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ABSTRACT
Background  Diagnosis of cardiac amyloidosis (CA) 
requires advanced imaging techniques. Typical surface 
ECG patterns have been described, but their diagnostic 
abilities are limited.
Objective  The aim was to perform a thorough 
electrophysiological characterisation of patients with CA 
and derive an easy-to-use tool for diagnosis.
Methods  We applied electrocardiographic imaging 
(ECGI) to acquire electroanatomical maps in patients 
with CA and controls. A machine learning approach was 
then used to decipher the complex data sets obtained 
and generate a surface ECG-based diagnostic tool.
Findings  Areas of low voltage were localised in 
the basal inferior regions of both ventricles and the 
remaining right ventricular segments in CA. The earliest 
epicardial breakthrough of myocardial activation was 
visualised on the right ventricle. Potential maps revealed 
an accelerated and diffuse propagation pattern. We 
correlated the results from ECGI with 12-lead ECG 
recordings. Ventricular activation correlated best with 
R-peak timing in leads V1–V3. Epicardial voltage showed 
a strong positive correlation with R-peak amplitude in 
the inferior leads II, III and aVF. Respective surface ECG 
leads showed two characteristic patterns. Ten blinded 
cardiologists were asked to identify patients with CA 
by analysing 12-lead ECGs before and after training 
on the defined ECG patterns. Training led to significant 
improvements in the detection rate of CA, with an area 
under the curve of 0.69 before and 0.97 after training.
Interpretation  Using a machine learning approach, 
an ECG-based tool was developed from detailed 
electroanatomical mapping of patients with CA. The ECG 
algorithm is simple and has proven helpful to suspect CA 
without the aid of advanced imaging modalities.

INTRODUCTION
Cardiac amyloidosis (CA) is a rapidly progressive 
form of cardiomyopathy with poor prognosis.1 2 
Cardiac involvement arises from the deposition of 
insoluble fibrous material of misfolded precursor 
proteins in the heart.3 The typical clinical presen-
tation includes signs and symptoms of heart failure 
(HF), complicated by rhythm disturbances that 
may occur years before the onset of HF.4 Despite 
emerging disease-modifying therapies, diagnosis 
is often delayed and requires advanced imaging 

techniques.5 Typical surface ECG patterns such as 
low voltage or pseudo-infarct patterns have been 
described, but their diagnostic abilities are rather 
limited and their role in clinical practice is currently 
negligible.6

Recently, electrocardiographic imaging (ECGI) 
has been developed as a non-invasive modality to 
study electrophysiological abnormalities, arrhyth-
mogenic substrates and arrhythmias.7 Using ECGI, 
the aim of the present study was to obtain electro-
cardiographic maps of patients with CA. A machine 
learning approach was then used to decipher the 
complex data sets obtained by ECGI and helped 
to generate a simple surface ECG-based diagnostic 
algorithm for the detection of CA.

METHODS
Study design
Detailed electrocardiographic maps were obtained 
using ECGI in 20 consecutive patients with trans-
thyretin amyloidosis (ATTR)-CA in a non-invasive 
manner. Eleven patients with heart failure and 
preserved ejection fraction (HFpEF) served as 
controls (group 1). For ECG algorithm genera-
tion, electroanatomical maps generated from ECGI 
were correlated with ECG traces from 12-lead 
surface ECG recordings. Characteristic patterns 
of correlated leads were externally validated by 
comparing ECG trace representations from 30 
consecutive patients with CA and 50 patients with 
other causes of HF, including 25 patients with 
hypertrophic cardiomyopathy (HCMP) and 25 
patients with HFpEF (group 2). The algorithm was 
further validated in a blinded, randomised manner, 
with 10 independent cardiologists asked to classify 
clinical ECG tracings from group 2 as CA-nega-
tive or CA-positive before and after training on 
the proposed diagnostic algorithm. Finally, demo-
graphic and clinical characteristics were compared 
according to ECG patterns in 221 individual 
surface ECG readings from patients with amyloi-
dosis (group 3). A graphical representation of the 
study is depicted in online supplemental figure S1.

Patient and public involvement
Consecutive treatment-naïve patients with CA who 
had been registered in the amyloidosis outpatient 
clinic of the Medical University of Vienna were 
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prospectively enrolled. Eligible patients were asked to partici-
pate in the study after the diagnosis of CA has been confirmed. 
The algorithm for diagnosis of ATTR and cardiac light-chain 
(AL) amyloidosis is provided in online supplemental appendix. 
All patients gave written informed consent. Data from control 
patients were available from a prospective registry that included 
patients with HCMP and HFpEF (EK #1278/2018).

Trial procedures
Electrocardiographic imaging
The mapping process involved the fitting of a multi-electrode 
vest to capture electrical signals from the body surface of study 
participants. Electrical signals from 250 electrodes were then 
combined with heart–torso anatomical data from non-contrast 
gated CT scans to construct biventricular three-dimensional 
electroanatomical maps using the CardioInsight software 
(Medtronic, Fridley, Minnesota, USA).

Electroanatomical maps were defined as previously described, 
based on the normalised electrogram (EGM) magnitudes in 
millivolts (mV), the activation pattern in milliseconds (ms) and 
potential changes over time in mV.8 9

Voltage maps were derived from the magnitude of the unipolar 
EGMs over the entire epicardium in a given patient. Based on 
the normalised magnitude of voltage, abnormalities were clas-
sified as electrical scar regions <30% of the maximal magni-
tude and dense electrical scar regions <15%.8 Activation maps 
captured the time of the steepest slope of each electrical poten-
tial measured on the cardiac surface. Activation time was deter-
mined by the maximal negative slope of the EGM during QRS 
and adjusted for heart rate. Potential maps displayed electrical 
potentials at all locations on the heart surface at any time within 
the map interval. A ciné of the map interval was generated to 
study potential changes over time.

Electroanatomical maps generated from three consecutive 
ventricular beats were then projected onto normalised and 
coregistered anatomical heart surface models (online supple-
mental appendix). By calculating mean value maps, we visualised 
differences in voltage, activation and potential maps between CA 
and controls.

Machine learning
Differences in the coregistered activation and voltage maps of 
patients with CA and controls were visualised using the uniform 
manifold approximation and projection.10 Data were z-scored 
prior to analyses. Moreover, we investigated region-specific 
differences in cardiac activity by using the segmented anatom-
ical regions from the coregistered heart models and performed 
k-means clustering on activation and voltage map data. Due to 
the limited number of ECGI recordings and the goal to translate 
the results to surface ECG recordings, we used an unsupervised 
machine learning approach. The number of clusters was esti-
mated using the gap statistics.11 Since the number of clusters in 
patients with CA and controls was known a priori, we assessed 
whether k-means clustering with one or two clusters optimised 
the gap criterion. Furthermore, we evaluated the agreement 
between the clusters identified with k-means and the observed 
patient categories. Anatomical regions that showed the highest 
agreement between predicted and observed patient clusters were 
considered the regions with the highest predictive power for 
identifying patients with CA. To detect differences in excitation 
propagation, we calculated the covariance of the coregistered 
mean potential maps.

ECG processing
ECG traces from 12-lead surface ECG recordings were correlated 
with ventricular electroanatomical maps, acquired with ECGI 
and predefined by 19 anatomical regions (online supplemental 
appendix). Timing from onsets of the QRS complexes to the 
R-wave peaks (R-peak timing) was correlated with the activa-
tion maps, and the amplitude of the R-peaks was correlated with 
voltage maps. Bonferroni-Holm correction was used to adjust 
for multiple testing.

Statistical analysis
Continuous data were presented as median and IQR and discrete 
data were presented as counts and percentages. For ECG algo-
rithm generation an analysis of variance (ANOVA) with a Tukey’s 
range post-hoc test was used to compare R-peak timing and the 
amplitude of the R-peaks across patients with CA, HCMP and 
HFpEF. Non-normally distributed data were log-transformed 
and approximate normal distribution was visually assessed using 
histogram plots. Repeated measurements were analysed using 
repeated measures ANOVA (RM-ANOVA). For validation of the 
diagnostic algorithm, we calculated the sensitivity, specificity, 
accuracy and Fleiss’ kappa of the classification results. Further-
more, we approximated a receiver operating curve of the cardi-
ologists’ binary ratings and treated the inter-rater variability as 
a discrimination threshold. Data processing and analyses were 
performed using Matlab V.2015(a) (MathWorks, Natick, Massa-
chusetts, USA) and we performed factor analysis of mixed data 
in R V.4.0.2 (R Foundation for Statistical Computing, Vienna, 
Austria). Alpha was 0.05 and statistical testing was two-tailed.

RESULTS
Patient characteristics
From June to September 2018, 20 patients with amyloidosis 
and 11 controls underwent ECGI. The clinical characteristics 
are summarised in table  1. At the time of recording, patients 
with transthyretin cardiac amyloidosis (ATTR-CA) had a median 
heart rate of 64 beats per minute. Half of the patients were in 
sinus rhythm. Of the patients, 40% had atrial fibrillation or 
flutter and two patients were pacemaker (PM)-dependent, in 

Table 1  Baseline demographic and clinical characteristics of patients 
with amyloidosis and controls fitted with ECGI

ATTR-CA (n=20) Controls (n=11) P value

Age, years (IQR) 76 (70–79) 74 (64–78) 0.528

Male gender, n (%) 16 (80) 4 (36) 0.15

Body mass index, kg/m2 (IQR) 25 (23–27) 29 (25–32) 0.079

NYHA functional class, n (%) 0.391

II 12 (60) 6 (55)

III 8 (40) 4 (36)

Atrial fibrillation, n (%) 11 (55) 7 (64) 0.641

Hypertension, n (%) 5 (25) 5 (47) 0.244

Pacemaker or ICD, n (%) 6 (30) 2 (18) 0.183

Therapy with beta-blockers, n (%) 7 (35) 9 (82) 0.013

 � NT-proBNP, pg/mL (IQR) 3061 (1837–5136) 948 (468–5586) 0.113

 � LVEF, % (IQR) 51 (41–59) 59 (51–60) 0.165

 � Interventricular septum, mm 
(IQR)

22 (19–25) 13 (12–17) 0.001

Values are given as median and IQR, or total number (n) and %.
ATTR-CA, transthyretin cardiac amyloidosis ; ECGI, electrocardiographic imaging; 
ICD, intracardiac cardioverter defibrillator; LVEF, left ventricular ejection fraction; 
NT-proBNP, N-terminal prohormone of brain natriuretic peptide; NYHA, New York 
Heart Association.
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whom it was not possible to record an intrinsic signal during 
the application. Patients’ surface ECG showed low voltage with 
amplitudes <0.5 mV in limb leads in 20%, atrioventricular block 
in 35% with a median PQ interval of 201 ms (IQR: 190–228), 
and a ventricular conduction delay in 60% with a median QRS 
interval of 100 ms (IQR: 86–108; table 2).

Electrocardiographic imaging
Electroanatomical maps indicated that ventricles of patients with 
CA exhibited significantly lower voltage and faster activation 
time compared with controls (median voltage in mV: 2 (IQR 
2–4) in CA vs 4 (IQR 2–5) in controls; median activation time 
in ms: 53 (IQR 36–72) in CA vs 72 (IQR 63–89) in controls, 
p<0.001, RM-ANOVA).

Detailed examination of the ventricular voltage maps provided 
further information. Principal component analysis (PCA) showed 
two different clusters between CA and controls. Mean anatomi-
cally segmented voltage maps of CA displayed the lowest voltage 
in the right ventricular and left ventricular inferobasal regions 
(figure  1 and online supplemental figure S2). Electrical scar 
region was localised in the basal inferior regions of both ventri-
cles and in the remaining right ventricular segments. Predefined 
areas of electrical scarring below the 30th and 15th percentile 
of the maximum amplitude revealed significantly lower voltage 
values in patients with CA compared with controls (mean voltage 
of areas ≤30%: 1.18±0.54 in CA vs 2.00±0.76 in controls, 
corrected p<0.001; mean voltage of areas ≤15%: 0.95±0.54 
in CA vs 2.00±0.76 in controls, p<0.001, both RM-ANOVA). 
The spatial distribution of electrical scar tissue showed a greater 
extent of low voltage in almost all segments of patients with CA, 
with particularly affected areas in the basal, inferior and right 
ventricular segments.

The earliest epicardial breakthrough of the myocardial activa-
tion was visualised on the right ventricle in CA (figure 2). PCA 
of mean activation maps identified two distinct clusters as well as 
characteristic outliers being either bifascicular blocks with right 

bundle branch block (RBBB) and left anterior fascicular block 
(LAFB) or PM. Outliers were excluded from further analysis.

Region-specific PCA revealed significant variability between 
the activation patterns of CA and controls. Greatest cluster 
differences could be found in the basal regions of both ventri-
cles, the left mid-anterolateral segment of the left ventricle and 
the remaining right ventricular regions.

Ventricular propagation of mean potential maps confirmed a 
faster depolarisation in CA compared with controls (depolarisa-
tion time: 88 ms in CA vs 95 ms in controls, p<0.001; figure 3). 
Calculated covariance indicated a disordered excitation sequence 
in patients with CA (level of covariance at the time of depolar-
isation: 0.3 in CA and 1.3 in controls, p<0.001, RM-ANOVA; 
figure  3). The clear correlation of segments connected by the 
excitation sequence in the functional connectivity analysis of 
controls was lost in CA, suggesting a rather diffuse propagation 
pattern.

ECG algorithm
In the next step, we correlated the results obtained by ECGI 
with routine 12-lead surface ECG recordings of group 1. Epicar-
dial voltage showed a strong positive correlation with R-peak 
amplitude in the inferior leads II, III and augmented voltage foot 
(aVF) and a negative correlation in leads V1 and V2. Ventricular 
activation correlated best with R-peak timing in leads V1–V3 
(figure 4).

Comparison of mean ECG trace representations of individual 
ECGs from 30 consecutive patients with CA, 25 patients with 
HCMP and 25 patients with HFpEF of group 2 revealed signif-
icant differences in the respective leads of R-peak timing and 
amplitude (online supplemental figure S3).

Surface ECG leads from patients with CA showed two charac-
teristic patterns that are visually perceptible using the following 
algorithm (figure 5): in the first step V1–V3 have to be inter-
preted. In case of delayed R progression, leads II, III and aVF 
should be checked for reduced voltage less than or equal to 1 mV. 
The presence of both criteria corresponds to pattern 1 (online 
supplemental figure S4) and should be followed by guideline-
conforming diagnostic work-up. In the absence of pattern 1, 
the presence of pattern 2 should be checked, characterised by 
a bifascicular block, that is, RBBB, in V1 and V2 and negative 
concordance in the inferior leads (online supplemental figure 
S5).

In the final set of experiments, 10 cardiologists with long-
standing experience in CA management were asked to iden-
tify patients with CA by analysing 12-lead ECGs from group 
2 (30 CA and 50 controls with other types of HF), before and 
after training on the defined diagnostic algorithm. The training 
resulted in significant improvements in the detection rate of 
CA with an area under the curve of 0.69 before and 0.97 after 
training (naïve vs trained cardiologists: sensitivity: 0.32±0.19 
vs 0.89±0.08, p<0.001; specificity: 0.80±0.09 vs 0.96±0.01, 
p<0.01; Fleiss’ kappa: −0.01, p=0.71 vs −0.87, p<0.001; 
online supplemental figure S6).

Specific ECG patterns and clinical characteristics
Surface ECGs from 221 patients with CA (group 3) participating 
in our registry displayed pattern 1 in 63% and pattern 2 in 19% 
of cases. The remaining 18% displayed none of the two patterns, 
of which 38% had a PM ECG. All ECGs without a typical combi-
nation pattern showed at least one of the subcriteria, such as lack 
of R progression, RBBB or LAFB.

Table 2  ECG characteristics of patients with amyloidosis fitted with 
ECGI (group 1) and the validation cohort (group 2)

ATTR-CA, group 1 
(n=20)

CA cohort, group 
2 (n=30)

Heart rate, bpm (IQR) 64 (56–77) 73 (64–81)

Rhythm, n (%)  � Sinus rhythm 10 (50) 18 (60)

 � Atrial fibrillation 6 (30) 9 (29)

 � Atrial flutter 2 (10) 1 (3)

 � Pacemaker 2 (10) 2 (8)

Low voltage*, n (%) 4 (20) 4 (12)

AV block, n (%) 7 (35) 10 (32)

PQ interval, ms (IQR) 201 (190–228) 196 (160–222)

Intraventricular 
conduction delay, 
n (%)

 � LAFB 6 (30) 11 (38)

 � LBBB 2 (10) 6 (20)

 � RBBB 4 (20) 8 (26)

QRS interval, ms (IQR) 100 (86–108) 120 (95–156)

QTc interval, ms (IQR) 451 (427–477) 473 (445–503)

Values are given as median and IQR, or total number (n) and %.
*Low voltage was defined by an amplitude <0.5 mV in limb leads or <0.75 mV in 
precordial leads.
ATTR-CA, transthyretin cardiac amyloidosis; AV, atrioventricular block; bpm, beats 
per minute; CA, cardiac amyloidosis; ECGI, electrocardiographic imaging; LAFB, left 
anterior fascicular block; LBBB, left bundle branch block; RBBB, right bundle branch 
block.
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Figure 1  Mean ventricular voltage maps generated from electrogram magnitudes in CA (A) and controls (B) indicate an increased deposition of 
amyloid in the basal inferior regions of both ventricles and the remaining right ventricular segments in CA. Electrical scar tissue was defined as the 
maximum amplitude below the 30th percentile of the measured maximum voltage (C) and dense electrical scar tissue below the 15th percentile 
(D), with significantly lower mean voltage values in patients with CA compared with controls. The spatial distribution of electrical scar tissue 
between cardiac models of patients with CA (E) and controls (F) shows a greater extent of low voltage in almost all segments of patients with CA, 
with particularly affected areas in the basal, inferior and right ventricular segments. ANOVA, analysis of variance; CA, cardiac amyloidosis; RV, right 
ventricle; RVOT, right ventricular outflow tract.
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Figure 2  Mean ventricular activation maps (normalised to heart rate) from CA (A) and controls (B) reveal an early epicardial breakthrough of the 
extraction on the right ventricle in CA. PCA of the activation maps from three consecutive ventricular beats of CA and controls identifies two distinct 
clusters and characteristic outliers had bifascicular blocks (left anterior fascicular block and right bundle branch block) or pacemakers (C). Cluster 
centroid distances of region-specific PCA with respect to activation patterns in CA and controls show the greatest cluster differences in the basal 
regions of both ventricles, the left mid-anterolateral segment of the left ventricle and the remaining right ventricular regions (D). AF, atrial fibrillation; 
bpm, beats per minute; CA, cardiac amyloidosis; LAFB, left anterior fascicular block; ms, miliseconds; PCA, principal component analysis; PM, 
pacemaker; RBBB, right bundle branch block; RV, right ventricle; RVOT, right ventricular outflow tract.
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Figure 3  Mean ventricular potential maps. QRS potential propagation according to anatomical regions in patients with CA (A) and controls (B) 
reveals a faster depolarisation in CA. The rarefied colour spectrum in A is explained by the lower voltage in CA compared with controls. As compared 
with CA (C), calculated covariance shows a distinct peak (yellow colour) at the time of depolarisation in controls (D), indicating a disordered 
excitation sequence in CA. In contrast to CA (E), functional connectivity within all annotated anatomical regions in controls (F) indicates a clear 
correlation of segments connected by the excitation sequence. In CA, this correlation is lost and indicates a rather diffuse propagation pattern. CA, 
cardiac amyloidosis; RV, right ventricle; RVOT, right ventricular outflow tract.
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Pattern 1 was found to be more common in AL amyloi-
dosis, while pattern 2 was more common in ATTR-CA 
(pattern 1: 78% of AL vs 58% of ATTR, p=0.009; pattern 

2: 7% of AL vs 23% of ATTR, p=0.006; no pattern: 16% 
of AL vs 18% of ATTR, p=0.620). A detailed analysis of 
the clinical parameters showed that patients with pattern 1 

Figure 4  Correlation between ECGI and 12-lead ECG in CA. (A) Correlation of R-peak amplitude from the mean surface ECG with the mean 
ventricular voltage map from ECGI generated from patients with CA. Asterisks indicate a significant positive (red) or negative (blue) correlation, with 
a strong positive correlation in inferior leads II and III and a strong negative correlation in V1 and V2. (B) Correlation of R-peak timing from 12-lead 
ECG with the mean ventricular activation map from ECGI of patients with CA with best correlation seen in surface ECG leads V1–V3. aVR, augmented 
voltage right; aVL, augmented voltage left; aVF, augmented voltage foot; CA, cardiac amyloidosis; ECGI, electrocardiographic imaging;; RV, right 
ventricle; RVOT, right ventricular outflow tract.
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Figure 5  Surface ECG criteria for detection of CA. Surface ECG leads from patients with CA show two alternative patterns commonly found in 
CA, providing a simple stepwise approach for ECG interpretation (A). The first step should include interpretation of V1–V3. In case of a delay in R 
progression, leads II, III and aVF should be checked for a reduced voltage. If both criteria are present, this corresponds to pattern 1. Alternatively, 
if a right bundle branch block is present in V1 and V2, inferior leads should be checked for negative concordance, resulting in pattern 2. Mean ECG 
representations (light blue indicates SD) of the two ECG patterns (B). aVF, augmented voltage foot; aVL, augmented voltage left; aVR, augmented 
voltage right; CA, cardiac amyloidosis.
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were younger than those with pattern 2 and those without 
a specific pattern (table  3). Compared with patients with 
pattern 1, patients with pattern 2 showed a trend towards 
higher New York Heart Association classes. Comparison of 
ECG features between ATTR and AL-CA showed that both 
entities were equally likely to have low voltages. Differences 
were seen in conduction delays, which occurred much more 
frequently in ATTR-CA (online supplemental table S1).

DISCUSSION
We developed a simple ECG-based CA detection tool and 
proved the concept that it is helpful in raising the suspi-
cion of CA without the aid of advanced imaging modalities. 
Beyond established knowledge on typical ECG alterations in 
CA, (1) we could provide a pathophysiological background 
for surface ECG findings in CA; (2) by machine learning we 
were able to develop an algorithm for more systematic ECG 
screening; and (3) we could refine previously used ECG 
criteria, for example, by scaling up the threshold for voltage 
from 0.5 mV to 1 mV.

Once considered a rare disease, it is now evident that the prev-
alence of CA is much higher than previously anticipated.12 13 
Given a whole new spectrum of medical therapies that can halt 
the progression of CA, there is an urgent need for simplified 
non-invasive diagnostic modalities to provide evidence of the 
presence of the disease.14–16

The presence of a low voltage electrocardiographic 
pattern, despite increased left ventricular wall thickness, 
is highly suggestive of CA and can differentiate CA from 

hypertensive or hypertrophic cardiomyopathy.17 However, 
only 25%–40% of patients with ATTR-CA meet the low 
voltage criteria and might even fulfil the criteria for left 
ventricular hypertrophy.18 The exact reasons for the low 
voltage ECG are not known. In AL amyloidosis, myocyte 
atrophy and cardiac toxicity due to circulating light chains 
are possible contributing factors.6 In patients with ATTR-
CA, correlations between low voltage and the presence of 
pericardial effusion were previously made,19 which could not 
be confirmed in our analyses. Mean voltage was significantly 
lower in patients with CA and correlation of 12-lead ECG 
with the mean ventricular voltage map revealed a strong 
positive correlation in inferior leads II, III and aVF. ECG 
tracings from patients with CA revealed that median voltage 
was low in inferior leads, but did not necessarily meet the 
low voltage threshold below 0.5 mV but rather below 1 mV.

By using non-invasive methods, it has become possible to 
perform detailed electrophysiological studies in patients with 
CA, which contribute to a better understanding of the patho-
physiological changes that cause the various ECG changes. 
Abnormal voltage areas seen in the basal inferior regions of both 
ventricles and the remaining right ventricular segments may 
indicate increased amyloid deposition in these regions. Early 
amyloid deposition in the right ventricle has been described in 
cardiac magnetic resonacestudies, but for technical and anatom-
ical reasons assessment of gadolinium enhancement is very diffi-
cult in this site.20 Our study could provide more insight into the 
pathogenesis of amyloid deposition in the heart, but this needs 
to be confirmed, in particular by histopathological studies.

Table 3  Demographic and clinical characteristics according to ECG patterns in 221 surface ECG readings from patients with amyloidosis

12-lead surface ECG

No pattern
n=39 (18%)

Pattern 1
n=140 (63%)

Pattern 2
n=42 (19%) P value

Age, years (IQR) 77 (70–80) 74 (68–79) 80 (73–84) 0.005

Male gender, n (%) 25 (83) 76 (83) 28 (78) 0.837

Body mass index, kg/m2 (IQR) 24 (23–28) 25 (23–28) 24 (23–26) 0.346

Diagnosis of cardiac amyloidosis, n (%) 0.012

 � Transthyretin amyloidosis 30 (77) 95 (68) 38 (91)

 � Light-chain amyloidosis 9 (23) 45 (32) 4 (10)

NYHA functional class ≥II, n (%) 28 (76) 114 (89) 36 (92) 0.057

6 min walk distance, m (IQR) 375 (318–437) 440 (337–530) 367 (290–446) 0.157

NT-proBNP, pg/mL (IQR) 2261 (800–4076) 3085 (1464–7173) 3469 (1802–6036) 0.134

Mean pulmonary arterial pressure, mm Hg (IQR) 27 (21–30) 32 (26–38) 33 (29–34) 0.277

Right atrial pressure, mm Hg (IQR) 8 (6–16) 11 (7–16) 13 (10–18) 0.329

Pulmonary artery wedge pressure, mm Hg (IQR) 16 (14–23) 21 (17–28) 19 (17–24) 0.566

Left ventricular end-diastolic pressure, mm Hg (IQR) 19 (16–19) 22 (16–26) 19 (19–20) 0.107

Left ventricular end-diastolic volume index, mL/m2 (IQR) 84 (61–98) 76 (60–87) 83 (68–87) 0.608

Right ventricular end-diastolic volume index, mL/m2 (IQR) 75 (65–96) 76 (63–94) 81 (79–99) 0.658

Interventricular septum, mm (IQR) 20 (17–22) 18 (16–20) 21 (16–24) 0.167

Left ventricular ejection fraction, % (IQR) 59 (47–65) 56 (47–62) 52 (38–61) 0.318

Right ventricular ejection fraction, % (IQR) 50 (39–58) 47 (38–59) 49 (35–55) 0.645

MOLLI-ECV, % (IQR) 50 (36–59) 45 (40–54) 45 (36–58) 0.74

Pleural effusion, n (%) 8 (30) 42 (40) 13 (47) 0.436

Pericardial effusion, n (%) 9 (33) 51 (46) 13 (45) 0.510

Left ventricular longitudinal peak systolic strain, % (IQR) −12 (−17 to −9) −12 (−15 to −9) −11 (−15 to −8) 0.518

Apical sparing of longitudinal strain, n (%) 28 (88) 92 (89) 23 (72) 0.046

Values are given as median and IQR, or total number (n) and %.
Bold indicates p<0.05.
MOLLI-ECV, modified Look-Locker inversion recovery sequence derived extracellular volume; NT-proBNP, N-terminal prohormone of brain natriuretic peptide; NYHA, New York 
Heart Association.
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The lack of R progression or often referred to as pseudo-infarction 
pattern in the anterior precordial leads was reported in descriptive 
studies in more than half of the affected patients.21 Nevertheless, 
both low ECG voltage and pseudo-infarct pattern are only present 
in about 25% of cases.19 As an electrophysiological correlate for the 
steep deflection in V1–V3, our mean ventricular activation maps 
revealed an early epicardial excitation breakthrough on the right 
ventricle. The infiltration of the right ventricular conduction system 
and its surrounding myocardium is likely to be the responsible 
substrate for early excitation breakthrough. Another rather unex-
pected finding was the faster depolarisation in patients with CA, 
which is most likely due to the earlier excitation breakthrough and 
the disordered excitation sequence.

PCA of the activation maps identified a group of outliers. 
After detailed analysis, outlier patients had either RBBB 
together with an LAFB or a PM ECG. Because the number 
of outliers without PM was relatively high (n=3), they were 
defined as pattern 2. Advanced infiltration of the right 
ventricle is more likely to lead to complete blockade of the 
right bundle, and similarly infiltration of the left ventricle 
may lead to LAFB. It is not surprising that pattern 2 was 
observed more frequently in patients with ATTR than with 
AL-CA because patients with AL-CA did not survive long 
enough to show characteristics of this pattern.

In summary, we propose here a simple ECG-based algorithm 
to raise the suspicion of CA irrespective of its aetiology. Clinical 
validation is underway to test whether our tool can contribute 
to meaningful improvement in the management of patients with 
HF by identifying those with CA-based disease.

Limitations
Our study is not free of limitations. First, the sample size of patients 
mapped with ECGI is rather small; nevertheless it is comparable 
with the number of patients in other publications using the same 
method.8 9 22 Furthermore, the group consists of consecutively 
recruited patients who were characterised very precisely and 
correspond to other typical amyloidosis cohorts.16 23 24 Second, 
the number of ECGI controls was not balanced to the CA cohort. 
However, the comparison group consisted of patients with a 
common differential diagnosis of CA. Third, the application of the 
proposed ECG algorithm was based on the interrogation of trained 
cardiologists, and some variation due to subjective interpretations 
cannot be completely excluded.

CONCLUSION
We have developed a simple ECG-based CA detection tool and 
proved the concept that it is helpful in raising the suspicion of 
CA without the aid of advanced imaging modalities. Ongoing 
studies will validate its usefulness in clinical practice.

Contributors  LS: conceptualisation, formal analysis, methodology, data curation, 
funding acquisition, project administration, investigation, resources, software, 
visualisation, writing - original draft. PA: formal analysis, methodology, software, 
validation, visualisation, writing - review and editing. AA: formal analysis, 
methodology, writing - review and editing. BS, FDus: investigation, validation, 
visualisation, writing - review and editing. RR, FDuc, DD, T-MD, CB: data curation, 
investigation, validation, writing - review and editing. RB-E: validation, investigation, 
writing - review and editing. JK: supervision, resources, writing - review and 
editing. DBe, CL: resources, software, writing - review and editing. CH, GL: funding 
acquisition, resources, writing - review and editing. GS: methodology, resources, 
software, validation, writing - review and editing. GD: methodology, resources, 
software, supervision, writing - review and editing. DBo: conceptualisation, 
methodology, data curation, funding acquisition, supervision, visualisation, writing - 
original draft,guarantor.

Funding  The authors have not declared a specific grant for this research from any 
funding agency in the public, commercial or not-for-profit sectors.

Competing interests  None declared.

Patient consent for publication  Obtained.

Ethics approval  The study was part of a registry approved by the local ethics 
committee (EK #796/2010) and conducted according to good clinical practice as 
outlined in the Declaration of Helsinki.

Provenance and peer review  Not commissioned; internally peer reviewed.

Data availability statement  All data relevant to the study are included in the 
article or uploaded as supplemental information.

Supplemental material  This content has been supplied by the author(s). It 
has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have 
been peer-reviewed. Any opinions or recommendations discussed are solely those 
of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and 
responsibility arising from any reliance placed on the content. Where the content 
includes any translated material, BMJ does not warrant the accuracy and reliability 
of the translations (including but not limited to local regulations, clinical guidelines, 
terminology, drug names and drug dosages), and is not responsible for any error 
and/or omissions arising from translation and adaptation or otherwise.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Lore Schrutka http://orcid.org/0000-0002-2731-2667

REFERENCES
	 1	 Merlini G, Palladini G. Light chain amyloidosis: the heart of the problem. 

Haematologica 2013;98:1492–5.
	 2	 Ruberg FL, Berk JL. Transthyretin (TTR) cardiac amyloidosis. Circulation 

2012;126:1286–300.
	 3	 Chiti F, Dobson CM. Protein misfolding, amyloid formation, and human disease: a 

summary of progress over the last decade. Annu Rev Biochem 2017;86:27–68.
	 4	 Falk RH, Rubinow A, Cohen AS. Cardiac arrhythmias in systemic amyloidosis: 

correlation with echocardiographic abnormalities. J Am Coll Cardiol 1984;3:107–13.
	 5	 Dorbala S, Cuddy S, Falk RH. How to image cardiac amyloidosis: a practical approach. 

JACC Cardiovasc Imaging 2020;13:1368–83.
	 6	 Rapezzi C, Merlini G, Quarta CC, et al. Systemic cardiac amyloidoses: disease profiles 

and clinical courses of the 3 main types. Circulation 2009;120:1203–12.
	 7	 Ramanathan C, Ghanem RN, Jia P, et al. Noninvasive electrocardiographic imaging for 

cardiac electrophysiology and arrhythmia. Nat Med 2004;10:422–8.
	 8	 Cuculich PS, Zhang J, Wang Y, et al. The electrophysiological cardiac ventricular 

substrate in patients after myocardial infarction: noninvasive characterization with 
electrocardiographic imaging. J Am Coll Cardiol 2011;58:1893–902.

	 9	 Zhang J, Cooper DH, Desouza KA, et al. Electrophysiologic scar substrate in relation to 
VT: noninvasive high-resolution mapping and risk assessment with ECGI. Pacing Clin 
Electrophysiol 2016;39:781–91.

	10	 Connor Meehan JE, Moore W, Meehan S. Uniform manifold approximation and 
projection (UMAP) 2021.

Key messages

What is already known on this subject?
	⇒ Despite new therapies, diagnosis of cardiac amyloidosis is 
often delayed.

	⇒ Typical surface ECG patterns have been described, but their 
role in clinical practice is negligible.

What might this study add?
	⇒ We have developed an easy-to-use ECG-based method that 
can provide an initial suspicion of cardiac amyloidosis.

How might this impact on clinical practice?
	⇒ Our tool may significantly improve the treatment of patients 
with heart failure by identifying those with amyloidosis-
related disease.

http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0002-2731-2667
http://dx.doi.org/10.3324/haematol.2013.094482
http://dx.doi.org/10.1161/CIRCULATIONAHA.111.078915
http://dx.doi.org/10.1146/annurev-biochem-061516-045115
http://dx.doi.org/10.1016/S0735-1097(84)80436-2
http://dx.doi.org/10.1016/j.jcmg.2019.07.015
http://dx.doi.org/10.1161/CIRCULATIONAHA.108.843334
http://dx.doi.org/10.1038/nm1011
http://dx.doi.org/10.1016/j.jacc.2011.07.029
http://dx.doi.org/10.1111/pace.12882
http://dx.doi.org/10.1111/pace.12882


1147Schrutka L, et al. Heart 2022;108:1137–1147. doi:10.1136/heartjnl-2021-319846

Heart failure and cardiomyopathies

	11	 Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via 
the gap statistic. J R Stat Soc Series B 2001;63:411–23.

	12	 Castaño A, Narotsky DL, Hamid N, et al. Unveiling transthyretin cardiac amyloidosis 
and its predictors among elderly patients with severe aortic stenosis undergoing 
transcatheter aortic valve replacement. Eur Heart J 2017;38:2879–87.

	13	 González-López E, Gallego-Delgado M, Guzzo-Merello G, et al. Wild-type transthyretin 
amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J 
2015;36:2585–94.

	14	 Ackermann EJ, Guo S, Booten S, et al. Clinical development of an antisense therapy 
for the treatment of transthyretin-associated polyneuropathy. Amyloid 2012;19(Suppl 
1):43–4.

	15	 Bodin K, Ellmerich S, Kahan MC, et al. Antibodies to human serum amyloid P 
component eliminate visceral amyloid deposits. Nature 2010;468:93–7.

	16	 Maurer MS, Schwartz JH, Gundapaneni B, et al. Tafamidis treatment for patients with 
transthyretin amyloid cardiomyopathy. N Engl J Med 2018;379:1007–16.

	17	 Rahman JE, Helou EF, Gelzer-Bell R, et al. Noninvasive diagnosis of biopsy-proven 
cardiac amyloidosis. J Am Coll Cardiol 2004;43:410–5.

	18	 Cyrille NB, Goldsmith J, Alvarez J, et al. Prevalence and prognostic significance of 
low QRS voltage among the three main types of cardiac amyloidosis. Am J Cardiol 
2014;114:1089–93.

	19	 Murtagh B, Hammill SC, Gertz MA, et al. Electrocardiographic findings in primary 
systemic amyloidosis and biopsy-proven cardiac involvement. Am J Cardiol 
2005;95:535–7.

	20	 Perugini E, Rapezzi C, Piva T, et al. Non-invasive evaluation of the myocardial 
substrate of cardiac amyloidosis by gadolinium cardiac magnetic resonance. Heart 
2006;92:343–9.

	21	 Cheng Z, Zhu K, Tian Z, et al. The findings of electrocardiography in patients with 
cardiac amyloidosis. Ann Noninvasive Electrocardiol 2013;18:157–62.

	22	 Zhang J, Sacher F, Hoffmayer K, et al. Cardiac electrophysiological substrate underlying 
the ECG phenotype and electrogram abnormalities in Brugada syndrome patients. 
Circulation 2015;131:1950–9.

	23	 Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for 
hereditary transthyretin amyloidosis. N Engl J Med 2018;379:11–21.

	24	 Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen treatment for patients with 
hereditary transthyretin amyloidosis. N Engl J Med 2018;379:22–31.

http://dx.doi.org/10.1111/1467-9868.00293
http://dx.doi.org/10.1093/eurheartj/ehx350
http://dx.doi.org/10.1093/eurheartj/ehv338
http://dx.doi.org/10.3109/13506129.2012.673140
http://dx.doi.org/10.1038/nature09494
http://dx.doi.org/10.1056/NEJMoa1805689
http://dx.doi.org/10.1016/j.jacc.2003.08.043
http://dx.doi.org/10.1016/j.amjcard.2014.07.026
http://dx.doi.org/10.1016/j.amjcard.2004.10.028
http://dx.doi.org/10.1136/hrt.2005.061911
http://dx.doi.org/10.1111/anec.12018
http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013698
http://dx.doi.org/10.1056/NEJMoa1716153
http://dx.doi.org/10.1056/NEJMoa1716793

	Machine learning-­derived electrocardiographic algorithm for the detection of cardiac amyloidosis
	Abstract
	Introduction
	Methods
	Study design
	Patient and public involvement
	Trial procedures
	Electrocardiographic imaging
	Machine learning
	ECG processing

	Statistical analysis

	Results
	Patient characteristics
	Electrocardiographic imaging
	ECG algorithm
	Specific ECG patterns and clinical characteristics

	Discussion
	Limitations

	Conclusion
	References


