Table 3.
Feature selection | Data set | PLSR | Elastic-Net | KRR | SVR | MLP | ELM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | ||
P | Cal | 0.35 | 2.1833 | 77.56 | 0.34 | 2.2054 | 78.35 | 0.47 | 1.9694 | 69.96 | 0.38 | 2.1379 | 75.45 | 0.37 | 2.1512 | 76.42 | 0.56 | 1.8191 | 63.70 |
Val | 0.26 | 2.6585 | 76.59 | 0.27 | 2.6521 | 76.41 | 0.32 | 2.5701 | 74.04 | 0.28 | 2.6446 | 76.19 | 0.26 | 2.6484 | 76.30 | 0.52 | 2.0215 | 65.55 | |
MIC | Cal | 0.36 | 2.1768 | 77.33 | 0.35 | 2.1960 | 78.01 | 0.50 | 1.9288 | 68.52 | 0.38 | 2.1374 | 75.93 | 0.3 | 2.1600 | 76.73 | 0.67 | 1.5799 | 55.89 |
Val | 0.26 | 2.6597 | 76.62 | 0.27 | 2.6538 | 76.46 | 0.32 | 2.5866 | 74.52 | 0.27 | 2.6573 | 76.56 | 0.23 | 2.7400 | 78.94 | 0.61 | 1.7314 | 57.55 | |
RF | Cal | 0.36 | 2.1675 | 77.00 | 0.36 | 2.1836 | 77.57 | 0.61 | 1.7156 | 60.95 | 0.43 | 2.0644 | 73.34 | 0.43 | 2.0475 | 72.74 | 0.56 | 1.8812 | 63.04 |
Val | 0.29 | 2.6074 | 75.12 | 0.30 | 2.6120 | 75.25 | 0.39 | 2.4805 | 71.46 | 0.36 | 2.5325 | 72.96 | 0.33 | 2.5268 | 72.80 | 0.41 | 2.1842 | 69.46 | |
RFE | Cal | 0.37 | 2.1531 | 76.49 | 0.36 | 2.1819 | 77.51 | 0.56 | 1.8106 | 64.32 | 0.47 | 1.9710 | 70.02 | 0.50 | 1.9305 | 68.58 | 0.73 | 1.4285 | 47.57 |
Val | 0.27 | 2.6515 | 76.39 | 0.27 | 2.6559 | 76.52 | 0.39 | 2.4342 | 70.13 | 0.32 | 2.5926 | 74.69 | 0.33 | 2.5404 | 78.19 | 0.72 | 1.4418 | 49.23 |
The values in bold represent models with the best results in linear and nonlinear methods.