”. We used a batch size of 2000 and a sequence length
150 bins, both of which were observed to be data dependent and the best fit for our
data. We used a learning rate of 0.01 for 5 epochs and 0.001 for 5 more epochs. We
reinitialized the hidden states of the LSTM after every frame of length 150 and
predicted each diagonal block of length 150 with fresh hidden states (Fig. 3c). The
prediction error improved towards the end of the frame and increased at the start
of the next frame (Supplementary: Fig. 14). We tried passing the hidden states
across frames and saw that the convergence time significantly increased as the
training graph had to be retained across iterations. So we chose to reinitialize the
hidden states in each window instead.

We employed PyTorch, a Python-based deep learning framework and trained
Hi-C-LSTM on GeForce GTX 1080 Ti GPUs with ADAM as the optimizer105. All
parameters in PyTorch were set to their default values while training. As our
primary goal was not to infer values for unseen positions but to form reliable
representations for every chromosome, we trained our model on the full genome.
For our Hi-C reproduction evaluation, we trained the representations on the full
genome but the decoders only on a random subset. We chose to train the decoders
on a random subset of the genome to prevent the decoder from overpowering the
representations. The time taken to train and test all methods is included in the
Supplementary Table 3 (Running Time).

Hyperparameter selection. To choose the representation size of our model, we
performed an ablation analysis. We computed the average mAP across all down-
stream tasks with the Hi-C-LSTM model which consists of a single layer, uni-
directional LSTM with layer norm in the absence of dropout106 for odd
chromosomes and used the even chromosomes to validate whether the choice of
hyperparameters remained the same irrespective of chromosome set. We observed
the mAP (see “Methods” section) of the Hi-C-LSTM vs. increasing representation
size along with Hi-C-LSTM that is bidirectional, in the presence of dropout,
without layer norm and 2 layers (Supplementary Fig. 13). While both the presence
of dropout and the absence of layer norm adversely affected mAP, the addition of a
layer and a complimentary direction did not yield significant improvements in
downstream performance. We conducted a similar ablation experiment and
computed the average Hi-C R-squared for the predictions with increasing repre-
sentation size (Supplementary Fig. 13) and observed that the performance trend is
preserved, which was indicative of the fact that recreating the Hi-C matrix faith-
fully aids in doing well across downstream tasks. These results were verified to be
true for even chromosomes as well (Supplementary Fig. 13). For both odd and even
chromosomes, even though the Hi-C prediction accuracy increased with hidden
size, we noticed the elbow at a representation size of 16 for average mAP and
therefore set our representation size to that value as a trade-off.

Hi-C reproduction evaluation. We investigated three hypotheses with following
analysis. First, we asked whether the Hi-C-LSTM representations faithfully con-
struct the Hi-C matrix. Second, whether the Hi-C-LSTM representation and the
decoder are both powerful in generating the Hi-C map. Third, we evaluated the
utility of the representations to infer a replicate map. In all cases, we computed the
average prediction accuracy in reconstructing the Hi-C contact matrix, measured
using R-squared, which represents the proportion of the variance of the observed
Hi-C value that’s explained by the Hi-C value predicted by the Hi-C-LSTM. We
sampled the means of observed Hi-C values at different distances between posi-
tions and used that as a baseline.

In our first experiment, we trained both the representations and decoders on
replicate 1 (Fig. 3a). We took representations trained using all chromosomes from
Hi-C-LSTM, SCI and SNIPER and coupled these with some selected decoders,
namely, a LSTM, a convolutional neural network (CNN) and a fully connected
(FC) feed-forward neural network (used by SNIPER). We compared LSTM with
CNN and FC decoders mainly because CNNs provided us with an alternative way
of incorporating structure (using moving filters) and FC networks did not include
any information about underlying structure. We re-trained these decoders using
either of the representations as input, with a subset of the genome and tested on the
rest. All the decoders were configured to have the same number of layers and
hidden size per layer. As the decoders were separately trained, this process allowed
us to check the power of the representations alone, moreover, as a subset of the
genome was used to train the decoder, we reduced the possibility of the decoders
overfitting.

In our second experiment (Fig. 3b), we trained the representations on replicate
1 using all chromosomes, and repeated the aforementioned decoder training
process on replicate 2.
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We conducted both these experiments in all 4 cell types, namely, GM12878
(Fig. 3a, b), H1-hESC (Fig. 3c, d), HFF-hTERT (Supplementary Fig.1a, b), and
WTC11 (Supplementary Fig.1c, d).

Comparison methods. We compared our downstream classification results with
five alternatives: two variations of SNIPER, one with inter-chromosomal (SNIPER-
INTER) and the other with intra-chromosomal contacts (SNIPER-INTRA), SCI
and two baselines, namely, the subcompartment-ID (SBCID) and principal com-
ponent analysis (PCA). SNIPER-INTRA was the same as the original SNIPER-
INTER, modified to take the intra-chromosomal row as input instead of the inter-
chromosomal row. All the parameters for the two SNIPER versions and SCI were
set as given in their respective papers11,12. The SBCID baseline used the one-hot-
encoded vector of the subcompartment as the representation at the position under
contention. The PCA baseline assigned the principal components from the PCA of
the Hi-C matrix as the representations.

Element identification evaluation. We used the following analysis to evaluate
the ability of a representation to identify genomic phenomena and chromatin
regions.

For each type of element, we first trained a boosted decision tree classifier called
XGBoost53 on the representations. We tried tree boosting first as it is shown to
outperform other classification models with respect to accuracy when ample data is
available. Following Avocado95, we used XGBoost with a maximum depth of 6 and
a maximum of 5000 estimators and these parameters were chosen following
ablation experiments with odd chromosomes as the training set and even
chromosomes as the test set (Supplementary Fig. 15). N-fold cross-validation,
with n= 5, was used to validate our training with and an early stopping
criterion of 20 epochs. The rest of the XGBoost parameters were set to their default
values.

For each task, the genomic loci under contention were assigned labels. All tasks
were treated as binary classification tasks, except the subcompartments task, which
was treated as a multi-class classification task. For tasks without preassigned
negative labels, negative labels were created by randomly sampling genome-wide,
excluding the regions with positive labels. We sampled negative labels until the
number of negative labels equaled the number of positive labels to avoid class
imbalance during classification. The XGBoost classifier was given the
representations at these genomic loci as input and the assigned labels as targets.

We then compared the XGBoost classifier trained separately for each task with a
multi-class multi-label classifier with a simple linear layer and sigmoid output. We
observed that the multi-class classifier, which predicted regions/domains the given
position belonged to, was much faster and gave more reliable results when
compared to the XGBoost classifier. Therefore, we prefer the linear classifier for
classification.

The classifiers were evaluated using four standard metrics for classification
tasks, namely, mean average precision (mAP) (otherwise known as area under the
Precision-Recall curve (AuPR)), area under the Receiver Operating Characteristic
curve (AuROC), Accuracy (A ¼ TPþTN

TPþFPþTNþFN), and F-score. AuROC is defined as
the area under the curve that has true positive rate (TPR ¼ TP

TPþFN) on the y-axis
and false positive rate (FPR ¼ FP

FPþTN) on the x-axis. mAP is defined as the average
of the maximum precision (P ¼ TP

TPþFP) scores achieved at varying recall levels
(R= TPR). F-score is defined based on precision and recall (F ¼ 2P�R

PþR). We
compared these metrics for GM12878, H1-hESC, and HFF-hTERT (see
Supplementary Figs. 4–6 for more details).

Sequence attribution. We validated the utility of the Hi-C-LSTM representations
in locating genomic regions important for conformation using feature attribution
analysis. Feature attribution was carried out on the intra-chromosomal repre-
sentations using Integrated Gradients107. Integrated Gradients is a feature attri-
bution technique that follows an axiomatic approach to attribution, adhering to the
axioms of sensitivity and implementation invariance. Sensitivity implies that if the
input and baseline differs in one feature and have different predictions, then the
differing feature should be assigned a non-zero attribution. Implementation
invariance requires that two networks, whose output is equal for every input
despite having different implementations, should have the same attributions. We
visualized our feature importance in the UCSC Genome Browser along with other
genomic elements and signals. The 3D genome browser108 is also an useful tool for
visualization for contact map data.

We used Captum, a Integrated Gradients feature attribution framework in
PyTorch that is generic and works with sequential models. The resulting feature
attributions were summed across all features, giving us one importance score for
every position in the genome. The feature importance scores were then subjected to
min-max normalization (Eq. (5)) for both positive and negative values separately.
Specifically, if IG is to the integrated gradients (IG) score, and IGmin, IGmax are
the minimum and maximum IG scores, then the normalized IG score IGnorm is

defined as

IGnorm ¼ IG� IGmin

IGmax � IGmin
: ð5Þ

In-silico perturbation. The Hi-C-LSTM enables us to perform in-silico deletion,
orientation replacement and reversal of genomic loci and predict changes in the
resulting Hi-C contact map. We performed three types of experiments:: knockout,
CTCF orientation replacement, and duplication. In a knockout experiment, we
chose certain genomic sites (such as CTCF and Cohesin binding sites) and replaced
their representations with a different representation depending on the method used
to perform the knockout (Supplementary Fig. 8).

Among the four possible methods to perform knockout, we prefer the method
of shifting the representations. Shifting the representations not only captures the
true post-duplication genome but also avoids the noise that comes from zeroing or
averaging the representations in the neighborhood (Supplementary Figs. 8, 16). It
also is more interpretable than using the padding representation (Supplementary
Figs. 8, 16) because we do not fully understand the role of padding representations
in recreating the Hi-C matrix. The knockout of the representation at a particular
row affects not just the Hi-C inference at columns corresponding to that row but
also the succeeding rows because of Hi-C-LSTM’s sequential behavior. The LSTM
weights remain unchanged, but as the input to the LSTM is modified, the inferred
Hi-C contact probability is altered based on the information retained by the LSTM
about the relationship between the sequence elements under contention and
chromatin structure.

In a CTCF orientation replacement experiment, we replaced the representations
of downstream-facing CTCF motifs with the genome-wide average of the
upstream-facing motifs and vice versa. This was done under the assumption that
the average representation of the given orientation would encapsulate the
important information regarding the role played by the orientation in chromatin
conformation.

Our duplication experiment was carried out by creating a tandem duplication
the representations from the 2.1 Mbp region between 67.95 and 70.08 Mbp in
chromosome 7 region68 and then passing the resulting representation matrix to the
LSTM to infer contacts. Given our Hi-C resolution of 10 kbp, the duplicated region
corresponds 214 bins, i.e., bin 6795 to bin 7008. Specifically, the duplicated
representation matrix is defined as R̂i :¼ ½R1:6794;R6795:7008;R6795:7008;R7009:N �.

To enable comparison to Hi-C data mapped to the observed pre-duplication
reference genome, we combined inferred contacts from both copies. This
combination is required because Hi-C reads cannot be disambiguated between the
two duplicated copies when they are mapped to the reference genome. Specifically,
we passed the predicted contact probability cp through the inverse exponential
transformation to define predicted read counts CS ¼ 1

� log cp=a � δ (see Eq. (1)). We

summed predicted read counts from the two duplicated copies to simulate
mapping reads from both copies to the same reference genome CS0 , then re-applied
the exponential transform to obtain predicted contact probability cp0 .

Our baseline for the quantitative evaluation was the observed pre-duplication
Hi-C for the interactions between the upstream, downstream and duplicated
regions, and the genomic average for the interactions of the duplicated region with
itself. We considered a window of 214 bins (length of the duplicated region), and
computed the average genomic contact strength for the bins with themselves in a
window of this size.

Our anchor deletion experiment was carried out by first obtaining the trained
Hi-C-LSTM model from GM12878, and retraining it on the 5C data from the
TAL1 and LMO2 segments in HEK-293T80. The TAL1 fragment is on
chromosome 1 from 47.5 to 47.9 Mbp, and the LMO2 fragment is on chromosome
11 from 33.8 to 34.2 Mbp (GRCh37/hg19). After retraining the model with data
from HEK-293T, we made a new representation matrix by shifting all the
downstream representations upward (Supplementary Fig. 8), and passed this
representation matrix through the retrained Hi-C-LSTM decoder to produce the
inferred Hi-C matrix (Supplementary Fig. 10).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The representations generated in this work have been deposited in the GitHub
repository90. The Hi-C text file for chromosome 22 is provided in the GitHub
repository90 as a minimum dataset for reproducibility. The transcription factor binding
site feature attribution data generated in this study is provided as a Supplementary
Data file.

The data that support the findings of this study are publicly available to download.
The Hi-C data for GM12878 was acquired using the GEO accession number

GSE6352518. The Hi-C data for other tier 1 cell types was acquired from the 4DN Data
Portal, like H1-hESC, WTC11, and HFF-hTERT. The Hi-C data for GM12878 with
lower read depths were also downloaded from the 4DN Data Portal, such as 300M and
216M.
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The intra-chromosomal Hi-C data set text file on the hg19 human reference genome
assembly91 was obtained at 10 kb resolution using juicer tools.
RNA-seq data for GM12878, H1-hESC, and HFF-hTERT was obtained from the

Roadmap Consortium.
For GM12878, we defined promoter–enhancer interactions (PEI) as the ones that were

used to train TargetFinder109.
For GM12878, Frequently interacting region (FIRE) scores at 40 kbp resolution were

downloaded from the additional material of ref. 51.
For GM12878, the replication timing data given by Repli-Seq110 was downloaded from

Replication Domain at 40 kbp resolution.
For GM12878, H1-hESC, and HFF-hTERT, locations of known enhancers and

transcription start sites (TSSs) were obtained from FANTOM and ENCODE,
respectively.
For GM12878, Loop Domains and Subcompartments were obtained from the results

of Rao et al.18 using the GEO accession number GSE63525. For H1-hESC and HFF-
hTERT, Loop Domains were obtained by running HICCUPS18 and Subcompartments
were obtained by running Gaussian HMM18.
Segway and Segway-GBR labels were obtained from Hoffmanlab and Noblelab,

respectively.
CTCF, Cohesin peak calls for GM12878 were downloaded from ENCODE. The CTCF

orientations were obtained by using the CTCF motif from the MEME suite (version
5.3.3) and running FIMO96 to get the motif instances.

Other Transcription Factor binding sites (TFBS) for the feature importance evaluation
were downloaded from the The Human Transcription Factors repository.
For GM12878, topologically associating domains (TADs) were downloaded from

TADKB111 and subTADs were obtained by running GMAP112. For H1-hESC and HFF-
hTERT, both TADs and subTADs were obtained by running GMAP112.
For our duplication experiment, we obtained the duplicated Hi-C for the 2.1 Mbp

region between 67.95 and 70.08Mbp in chromosome 7 from Melo et al.68.
For our anchor deletion experiment, we obtained the 5C data for the TAL1 and LMO2

fragments in chromosome 1 and 11 from Hnisz et al.80.
Pseudo-bulk single-cell Hi-C (scHi-C) data was downloaded using the GEO accession

number GSM2254215. We used the validPairs file to filter the data based on
chromosome, positions and barcodes. We then obtained the number of reads aligned to
hg19 corresponding to each distinct pair of bar codes from the percentages file.
Refer to the section “Methods” and Supplementary Table 2 for additional details.

Code availability
The code repository for this project, including training, evaluation, data handling, and
generated data can be found in our GitHub repository90.
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