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The Phanerozoic Eon has witnessed considerable changes in the climate system as well as abundant 
animals and plant life. Therefore, the evolution of the climate system in this Eon is worthy of extensive 
research. Only by studying climate changes in the past can we understand the driving mechanisms 
for climate changes in the future and make reliable climate projections. Apart from observational 
paleoclimate proxy datasets, climate simulations provide an alternative approach to investigate 
past climate conditions of the Earth, especially for long time span in the deep past. Here we perform 
55 snapshot simulations for the past 540 million years, with a 10-million-year interval, using the 
Community Earth System Model version 1.2.2 (CESM1.2.2). The climate simulation dataset includes 
global distributions of monthly surface temperatures and precipitation, with a 1° horizontal resolution 
of 0.9° × 1.25° in latitude and longitude. This open access climate dataset is useful for multidisciplinary 
research, such as paleoclimate, geology, geochemistry, and paleontology.

Background & Summary
The Phanerozoic Eon, comprising the Paleozoic, Mesozoic, and Cenozoic Eras, covers the last 542 million years 
(Myr) of Earth’s history, which is about 12% of the history of our planet1. Climate states over the Phanerozoic 
Eon consist of alternating warm and cool intervals. The classical feature of Phanerozoic climate history is the 
“double hump” temperature variations2–4, with warm climate in the Early Paleozoic, cooler climate in the Late 
Paleozoic, followed by warmer climate in the Mesozoic and Early Cenozoic and cooler climate in the Late 
Cenozoic5.

It is acknowledged that proxy records provide precious evidence for paleoclimate studies. However, due to 
unavoidable uncertainties of proxy records, sparse records with limited spatial coverage, and the fact that many 
proxies may respond to multiple climatic variables or even non-linear combinations of variables6, it is far from 
adequate for proxy records to provide global climate patterns. For example, only climatic zonation has been 
inferred from compilations of lithologic climate indicators, such as coals and evaporites in the Phanerozoic 
Eon5,7–10. Alternatively, climate models are a useful tool to simulate paleoclimates. Especially, climate models are 
able to generate global distributions of climate variables with rather fine spatial resolution, and climate variables 
are self-constrained by dynamical, physical and chemical processes in climate models. It not only makes up the 
defects of proxy records but also can be used to check the reliability of proxies.

Paleoclimate simulations for a long span of time are computationally expensive and time-consuming. To 
our knowledge, there have been few simulation studies covering the whole Phanerozoic Eon. Landwehrs et 
al.11 performed 40 time-slice simulations for the period from 255 million years ago (Ma) to 60 Ma, using the 
CLIMBER-3α Earth System Model of Intermediate Complexity (EMIC) that has a relatively coarse spatial res-
olution. The Bristol Research Initiative for the Dynamic Global Environment (BRIDGE) group at University 
of Bristol has produced large datasets of paleoclimate simulations12–14. Especially, Valdes et al.15 conducted 109 
time-slice simulations that cover the entire Phanerozoic, using a coupled atmosphere–ocean–vegetation model.

Here, we perform 55 snapshot simulations for the Phanerozoic Eon with a time interval of 10 Myr, using the 
Community Earth System Model version 1.2.2 (CESM1.2.2). The dataset has a high resolution of 0.9° × 1.25° in 
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latitude and longitude. It offers elaborate global distributions of monthly surface temperatures and precipitation 
throughout the Phanerozoic Eon. It can be referenced and cross validated by research fields across geology, 
paleobiology, geochemistry, etc.

Methods
CESM1.2.2.  The CESM1.2.2 is a coupled climate model that consists of atmosphere, ocean, land, sea-ice and 
river components, which are linked through a coupler that interacts and exchanges state information and fluxes 
among the components16. The fully coupled CESM has been successfully implemented for simulating past and 
modern climates17–24.

Two versions of the CESM1.2.2 are used in this study. One is a fully-coupled version which uses a T31 
spectral dynamical core for the atmospheric (Community Atmosphere Model version 4, CAM425) and land 
(Community Land Model version 4, CLM426) components (horizontal grid of 3.75° × 3.75°) with 26 atmos-
pheric layers in the vertical. The ocean (Parallel Ocean Program version 2, POP227) and sea-ice (Community 
Ice CodE version 4, CICE428) components employ a nominal 3° irregular horizontal grid (referred to as g37) 
with 60 oceanic layers in the vertical. The River Transport Model (RTM) has a default resolution of 0.5° × 0.5° in 
latitude and longitude, which directs all runoff to oceans, without interior drainage loops based on computations 
of surface topography.

The other one is the atmosphere-land-coupled version which applies the finite-volume dynamical core with 
a 1° atmosphere (f09: 0.9° × 1.25° latitude versus longitude) with the same vertical levels as T31. For this version 
of simulations, the model is driven by prescribed climatological monthly mean sea surface temperatures (SSTs), 
sea-ice (SI), and annual mean land vegetation, which are derived from the T31_g37 equilibrium simulations. 
Model performance of these two versions has been assessed and validated for modern conditions29,30.

CLM4 incorporates a carbon–nitrogen (CN) cycle component that is prognostic in carbon, nitrogen and 
vegetation phenology31. Note that here carbon and nitrogen fluxes are purely diagnostic and are not passed to 
the atmosphere, and thus do not influence atmospheric CO2 concentrations26. Even though the carbon fluxes are 
only diagnostic, the CN model will have an influence on the climate simulation because seasonal and interan-
nual vegetation phenology, i.e., leaf area index (LAI) and vegetation height, is prognostic30. In addition, CLM4 
has the option to run the CN model with dynamic vegetation (CNDV)32,33. CNDV modifies the CN framework 
to implement plant biogeography updates, and simulates unmanaged vegetation including tree, grass, and also 
shrub34 plant functional types (PFTs). It is worth pointing out that the PFTs are the same for all simulations, 
and that plant evolution is not considered in this study. Establishment of new PFTs is based on the warm-
est minimum monthly air temperature and minimum annual growing degree-days above 5 °C, and minimum 
precipitation of 100 mm yr−1 is required to introduce new PFTs. Survival is based on the coldest minimum 
monthly air temperature35. PFTs must be able to survive in order to establish. CNDV simulates a reasonable 
present-day distribution of PFTs but underestimates tundra vegetation cover33. Here the CNDV is active only in 
the fully-coupled T31_g37 model to generate PFTs.

Experimental set-up.  Boundary conditions.  We perform 54 time-slice simulations from 540 Ma to 10 Ma, 
with a time interval of 10 Myr between each two snapshot simulations. The pre-industrial simulations will be 
described later. Paleogeographic maps from the paleo-digital elevation model (paleoDEM)36 are used here as 
boundary conditions. The paleoDEM elaborates the changing distribution of deep oceans, shallow seas, lowlands, 
and mountainous regions, which is an estimate of the elevation of the land surface and depth of the ocean basins 
measured in meters with a resolution of 1° × 1°. The digital paleogeographic maps are interpolated according to 
model resolutions with minor changes of the land-sea masks for the purpose of model stability. Note that the 
paleogeographic maps do not include information of ice sheets, and that there are no prescribed ice sheets for 
simulations from 540 Ma to 10 Ma. The initial land surface is set as warm grassland, and the surface soil is set to 
a uniform loam.

CO2 concentrations and solar radiation.  Different from previous simulation studies, here we use reconstructed 
global mean surface temperatures (GMSTs; All GMSTs herein are annual means.)37,38 to constrain our simula-
tions, rather than using reconstructed CO2 concentrations. This alternative approach of simulations is equivalent 
to using reconstructed GMSTs to “predict” atmospheric CO2 concentrations. Thus, it is worthy here to briefly 
introduce the methodology of the GMST reconstruction37,38.

The time series of Phanerozoic GMSTs was reconstructed by combining estimations of pole-to-equator tem-
perature gradients derived from lithologic records and tropical temperatures derived from oxygen isotopes5. 
First, five major Köppen belts are mapped, using lithologic indicators of climate (tillites, evaporites, coals, baux-
ites, etc.). Based on modern climate conditions, temperatures are assigned to each of the Köppen belts, so that 
the zonal mean pole-to-equator temperature profiles can be obtained. Second, oxygen isotopic values are con-
verted to estimate tropical temperatures, with modifications based on geological and paleontological consider-
ations. As a result, GMSTs can be calculated using meridional temperature profiles and tropical temperatures. 
Readers can refer to Scotese et al.5 for comprehensive description of the methodology in deriving the GMSTs 
and its uncertainties.

For simulations from 540 Ma to 10 Ma, CO2 concentrations are tuned until simulated GMSTs are asymptotic 
to reconstructed GMSTs within ± 0.5 °C. In the process of tuning CO2 concentrations, we first estimate the 
required CO2 concentration according to the climate sensitivity of the T31_g37 version and use it to force the 
model. After running the model for about 2000 years, we check the simulated GMST and decide to increase or 
decrease the CO2 concentration. We need to try a few times until the difference between the simulated GMST 
and the reconstruction value is within ± 0.5 °C at the equilibrium state in which the net radiation at the top of 
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the atmosphere (TOA), averaged over the last 100 model years, is within ± 0.1 W m−2. Except for the CO2 con-
centration, all other atmospheric compositions are set to the pre-industrial (PI) values.

Solar radiation is linearly increased from 1302 W m−2 at 540 Ma to 1361 W m−2 at the present, with an 
increasing rate of about 0.08% per 10 Myr39. Orbital parameters are set to the present values. A summary of CO2 
concentrations and solar radiation used in our simulations is given in Table 1.

Two-step simulations.  For the first step of simulations, the fully coupled T31_g37 CESM1.2.2 is used. The key 
in this step of simulations is to tune CO2 concentrations until the simulated GMSTs are close to reconstructions 
at equilibrium states, that is, GMST differences between simulations and reconstructions are within ± 0.5 °C. We 
initialize surface temperatures of the atmospheric component model with zonally uniformly distributed values 
ranging from 20 °C at the equator to 1 °C at the poles for all simulations. Ocean temperature is initialized with 
a globally uniform vertical profile. Three types of vertical temperature profiles are chosen. For cold periods, the 
vertical temperature profile varies from 15 °C at the surface to 2 °C at the bottom. For warm periods, the vertical 
profile varies from 20 °C to 4 °C. For hot periods, the vertical profile varies from 24 °C to 8 °C. The reason why we 
choose the three types of vertical temperature profiles is to have simulations reach equilibrium states faster. The 
initial ocean salinity is globally and vertically uniform, with a value of 35 psu, for all simulations. SI and PFTs 
are initially set to zero. In all the simulations, there are no prescribed ice sheets, except for the PI simulation.

All simulations are integrated for more than 4000 model years to reach equilibrium states at which the net 
radiation at the TOA, averaged over the last 100 model years, is less than 0.1 W m−2. Some of the simulations 
are even run for more than 6000 model years. The model was run with the CNDV model to generate global 
vegetation cover.

For the second step of simulations, repeating annual cycles of monthly SSTs and SI, as well as annual mean 
vegetation cover, averaged over the last 100 model years in the first step of simulations are used to drive the f09 
atmosphere-land-coupled model. Paleogeography, CO2 concentrations, and solar radiation remain the same as 
those in the first step. All simulations are integrated for 100 model years so that the atmosphere model reaches 
equilibrium states. The results presented here are the averages over the last 60 model years.

Pre-industrial simulation.  For reference, the PI simulations are performed with the modern continental con-
figuration and the model default PI vegetation cover and ice sheets. CO2 concentration is set to the PI value, 
i.e., 280 ppmv. The solar constant is set as 1361 W m−2. All other conditions are set to the PI default values. Note 
that the PI f09 simulation is not driven by the SSTs, SI, and vegetation derived from the T31_g37 run, but by the 
model default PI conditions.

Data Records
The datasets are constructed in the form of the NetCDF File ‘High_Resolution_Climate_Simulation_
Dataset_540_Myr.nc’ and can be found in the Figshare repository40. Climate variables include monthly surface 
temperatures (T; unit: °C; Not surface air temperatures), precipitation (P; unit: mm month−1), fraction of surface 
land area (LANDFRAC; unit: fraction), surface geopotential (PHIS; unit: m2 s−2), surface albedo (SALB; unit: 
fraction), and zonal (U; unit: m s−1) and meridional (V; unit: m s−1) winds at 1000 hPa, averaged over the last 60 
model years. T, P, SALB, U, and V have the dimensions of 55 (simulation) × 12 (month) × 192 (latitude) × 288 
(longitude). LANDFRAC and PHIS have the dimensions of 55 (simulation) × 192 (latitude) × 288 (longitude).

Figure 1a shows the time series of simulated GMSTs (black line), which range from about 12 °C to about 
27 °C over the past 540 Myr. The simulated GMSTs match the reconstructed GMSTs by Scotese37,38 (red asterisks) 
very well. A full list of simulated annual mean GMST values is presented in Table 1. Figure 1b shows the evo-
lution of simulated zonal mean surface temperatures. First, zonal mean surface temperatures also demonstrate 
the “double hump” feature. Second, zonal mean surface temperatures show weaker meridional gradients during 
warmer periods such as the Early Paleozoic and the Mesozoic, and sharper meridional gradients during cooler 
periods such as the Late Paleozoic and the Late Cenozoic.

It is notable that the simulated equator-to-pole profiles of zonal mean surface temperatures are different 
from reconstructions by Scotese37,38, although the simulated and reconstructed GMSTs are almost the same. 
For example, Fig. 1c,d show zonal mean surface temperature profiles of cold climate (310 Ma) and hot climate 
(240 Ma), respectively. In both plots, the simulated surface temperatures are higher than reconstructions in the 
tropics and lower at middle latitudes, with sharper meridional gradients in the subtropics.

Figure 2a shows the time series of simulated global and annual mean precipitation. It ranges between 
950 mm yr−1 and 1400 mm yr−1 over the past 540 Myr. A full list of simulated global and annual mean precipita-
tion is shown in Table 1. Annual and zonal mean precipitation is shown in Fig. 2b. There are two rain bands near 
the equator, with the maximum precipitation of about 3000 mm yr−1. Note that the double rain bands could be 
due to the “double ITCZ” bias, which is a common problem for coupled atmosphere-ocean climate models41,42. 
The secondary rain bands are around 50°N and S, with the largest precipitation of about 1600 mm yr−1. Two 
relatively dry bands are around 30 °N and S, which are the subtropical dry zones. Precipitation in both polar 
regions is the lowest.

Figures 3 and 4 demonstrate global maps of annual mean surface temperatures and precipitation of the 
55 snapshot simulations, respectively. Figures 3bd and 4bd show modern surface temperatures and precipi-
tation averaged over 1979–2020, respectively. The temperature and precipitation datasets are reanalysis from 
the National Center for Environmental Prediction-Department of Energy (NCEP-DOE) Reanalysis 243 and 
the Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR) version 2.344, respectively. 
Figure 3w–aa show that annual mean surface temperatures over the south polar continents are as low as −24 °C, 
indicating formation of glaciers over 320–280 Ma. Similarly, Figs. 3az–bc show that annual mean surface tem-
peratures over both polar regions are below −20 °C. It suggests that polar ice caps could start from 30 Ma.

https://doi.org/10.1038/s41597-022-01490-4


4Scientific Data |           (2022) 9:371  | https://doi.org/10.1038/s41597-022-01490-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

Simulation Year (Ma) CO2 (×280 ppmv) Solar radiation (W m−2) Surface temperature (°C) Precipitation (mm yr−1)

1 540 28 1302.20 26.4 1301

2 530 27 1303.29 26.3 1311

3 520 23 1304.38 26.0 1324

4 510 23 1305.47 25.9 1316

5 500 25 1306.56 26.0 1329

6 490 25 1307.65 26.3 1346

7 480 24 1308.74 26.7 1366

8 470 23 1309.83 26.5 1358

9 460 16 1310.92 24.1 1286

10 450 6 1312.00 19.2 1177

11 440 6 1313.09 18.4 1144

12 430 7 1314.18 21.2 1233

13 420 6 1315.27 21.3 1252

14 410 8 1316.36 21.8 1238

15 400 9 1317.45 23.0 1258

16 390 18 1318.54 25.1 1334

17 380 15 1319.63 25.1 1329

18 370 11 1320.71 22.9 1270

19 360 8 1321.80 20.8 1202

20 350 8 1322.89 19.8 1187

21 340 8 1323.98 20.2 1200

22 330 7 1325.07 19.2 1159

23 320 6 1326.16 17.5 1102

24 310 2.8 1327.25 13.5 1014

25 300 3.5 1328.34 15.8 1070

26 290 2.3 1329.42 12.5 970

27 280 3 1330.51 15.2 1022

28 270 6.5 1331.60 19.2 1090

29 260 10 1332.69 22.0 1152

30 250 25 1333.78 25.8 1195

31 240 28 1334.87 25.5 1162

32 230 24 1335.96 25.1 1162

33 220 20 1337.05 24.7 1179

34 210 20 1338.14 24.2 1152

35 200 17 1339.22 22.9 1101

36 190 10 1340.31 20.3 1110

37 180 10 1341.40 19.8 1087

38 170 7 1342.49 19.1 1138

39 160 6 1343.58 19.4 1127

40 150 7 1344.67 19.8 1127

41 140 10 1345.76 20.6 1135

42 130 9 1346.85 21.3 1176

43 120 9 1347.93 22.3 1212

44 110 9 1349.02 23.0 1235

45 100 9 1350.11 23.8 1259

46 90 8 1351.20 24.2 1276

47 80 7 1352.29 24.3 1284

48 70 8 1353.38 23.4 1208

49 60 6.5 1354.47 22.3 1194

50 50 7 1355.56 22.6 1211

51 40 4.9 1356.64 20.2 1148

52 30 2.6 1357.73 16.1 1044

53 20 2.6 1358.82 15.6 1037

54 10 2.6 1359.91 15.6 1033

55 Pre-industrial 1 1360.89 14.3 1048

Table 1.  Atmospheric CO2 concentrations, solar radiation, and simulated global and annual mean surface 
temperatures and precipitation for the 55 snapshot simulations in this study.
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Fig. 1  (a) Time series of annual mean GMSTs for the past 540 million years. Black line denotes simulated 
annual mean GMSTs. The red asterisks denote reconstructed GMSTs by Scotese37,38. The black asterisk 
denotes the annual mean GMST averaged for 1979–2020, using the data from NCEP-DOE Reanalysis 243. (b) 
Variations of simulated annual and zonal mean surface temperatures for the past 540 million years. Annual 
and zonal mean surface temperature profiles for (c) 310 Ma and (d) 240 Ma. Red line denotes simulated surface 
temperatures using CESM1.2.2. Blue line denotes reconstructed surface temperatures by Scotese37,38. GMST, 
global mean surface temperature; NCEP-DOE, National Center for Environmental Prediction-Department of 
Energy; Ma, million years ago; CESM1.2.2, Community Earth System Model version 1.2.2.

Fig. 2  Simulated precipitation for the past 540 million years. (a) Time series of global and annual mean 
precipitation, and (b) variations of simulated annual and zonal mean precipitation.
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Technical Validation
As mentioned in the Methods section, atmospheric CO2 concentrations are predicted by reconstructed GMSTs 
in the present study. Figure 5 compares CO2 concentrations between our simulations (blue line) and recon-
structions (orange line and shadings)45. Clearly, CO2 concentrations in our simulations are several times higher 
than reconstructions. This is due to two major reasons. One is the equilibrium climate sensitivity (ECS) of 
CESM1.2.2, and the other one is related to the dynamic vegetation model used in our simulations.

Fig. 3  Global distributions of simulated annual mean surface temperatures from 540 Ma to the pre-industrial 
(a–bc). Panel (bd) is the annual mean surface temperature averaged over 1979–2020, using the data from 
NCEP-DOE Reanalysis 243. Ma, million years ago; NCEP-DOE, National Center for Environmental Prediction-
Department of Energy.
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Equilibrium climate sensitivity of CESM1.2.2.  The ECS of the T31_g37 CESM1.2.2 used here is 2.9 °C46. 
According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6)47, the 
likely range of ECS is between 2.5 °C and 4.0 °C, and the best estimate value is 3.0 °C. Thus, the ECS of T31_g37 
CESM1.2.2 is close to the best estimate in IPCC-AR6.

Fig. 4  Global distributions of simulated annual mean precipitation from 540 Ma to the pre-industrial (a–bc). 
Panel (bd) is the annual mean precipitation averaged over 1979–2020, using the data from GPCP version 2.344. 
Ma, million years ago; GPCP, Global Precipitation Climatology Project.
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Uncertainty from the dynamic vegetation model.  It is found that the dynamic vegetation model used 
here generates rather low areal vegetation coverage in all simulations, which could cause cold biases in the sim-
ulated GMSTs. To verify this, we perform two PI simulations, one with the CNDV, and the other one with pre-
scribed default vegetation (64% vegetation cover). The former generates 25% vegetation cover per land grid cell 
on average, and the corresponding GMST is 10.6 °C. The latter yields a GMST of 13.1 °C, 2.5 °C higher than that 
with the CNDV. It suggests that the CNDV indeed causes cold biases and leads to an overestimation of the CO2 
concentrations by about 1.8 times as the ECS of 2.9 °C per doubling atmospheric CO2 is considered.

Code availability
The source code of CESM1.2.2 can be accessed at https://www.cesm.ucar.edu/models/cesm1.2. The scripts 
used to generate the datasets and figures have been written using the NCAR Command Language version 6.6.2 
(NCL6.6.2)48 and are available in the Figshare repository40.
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