Table 5.
Feature selection | Data set | PLSR | Elastic-Net | KRR | SVR | MLP | ELM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R 2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | R 2 | RMSE (t.ha−1) | rRMSE (%) | ||
P | Cal | 0.47 | 1.9824 | 70.42 | 0.47 | 1.9971 | 70.95 | 0.55 | 1.7202 | 64.66 | 0.51 | 1.9044 | 67.65 | 0.37 | 2.1631 | 76.84 | 0.75 | 1.4971 | 48.48 |
Val | 0.38 | 2.4432 | 70.39 | 0.38 | 2.4650 | 71.02 | 0.45 | 2.3235 | 66.94 | 0.42 | 2.3757 | 68.44 | 0.39 | 2.4377 | 70.23 | 0.70 | 1.6364 | 48.61 | |
MIC | Cal | 0.49 | 1.9446 | 69.66 | 0.49 | 1.9608 | 69.66 | 0.59 | 1.7382 | 61.75 | 0.53 | 1.8661 | 66.29 | 0.54 | 1.8334 | 65.13 | 0.78 | 1.3561 | 42.63 |
Val | 0.39 | 2.4048 | 69.28 | 0.40 | 2.4267 | 69.91 | 0.49 | 2.2275 | 64.17 | 0.44 | 2.3258 | 67.01 | 0.45 | 2.3142 | 66.67 | 0.75 | 1.5028 | 47.06 | |
RF | Cal | 0.44 | 2.0358 | 72.32 | 0.43 | 2.0754 | 73.73 | 0.73 | 1.4283 | 50.74 | 0.63 | 1.6923 | 60.12 | 0.65 | 1.6184 | 57.49 | 0.91 | 0.9277 | 29.34 |
Val | 0.33 | 2.5277 | 72.82 | 0.36 | 2.5190 | 72.57 | 0.62 | 1.9348 | 55.74 | 0.52 | 2.2403 | 64.54 | 0.49 | 2.2237 | 64.07 | 0.80 | 1.1699 | 37.64 | |
RFE | Cal | 0.47 | 1.9738 | 70.05 | 0.44 | 2.0503 | 72.76 | 0.53 | 1.8581 | 65.94 | 0.48 | 1.9775 | 70.18 | 0.46 | 1.9960 | 70.83 | 0.93 | 0.7279 | 25.88 |
Val | 0.38 | 2.4559 | 70.87 | 0.35 | 2.5136 | 72.54 | 0.45 | 2.3231 | 67.04 | 0.41 | 2.4028 | 69.34 | 0.31 | 2.5709 | 74.19 | 0.91 | 0.8516 | 31.64 |
The values in bold represent models with the best results in linear and nonlinear methods.