Table 4.
Feature selection | Data set | PLSR | Elastic-Net | KRR | SVR | MLP | ELM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R 2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | ||
P | Cal | 0.29 | 2.2891 | 81.32 | 0.28 | 2.3116 | 82.12 | 0.43 | 2.0515 | 72.88 | 0.33 | 2.2290 | 79.19 | 0.30 | 2.2644 | 80.44 | 0.72 | 1.4666 | 50.09 |
Val | 0.27 | 2.6575 | 76.56 | 0.24 | 2.7222 | 78.43 | 0.41 | 2.3907 | 68.88 | 0.33 | 2.5235 | 72.70 | 0.24 | 2.6975 | 77.72 | 0.67 | 1.5518 | 57.96 | |
MIC | Cal | 0.28 | 2.2989 | 81.67 | 0.28 | 2.3107 | 82.09 | 0.31 | 2.2599 | 80.28 | 0.30 | 2.2868 | 81.24 | 0.29 | 2.2897 | 81.34 | 0.66 | 1.7020 | 53.09 |
Val | 0.25 | 2.6807 | 77.23 | 0.25 | 2.7053 | 77.94 | 0.36 | 2.5190 | 72.57 | 0.33 | 2.5240 | 72.72 | 0.29 | 2.6043 | 75.03 | 0.57 | 1.8765 | 56.86 | |
RF | Cal | 0.52 | 1.8897 | 67.13 | 0.50 | 1.9702 | 67.00 | 0.60 | 1.7164 | 60.97 | 0.57 | 1.7760 | 63.09 | 0.57 | 1.7789 | 63.19 | 0.77 | 1.3601 | 42.93 |
Val | 0.44 | 2.3066 | 66.45 | 0.43 | 2.3906 | 68.87 | 0.59 | 2.0112 | 57.94 | 0.58 | 2.0398 | 58.77 | 0.54 | 2.0940 | 60.33 | 0.74 | 1.4065 | 44.42 | |
RFE | Cal | 0.22 | 2.4007 | 85.28 | 0.20 | 2.4267 | 86.21 | 0.38 | 2.1502 | 76.38 | 0.24 | 2.3826 | 84.68 | 0.24 | 2.3685 | 84.14 | 0.86 | 1.0941 | 38.46 |
Val | 0.16 | 2.8485 | 82.07 | 0.12 | 2.9104 | 83.85 | 0.34 | 2.5443 | 73.30 | 0.18 | 2.8473 | 82.03 | 0.17 | 2.8186 | 81.20 | 0.83 | 1.1705 | 34.54 |
The values in bold represent models with the best results in linear and nonlinear methods.