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In the brain, the insular cortex receives a vast amount
of interoceptive information, ascending through deep brain
structures, from multiple visceral organs. The unique
hierarchical and modular architecture of the insula suggests
specialization for processing interoceptive afferents. Yet,
the biological significance of the insula’s neuroanatomical
architecture, in relation to deep brain structures, remains
obscure. In this opinion piece, we propose the Insula
Hierarchical Modular Adaptive Interoception Control (IMAC)
model to suggest that insula modules (granular, dysgranular
and agranular), forming parallel networks with the
prefrontal cortex and striatum, are specialized to form higher
order interoceptive representations. These interoceptive
representations are recruited in a context-dependent manner to
support habitual, model-based and exploratory control of
visceral organs and physiological processes. We discuss
how insula interoceptive representations may give rise to
conscious feelings that best explain lower order deep brain
interoceptive representations, and how the insula may serve to
defend the body and mind against pathological depression.
1. Introduction
The human brain comprises various anatomical regions,
specialized for diverse functions, such as language, problem-
solving, decision-making, memory, motivation, inhibitory control,
emotion, motor control and social cognition [1]. Recent studies
have sought to understand how such highly complex
psychological processes, and pathological states, e.g. depression,
are influenced by interoception, the sensation of information
ascending to the brain from visceral systems, physiological
processes and circulating chemicals under the control of the
autonomic nervous system (ANS) [2–11]. The ANS is responsible
for processing and transmitting interoceptive information to the
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brain from the visceral organs that maintain survival functions, including the gastrointestinal,

cardiovascular, respiratory, thermoregulatory, hormonal and immune systems [3,4]. However, the
functions for which cortical brain regions receiving interoceptive afferents are specialized, and when
such functions are recruited for survival, remain obscure.

The brainstem is the region that receives direct interoceptive information ascending from the visceral
systems [1]. The brainstem contains several nuclei that receive interoceptive information, such as the
nucleus tract solitary (NTS), the medullary reticular formation, the parabrachial nucleus (PBN) and
the periaqueductal gray area (PGA). These nuclei are thought to generate innate, hard-wired, visceral
and hormonal responses to maintain all physiological survival functions and to cope with demands
imposed by the body and the environment [1,12]. In the cerebral cortex, the insula and anterior
cingulate cortex (ACC) are the main targets of interoceptive afferents arriving from the visceral
systems through thalamic nuclei [3,5,13–17]. However, while the ACC is a predominantly agranular
structure, i.e. it lacks a granular layer IV, the insula has a more complex organization with a
topographic neuroanatomical representation of visceral processes and three sub-regions with distinct
levels of laminar granularity, distribution of acetylcholinergic receptors, and patterns of local, cortical,
subcortical and brainstem connectivity [13,17–19] (figure 1). These cytoarchitectonic and anatomical
connectivity features suggest a central position and specialization of the insular cortex in processing
interoceptive information. This convergence of cortical and interoceptive information upon the insular
cortex has led to influential hypotheses concerning its potential roles in interoceptive prediction [14],
information integration for awareness [20,21], emotional awareness [22], interoceptive inference and
emotion [23,24] and error-based learning of feelings [25]. Despite the elegance and appeal of these
hypotheses, no one has yet explained why the brain needs a cortical insular representation of visceral
processes, given that the various brainstem nuclei and other subcortical systems, e.g. hypothalamus,
are sufficient to generate all necessary visceral and physiological adjustments to maintain the body’s
survival functions. These hypotheses have also suggested that insular functions are supported by its
interactions with other brain regions [14,21,22,25]. However, no details have been suggested regarding
mechanisms by which such interactions occur, nor their specific roles in interoception. Thus, it
remains unclear how insular functions interact with and are modulated by input from cortical,
subcortical and neuromodulatory systems, and whether such interactions underwrite survival.

In this opinion piece, we turn to studies of insula cytoarchitectonic organization, neuroanatomical
connectivity and recent theoretical formulations of brain function, such as allostasis, predictive coding,
and active inference, to put forward the Insula Hierarchical Modular Adaptive Interoception Control
(IMAC) model. The IMAC model proposes that the hierarchical and modular organization of the
insular cortex, supported by its reciprocal connections with the prefrontal cortex (PFC) and the
striatum, and modulated by the dopaminergic and acetylcholinergic systems, mediates (i) context- and
behaviour-dependent control and learning of visceral and physiological responses and (ii) higher-
order representation of conscious interoceptive feelings, which are built upon basic emotions and their
underlying visceral processes.

According to the theory of active inference, the brain uses internal generative models, acquired
through experience or by mental simulation, to continuously generate descending or top-down
predictions of expected sensory data [26–29]. In active inference, the goal of the agent is to find
optimal action policies, e.g. rules or strategies for quick selection of actions, muscle activation
patterns, decisions and social behaviors in a given context, that minimize free-energy, or prediction
errors, between predicted and actual sensory input generated by the agent’s interactions with, or
sampling of the environment, e.g. quality of social interactions at home or in public, street navigation
while driving or walking, selection of healthy food, learning to play a musical instrument, whether to
dribble or pass the ball while playing basketball, an infant learning to walk on a slippery or rough
surface [30,31]. The theory of allostasis proposes a similar predictive process for regulation of visceral
organs and physiological states of the body [7,32–34]. The allostasis model suggests that the brain and
visceral systems use innate or learned prior knowledge of physiological states, e.g. glucose levels and
heart rate, to predict future visceral and physiological states, thereby pre-emptively precluding
deviations or prediction errors from homeostatic setpoints. Recent studies have unified the concepts of
active inference and allostasis under the umbrella of active interoceptive inference to suggest that the
brain also creates and stores generative interoceptive models of the internal milieu of the body and
uses such interoceptive models to explain ascending interoceptive signals and to generate descending
interoceptive predictions to regulate and achieve desired states of the visceral organs and
physiological processes, such as heart rate, hormone release, activation of the immune system and
energetic metabolism [10,14,23,29,35,36]. According to the active interoceptive inference approach, the
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Figure 1. (a) Basic organization of neural pathways linking the parasympathetic and sympathetic branches of the autonomic nervous
systems to the insular cortex and their effects on visceral functions. (b) Schematic diagram of ascending interoceptive pathways to
the insula. (c) Distinct cortical and striatum connections that predominantly target each insula modular cytoarchitecture. gINS
(granular insula), dINS (dysgranular insula), aINS (agranular insula), VMb (ventromedial basal thalamus nuclei), VMpo
(ventromedial posterior thalamus nuclei), PV (paraventricular thalamus nuclei), HYP (hypothalamus), PBN (parabrachial nucleus),
PAG (periaqueductal gray), NTS (nucleus tractus solitarius), AP (area postrema), NAMB (nucleus ambiguus), MRF (medulla and
reticular formation), STT (spinothalamic tract), TGC (trigeminal complex), TGT (trigeminal thalamic tract), PPTN
(pedunculopontine tegmental nucleus), BNST (bed nucleus of the stria terminallis), LC (locus coeruleus), DR-MR (dorsal raphe
and median raphe), VTA-SNc (ventral tegmental area and substantia nigra pars compacta), NBM (nucleus basalis of Meynert),
Str (striatum), Hip (hippocampus), Amyg (amygdala), Hb (habenula), pStr ( posterior striatum), dStr (dorsomedial striatum), vStr
(ventral striatum), SMG (supramarginal gyrus), SMA (supplementary motor area), STG (superior temporal gyrus), DLPFC
(dorsolateral prefrontal cortex), MOFC (medial orbitofrontal cortex), MAPFC (medial anterior prefrontal cortex).
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goal of the agent and the brain is to find optimal interoceptive policies, e.g. visceral and physiological
response patterns that can be quickly selected for implementation in a given context, that minimize
interoceptive prediction errors between predicted and actual interoceptive input arriving from visceral
and physiological systems. Interoceptive policies are acquired by sampling visceral responses
occurring at a given time and context, e.g. heart rate and hyperventilation, e.g. lung inflation while
running, breathing speed, stomach motility and pain after a meal, bladder dilation with urine
production, and other physiological processes, e.g. decrease in glucose level with increased hunger,
hormones released after physical activity or psychological stress, immune molecules and inflammatory
processes following tissue stress, body temperature changes in a cold or hot day.

Based on the allostatic reading of active inference [23,29,37,38], the IMACmodel hypothesizes that the
hierarchical modular cytoarchitecture of the insular cortex, supported by its parallel neural networks
with the PFC and striatum-dopaminergic and acetylcholinergic systems, is specialized in higher-order
interoceptive inference, herein called metaception. That is, it specializes in construction of cortical
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representations of lower-order, innate, interoceptive representations, herein called mesaception, located in

subcortical structures, i.e. amygdala and hypothalamus, and brainstem nuclei. In the IMAC framework,
metaception is regarded as an evolved cortical capacity to generate flexible higher-order interoceptive
predictions that are concurrently computed with action predictions that seek to maximize an
individual’s long-term fitness in interactions with the environment. In other words, metaception is the
perceptual synthesis (cf., Bayesian belief updating) that furnishes high-level representations (cf.,
feelings), which can predict lower level interoceptive representations and accompanying responses in
the motor and autonomic domain.

The main premise of the IMAC model is that adaptive behaviour of animals and humans revolves
around acquisition not only of action policies, such as stimulus-action mappings or social interaction
strategies that maximize rewards, survival and reproduction [39,40] but also the acquisition of
interoceptive policies that are needed to maintain the body’s physiological and visceral survival
functions and concurrently to support mental processes and implementation of action policies,
eventually leading to mapping or binding of action-interoception policies. Take the wake-sleep cycle
as a simple example of an action-interoception policy mapping in which the brain uses interoceptive
policies to generate visceral responses appropriate for wake-sleep behaviors: humans display higher
blood pressure, increased heart rate, fast metabolism, reduced melatonin production and increased
cortisol release in the waking period when the level of physical activity is higher than in the sleep
period when the physiological demands of the body are highly diminished [41]. To foreshadow the
conclusions below, IMAC conceives of active interoceptive inference as analogous to motor control,
where action is realized by motor (resp. autonomic) reflexes that resolve proprioceptive (resp.
interoceptive) prediction errors. These reflexes depend upon descending predictions or setpoints that
are elaborated in deep hierarchical structures over increasing temporal scales.

In order to lay a foundation for a more detailed explanation of the IMAC model, this opinion starts
with a brief overview of neural pathways linking the ANS to the insular cortex, followed by a description
of the modular, hierarchical and cytoarchitectonic organization of the insula, as well as the parallel
neuroanatomical networks linking the insula with the PFC and striatum. We will also describe
neuromodulatory roles of acetylcholine within insula modular structures, and of dopamine on insula-
PFC-striatum networks. We then introduce the IMAC model and consider how it mechanistically
explains active interoceptive inference, the emergence of higher-order interoceptive representations,
and possibly of conscious feelings: cf. [42]. We conclude by identifying directions in which concepts
proposed by the IMAC model may be used to understand interoceptive dysfunctions observed in
mood disorders, with a special focus on depression.
2. Insula neural architecture, cortical and subcortical connections
The ANS is organized into two main systems, the sympathetic nervous system (SNS) and
parasympathetic nervous system (PNS), which convey interoceptive information about the
physiological state of the body and visceral organs to the insular cortex and back to the viscera [3,4]
(figure 1a). Interoceptive information, such as glucose levels, blood oxygenation and osmolarity, as
well as interoceptive afference from the viscera located in the thorax and abdomen, including heart
contraction, lung inflation and deflation, blood vessels and kidneys, reaches the insula through the
brainstem via the PNS. The SNS transmits interoceptive information related to visceral pain, somatic
pain, skin pressure, e.g. touch, tissue stress, metabolism and body temperature [3,4,20]. Molecular
interoceptive information, including nutrients, transport of blood gases (oxygen and carbon dioxide)
and concentration and regulation of ions in neural tissue, which allow maintenance of neural
homeostasis, e.g. synaptic plasticity, development and preservation of neural structure, also reaches
the brainstem and insular cortex through the vascular system and the blood–brain barrier [3,43–45].

Cell bodies of SNS afferent neurons are located in the dorsal roots of the spinal cord, whereas cell
bodies of PNS afferent neurons bypass the spinal cord and are located in cranial sensory ganglia [3,4].
SNS interoceptive afferents ascend the spinal cord via the spinothalamic tract to synapse onto
brainstem nuclei or directly onto thalamic nuclei before reaching the insular cortex. By contrast, PNS
interoceptive afferent fibres ascend from visceral systems via cranial nerves e.g. glossopharyngeal and
vagus, and synapse onto brainstem nuclei before reaching the thalamus and from there to the insula
(figure 1b). The brainstem and insula receive interoceptive information from the head via the facial
and trigeminal cranial nerves. In general, the SNS, PNS, facial and trigeminal nerves synapse onto the
brainstem nucleus tractus solitary (NTS), making it the most prominent deep brain hub for integration
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and relay of interoceptive information throughout the brain and back to the visceral systems [3,5,12,46].

The NTS receives significant chemical interoceptive signals from the area postrema (AP), a
circumventricular organ located in the brainstem, which lacks a blood–brain barrier and senses
chemical substances in the cerebrospinal fluid and circulation, e.g. hormones, immune molecules, that
modulate visceral functions and behaviour [12,47]. The main visceral brainstem targets of the NTS are
the AP, medullary reticular formation, PBN and PAG that form multiple, complex, parallel
neuroanatomical pathways connecting with the hypothalamus and other subcortical, allocortical and
forebrain areas, such as the amygdala, hippocampus, nucleus accumbens, habenula, bed nucleus of
the stria terminalis and the pineal gland. Evidence from animal studies also suggests that the NTS
sends direct projections to the insular cortex [46,48]. The majority of ascending interoceptive
information originating from both PNS and SNS converge onto thalamic nuclei (ventromedial
posterior nucleus, ventromedial basal nucleus, paraventricular nucleus) to reach, predominantly, the
granular portion of the insular cortex [20,49]. Finally, NTS interoceptive signals can quickly exert
influences over not only the insular cortex but the whole cerebral cortex via its direct projections to
neuromodulatory systems that bypass other brainstem nuclei, including the dopaminergic system
(ventral tegmental area and substantia nigra pars compacta), the noradrenergic system (locus
coeruleus), the serotonergic system (dorsal raphe and median raphe) and cholinergic system (nucleus
basalis of Meynert) (figure 1b) [46].

As described above, various types of visceral information reach the granular region of the insular
cortex. The granular insula (gINS) is one of the three insular modular structures identified based on
expression of cellular layer IV, containing predominantly granular cells: the agranular insula (aINS),
located in a ventral anterior position and lacking a granular layer IV, the gINS, located in the most
dorsal posterior position, with a fully developed layer IV, and the dysgranular insula (dINS), located
between the aINS and gINS, but with an underdeveloped layer IV [19,50–55]. The modular
organization of the human insular cortex (posterior and anterior segments) is already present in
neonates [56]. Other studies have suggested a more detailed parcellation of the modular organization of
the insula, sometimes sub-dividing the insular cortex into 31 sub-regions [13,49,54,55,57–60]. However,
since the precise roles of these finer insular parcellations have yet to be determined, for simplicity, the
IMAC model considered here will focus on the general three-insula modular cytoarchitecture (gINS,
dINS and aINS) and candidate roles for these modules in processing interoceptive information.

Local anatomical connectivity among the three insula sub-regions is very distinct, with reciprocal
connections between the gINS and dINS and between the dINS and aINS, and modest aINS fibre
output to the gINS [50–52]. This pattern of connectivity suggests a hierarchical organization for
interoceptive information processing within the insular cortex that is similar to the hierarchical
organization observed in other sub-cortical and cortical systems that subserve perceptual, action
control and higher-order cognitive processes, including the basal ganglia, and the visual, temporal
and prefrontal cortices [61–71].

The modular organization of the insula is also supported by its parallel anatomical connectivity with
the thalamus, brainstem nuclei (figure 1b), cortical regions and striatum (figure 1c), and by
electrophysiological stimulation and functional neuroimaging studies in monkeys and humans. In
monkeys, the aINS, dINS and gINS make bidirectional connections with thalamic nuclei, from which
they receive interoceptive information [72]. Cortical regions involved in primary sensory
(somatosensory and auditory cortices), motor (primary and supplementary motor areas) and
environmental information processing (superior and inferior parietal cortices) project predominantly
to the gINS [13,73]. It is important to note here that the inferior parietal cortex contains the
supramarginal and angular gyri that form the temporo-parietal junction (TPJ), a cortical complex
implicated in social cognition [74–79]. The dINS, on the other hand, receives anatomical input from
the dorsolateral prefrontal cortex (Brodmann areas 45 and 46) [13,50–52,80]. By contrast, the aINS has
predominant connections with the ACC, ventral anterior PFC, ventromedial orbitofrontal cortex,
amygdala and hippocampal complex [13,50–52]. The insula also forms distinct parallel connections
with the striatum: the aINS makes connections primarily with the ventral striatum (vStriatum), the
dINS with the dorsomedial striatum (mStriatum) and the gINS with the dorsolateral posterior
striatum (pStriatum) [19]. Striatum sub-regions also receive topographical input from the
dopaminergic system, with the vStriatum receiving its main dopaminergic input from the ventral
tegmental area (VTA), and the mStriatum and pStriatum from the medial and ventro-lateral substantia
nigra complex, respectively [81]. Neuroanatomical evidence also suggests that each insula module has
direct projections to brainstem visceral motor nuclei that modulate visceral and physiological
processes, such as gastric functions, heart rate, blood pressure, pain and hormone secretion [82–91].
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The insula contains topographic interoceptive or viscero-sensory maps located predominantly in its

granular sub-region, extending in a posterior to anterior direction, that represent vestibular, nociceptive,
thermoreceptive, visceral and gustatory information [13,49]. Stimulation studies in humans have revealed
a similar topographic representation of pain, thermal, somatosensory, visceral, vestibular and gustatory
information [92–95], although somatosensory information seems to be represented throughout the
insular cortex [96,97]. Human neuroimaging studies also show a functional modular organization that
maps onto the anatomical modular organization of the insula, with viscero-motor information
represented in the gINS, emotional and motivational information represented in the ventral aINS, and
cognitive information represented in the dorsal anterior insula, including the dINS [98–103]. Although
here we use the multiple ascending interoceptive neuroanatomical pathways and their topographic
representation onto the insular cortex as an important feature of the IMAC model, these pathways are
not entirely anatomically segregated and non-overlapping in their insular representation. For example,
human neuroimaging experiments have shown that insular representation of heart, stomach and
bladder overlaps with representation of gustatory information [104–106]. The functional significance of
overlapping neuroanatomical and functional insular interoceptive representations needs to be
investigated in future studies.

Finally, the insular cortex has anatomical connections with the basal forebrain nuclei that contain
cholinergic neurons, with stronger cholinergic efferents on the anterior aINS [107–110]. This pattern of
insula-cholinergic connectivity is also linked with a progressive reduction of muscarinic acetylcholine
receptors (rACh) along the insula ventral anterior to dorsal posterior axis, with a higher density of
rACh in the aINS and a lower density in the gINS [50–52].
6

3. Insula hierarchical modular adaptive interoception control
In order for the insular cortex to promote influences over the visceral organs and physiological systems,
the functions of the visceral organs and physiological systems should have plastic properties, i.e. to be
malleable and flexible for changes. The idea of adaptable, flexible visceral functions has been
extensively studied by psychophysiologists, who have used classical and operant conditioning
paradigms to demonstrate that humans and animals can not only learn to generate anticipatory
visceral responses that predict reward or punishment, but also to voluntarily generate visceral
responses to achieve rewards or avoid punishments [111–118]. A well-known example of adaptive
interoception control is Ivan Pavlov’s classical conditioning experiments showing anticipatory
salivation in dogs to reward-predicting cues and no salivation in response to non-reward-predicting
cues [119]. Cardiovascular conditioning studies have reliably demonstrated that humans can
voluntarily learn to increase or decrease heart rate and blood pressure [111,114,115,117]. Other studies
with humans and animals have also observed anticipatory and voluntary control of visceral
responses, including heart rate, blood pressure, blood volume, breathing, gastrointestinal function,
bowel control, pupil dilation, electrodermal activity, body temperature, immunosuppression and blood
oxygenation level [112,113,120–128]. Overall, these psychophysiological studies suggest that learning
of visceral responses, at least for those which humans can exert voluntary control, may follow similar
principles of adaption observed in motor behaviour, such as stages of learning and change in
behavioural control, effect of prior knowledge, transfer of learning or generalization, efficiency of
feedback, effector specificity and awareness of the learned visceral response [113,114,117,129–131].

An important question that emerges, following the successful demonstration by psychophysiologists
that functions of visceral organs and other physiological processes can be modulated by experience is,
‘How can the cerebral cortex, specifically the insular cortex, use interoceptive information to create
generative interoceptive models that can explain the ascending interoceptive signals and regulate
visceral functions in response to the many demands imposed by the environment and body?’
Predictive coding has been proposed as a mechanism for learning of internal models by the cerebral
cortex [66,132,133]. Ascending interoceptive inputs from the ANS and the pattern of anatomical
connectivity among the insular modules suggest that interoceptive information first reaching the gINS
from thalamic nuclei is then forwarded to the dINS, and from the dINS to the aINS. In contrast,
backward, descending connections propagate information from the aINS through the dINS back to
the gINS. These forward and backward connections endow the insular cortex with a neuroanatomical
architecture suited to implementing predictive coding, where forward connections generate and
convey ascending interoceptive prediction errors that inform the brain about inconsistencies in
functioning of visceral systems and backward connections generate and convey descending



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220226
7
interoceptive predictions to regulate and correct identified inconsistencies in visceral functions [66,132].

In this hierarchical insular architecture, the gINS represents the lowest level of the hierarchy, the dINS is
an intermediate level, and the aINS sits atop the hierarchy. The gINS is in a position to generate low-
order interoceptive predictions and to compute interoceptive prediction errors by comparing those
predictions with real-time interoceptive afferents from the ANS. The dINS generates intermediate-
order interoceptive predictions and computes interoceptive prediction errors based on forward signals
arriving from the gINS. Finally, the aINS generates higher-order interoceptive predictions and
interoceptive prediction errors by computing the difference between its predictions and forward
signals arriving from the dINS. Evidence that the insula is involved in computation of predictions or
more specifically in generation of interoceptive predictions and uses Bayesian belief updating is still
scarce, but has started to emerge from human and animal experiments [134–143].

The insula predictive coding mechanism elaborated above, although detailed, is not entirely new, as
previous works have already proposed how active inference and predictive coding may be used for
interoceptive inference [14,23,35] and how interoceptive information is processed in the posterior and
anterior insula [14,20,21]. Anatomical studies demonstrating the existence of parallel networks linking
the PFC and striatum [61,144,145] have paved the way to understand cognitive, emotional and
motivational functions and dysfunctions of the basal ganglia, previously thought to be exclusively
involved in motor control [64,103,129,146–155]. Oriented by these network approaches and in contrast
to the earlier insula models, the IMAC model, however, suggests that insula active interoceptive
inference functions can be better understood in light of its parallel connections with PFC sub-regions,
namely the dorsolateral PFC (DLPFC), the ventromedial PFC (VMPFC), the supplementary motor area
(SMA), with the striatum and neuromodulatory input from the dopaminergic and acetylcholinergic
systems (figure 2). Earlier models also focused on the aINS-amygdala-brainstem network as the main
pathway by which the insula affects visceral control [14,49,72]. However, the use of a single neural
pathway by the central nervous system for visceral control may be insufficient and ineffective for
maintenance and orchestration of all physiological needs and visceral organs of the body. Thus, the
IMAC model proposes that the hierarchical and parallel insula-PFC-striatum networks offer several
advantages for generation of interoceptive predictions in a context- and experience-dependent manner.

The PFC and striatum sub-regions form anatomical parallel loops specialized for processes implicated
in adaptive behaviour, such as decision making, learning, emotion, motivation and sequential behaviours
[129,144,146–149,156–159]. The VMPFC-vStriatum and DLPFC-mStriatum loops are recruited in early
stages of learning, when behaviour is erratic, guided by external reward signals and require attention,
but their activities diminish as learning progresses and behaviour becomes automatic, fast and less
error-prone [129,148,149]. Distinct neuroanatomical components of the anterior PFC and VMPFC-
vStriatum loop are also implicated in novel learning and decision-making by means of exploration
and motivated behaviour [150,151,160,161], whereas the DLPFC-mStriatum loop implements a model-
based decision-making strategy by using internal models of the environment or action representations
to predict future outcomes of hypothetical actions [150,152,153,162]. By contrast, activity of the SMA-
pStriatum loop increases after repeated experiences, when behaviours become automatic and habitual
[129,154]. The SMA-pStriatum loop is implicated in sequential motor memory and habitual behaviour
[129,148–150,163]. Decisions and action predictions generated in the VMPFC, DLPFC and SMA are
sent to their striatal targets, where their signals are modulated and evaluated by dopaminergic
confidence signals from distinct populations of dopamine neurons [30,61,164–166].

The IMAC model hypothesizes that the metaceptive functions of the insular modules follow similar
functional specializations as those observed in PFC-striatum loops. Under this view, while the PFC-
striatum-dopamine loops support learning and optimization of action selection and other cognitive,
emotional or decision-making processes, the insula-striatum-dopamine loops are concurrently seeking
to generate optimal interoceptive predictions to generate visceral responses necessary to achieve the
physiological demands of desired actions, behaviours, motivations and mental processes. As an
example of this action-interoception mapping, we have cited earlier the physiological changes
observed in humans during wake-sleep cycles, such as changes in activity of neuromodulatory
systems in the brain, e.g. higher serotonin and lower acetylcholine, increased heart rate, increased
energetic metabolism, increased body temperature, increased respiration and decreased plasma
melatonin during the waking period than during the sleep period [41,167,168]. During exercise,
relative to the resting state, there are numerous physiological responses generated by visceral systems
to support muscle performance, such as increased consumption of oxygen, increased cardiovascular,
hormonal, metabolic, sweating and thermal regulatory responses [169–172]. There also are many daily
situations in which the body generates physiological and visceral responses, such as increased heart
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(cerebellum), NTS (nucleus tractus solitarius), D1 (dopamine receptor of the direct pathway), D2 (dopamine receptor of the
indirect pathway), BS (brainstem), SB (subcortical brain regions, e.g. amygdala), vTHA (visceral thalamus: VMpo, VMb, PV
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rate, blood pressure, skin conductance, pupil dilation, in anticipation of aversive or reward predicting
cues, public speech, social interactions and physical exercise [134,173–175]. Adaptive cardiovascular
responses in humans are also observed in space flights, subaquatic diving, profession type and season
of the year, in athletes of different sport modalities, and in response to the demands of cognitive and
emotional tasks [176–180]. Without such visceral and physiological adjustments, it would be
impossible to perform successful movements, have a good night of sleep, react appropriately to the
demands of the environment or prepare the body and plan behaviors to anticipated stress.

Then what are insula-PFC-striatum parallel networks specialized for? The IMAC model suggests that
the posterior gINS, which receives direct visceral input and forms a network with the SMA and
pStriatum, is specialized to generate habitual interoceptive predictions using visceral-based
representations, predictions realized by autonomic reflexes. According to this view, the posterior gINS
stores interoceptive trajectories, which can be readily used as interoceptive policies, especially in well-
learned environmental situations, for fast generation of interoceptive predictions that evoke visceral
responses. A gINS interoception policy is selected by dopaminergic signals arriving from the ventro-
lateral SN complex onto the pStriatum that evaluate the degree of confidence in gINS interoceptive
predictions. This fits comfortably with the role of dopamine as encoding precision or salience of
action-pointing representations [166].

There are environmental contexts and demands, however, for which gINS interoceptive policies may
be ineffective, resulting in large and irreducible interoceptive prediction errors. These gINS low-order
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interoceptive prediction errors are then passed forward and recruit the metaceptive functions of the

immediate insular module in the hierarchy, the dINS. The IMAC model hypothesizes that the dINS,
as part of the DLPFC-mStriatum loop, is specialized for model-based interoceptive predictions of
visceral or physiological states important for future action: cf., an allostatic mechanism to resolve
interoceptive prediction errors at lower levels, which cannot be resolved through homeostatic reflexes.
Furthermore, dINS model-based interoceptive predictions may initiate allostatic responses that adjust
the functioning of visceral systems even before future actions or actual physiological disturbances
occur [7,34]. Under model-based behaviour, dINS interoceptive predictions are selected by
dopaminergic signals from the medial SN complex onto the mStriatum. A model-based strategy,
however, has its limitations, given that it may be time inefficient, due to high computational cost and
time constraints, to predict the consequences of all hypothetical actions and environmental state
transitions. Conversely, a crucial advantage of a model-based strategy is that it can significantly
accelerate learning of novel behaviours [150,153]. Regarding visceral systems, optimizing the learning
of interoceptive representations by model-based adaptive behaviour could be vital for acquisition and
maintenance of visceral responses that underwrite survival.

Model-based interoception may also contribute to realization of certain interoceptive states when
individuals replay past experiences, imagine hypothetical situations and empathize with others. For
example, the insular cortex seems to possess mirror-neuron-like functions that support empathetic
behaviour and understanding of others’ feelings, which are then associated with physiological
responses, such as crying when observing others crying, crying in grief, imagery of one’s own and
others’ body sensations and yawning contagiousness [181–185]. Further support for this view comes
from neuroimaging studies showing insula activity associated with music-induced feelings, art
aesthetic judgement, interoceptive imagery and retrieval of highly arousal, aversive, danger or
disgusting experiences that have induced physiological changes [186–190].

Humans and other animals constantly face novel situations that require learning of entirely novel
behaviors, especially when old behaviors prove suboptimal and inefficient, or when internal models
are anachronistic, outdated and unreliable. Recent evidence suggests that exploratory behaviour,
implemented in the VMPFC-vStriatum network, can support adaptive behaviour in situations in
which the SMA-pStriatum and DLPFC-mStriatum fail to generate optimal behavioural policies
[150,153,191,192]. The IMAC model hypothesizes that the metaceptive function of the aINS, as part of
the VMPFC-vStriatum network, is specialized for interoceptive predictions that support concurrent
mapping of visceral responses to novel actions that proved successful during exploratory behaviour.
When allostatic interoceptive predictions by the dINS fail, its interoceptive prediction error signals,
modulated by dopaminergic precision signals in the medial SN complex, are sent forward to the
aINS, which is then recruited to engage exploratory behaviour to support acquisition of novel
interoceptive policies. Under exploratory behaviour, aINS interoceptive predictions are selected by
dopaminergic signals from the VTA synapsing onto the vStriatum.

Accumulating evidence supports several aspects of the IMAC model (it is not our goal here to
provide a full review of the literature on studies that support the model). For instance, a meta-analysis
of human neuroimaging studies showed that sensorimotor and visceral tasks activate the mid and
posterior insula, cognitive tasks activate the dorsal anterior insula, and emotional tasks activate the
ventral anterior insula [100]. Human and animal studies using tasks with visual or auditory cues in
which participants have to apply knowledge of cue-outcome contingencies to predict future
consequences of cues and actions show higher activity in the anterior insula, DLPFC, VMPFC and
anterior striatum, with some studies also reporting anticipatory physiological responses associated
with anticipatory neural activity [103,134,135,140,153,193–203]. By contrast, tasks that deliver
unpredictable interoceptive stimulation found higher activity in the middle and posterior insula
[183,184,198,199,204–208]. Furthermore, while imagination of sensory touch is linked with activity in
the anterior insula and DLPFC, actual sensation of sensory touch is linked with activity in the
posterior insula and primary somatosensory and motor cortices [183,184]. These findings are in
general agreement with predictions made by the IMAC model that the anterior insula, including the
dINS and aINS, are recruited in during behaviors that required planning and novel exploratory
learning situations, whereas the gINS is recruited for processing information arriving directly from
visceral systems.

Adaptive motor behaviour goes through stages of learning and transitions of control in the brain,
with early learning, e.g. exploratory and model-based stages, under deliberative control and late
learning under habitual and automatic control [129,130,148–150,152,209]. Similarly, the IMAC model
hypothesizes that the aINS and dINS furnish interoceptive predictions in early stages of learning that
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require exploratory or model-based interoceptive strategies, respectively, whereas the posterior gINS is

recruited for interoceptive predictions once visceral responses have become habitual after repeated
realizations. However, there are situations in which learning by exploratory behaviour is needed, but
may eventually require consolidation of simple and quickly learned interoceptive predictions. In such
situations, it may be inefficient and life-threatening to transit to a more complex and time-consuming
dINS, model-based interoceptive strategy. The IMAC model hypothesizes that direct anatomical input
from the aINS onto the gINS may serve as an efficient neural pathway for fast learning and
consolidation of novel but possibly simple interoceptive representations, such as in Pavlovian
conditioning.

Other neural systems also contribute to acquisition of interoceptive representations, given their
prominent direct or indirect connections with the insular cortex. For instance, the TPJ, the amygdala,
hippocampus and anterior cerebellum are well known for their participation in social cognition,
classical conditioning, episodic and declarative memory and encapsulation of sensory-motor
mappings, respectively [147,210–212]. The IMAC model hypothesizes that the TPJ may contribute to
formation of social interoceptive predictions, e.g. visceral or physiological response in social relations
[213]. The hippocampus may contribute to acquisition of declarative and episodic interoceptive
predictions [214]. The amygdala may contribute to formation of Pavlovian interoceptive predictions
[215], and the anterior cerebellum, which has neuroanatomical loop connections with the SMA
[216,217] and is implicated in sequential learning and acquisition of forward models [129,147,150],
may also be able to generate encapsulated interoceptive predictions to produce or coordinate
automatic sequential visceral responses [129,147,212,218].

The insula active interoceptive inference neural architecture and hypotheses put forward above
address several missing issues left unexplained in previous models of insula function. For instance,
previous models using predictive and error-correction approaches [14,25] or information integration
[20,21] sought to suggest specialized functions for the insula, based on how its local architecture
processes a multitude of visceral, cognitive and emotional inputs it receives and its activation across
multiple task domains. By contrast, the IMAC model assigns interoceptive inference functions to the
insula based supported by the parallel network connections it forms with the PFC and striatum and
their well-known roles in adaptive behaviour as well as the neuromodulatory input from
dopaminergic and acetylcholinergic systems onto these networks. Thus, the IMAC framework can
explain why neural activity of the insula is found in various emotional, motivational, social and
cognitive tasks. Another difference in relation to previous models is our three-layer hierarchical
architecture with first-order, second-order, and third-order interoceptive representations located in
brainstem–subcortical systems, insular cortex, and PFC, respectively. Here, each hierarchical level is
defined based on its intrinsic functional properties to generate innate autonomic reflexes or first-order
interoceptive predictions, e.g. the brainstem and subcortical regions, or more flexible higher-order
interoceptive predictions in the insula, e.g. second-order, and PFC, e.g. third-order. However, the
organization of neural pathways connecting the ANS with the brain is more complex than a simple
functional three-layered model (figure 2) and has recently been recognized in the neuroanatomical
eight-layer hierarchical neurovisceral integration (NVI) model [219]. Despite different numbers of
hierarchical layers, the IMAC and NVI models apply the same principles of predictive coding and
Bayesian belief updating to suggest how interoceptive representations emerge at each hierarchical
level. Future models or updated versions of both IMAC and NIV models should consider in more
detail how to define levels of hierarchical interoceptive organization based on the number of synaptic
connections linking the visceral systems to the insular cortex, their innate or flexible interoceptive
representations, the interaction between the parallel interoceptive pathways (figure 3c), as well as the
local cellular and molecular circuitry of the visceral systems, e.g. cardiac pace maker cells or the direct
influences of hormones and other circulating chemicals on visceral functions.
4. Roles of dopamine and acetylcholine in interoceptive inference
Acetylcholine increases synaptic transmission in the thalamus, hippocampus and PFC, making the
activity of neurons in these regions more responsive to synaptic input from other brain areas, and
facilitating experience-dependent learning [220–222]. The IMAC model hypothesizes that the higher
density of acetylcholine receptors in the aINS and dINS endows these regions with greater capability
to flexibly modify and update prior metaceptions or learn novel metaceptions. Visceral responses can
be triggered by stimulation of either the posterior or anterior insula, although stimulation and lesions
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of the posterior and mid insula can exert wider influences on visceral processes, such as modulation of
heart rate, blood pressure, kidney, bladder and gastric functions, and deficits in pain and thermal
sensations [93,204,223–230]. The IMAC model suggests that the lower density of acetylcholine
receptors in the posterior gINS serves to maintain the stability of prior interoceptive predictions that
directly impact visceral survival functions, whereas the higher density of acetylcholine receptors in the
anterior INS supports the flexible learning of novel interoceptive predictions. In short, the neuroplastic
potential in the interoceptive (insular) hierarchy increases with hierarchical depth, enabling the
learning of deep generative models of the embodied self.

The striatum has strong bidirectional connections with the dopaminergic system [81,231]. The
function of dopaminergic neurons is associated with value-based learning and signalling rewards,
aversive cues and alerting signals [155,232,233]. Striatal direct and indirect pathways have been
implicated in facilitation versus inhibition of actions [234,235], learning good versus bad values [236]
and reward versus aversive learning, respectively [237]. Recent evidence, however, suggests that
striatal direct and indirect pathways do not employ on-off activation, but rather concurrent control of
precise desirable and imprecise undesirable actions [238,239]. In the context of active inference, the
striatum is responsible for selection of cortical representations based on precision signals mediated by
dopaminergic neurons [30]. Based on the above findings, the IMAC model hypothesizes that
dopaminergic input to the striatum also signals the precision of interoceptive predictions arriving
from the insular cortex, by selectively increasing postsynaptic sensitivity to insular afferents. (Please
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see [240] for a simulation of this dopaminergic selection, in the context of predictive coding and

hierarchical motor control in Parkinson’s disease.) The exact role of striatum direct and indirect
pathways on interoceptive processes has yet to be determined. One possibility is that striatum direct
and indirect pathways are concurrently engaged in learning and selection of interoceptive
representations that promote survival and suppression of interoceptive representations that may cause
harm, respectively.

At the cellular level, the IMAC model provided above a mechanistic, but simplistic interpretation of
how striatum direct and indirect pathway medium spiny neurons and their dopaminergic input may
compute interoceptive confidence signals, i.e. precision, of insula descending interoceptive predictions
(figure 2), in much the same way as it computes confidence about actions and decisions represented
in the PFC-striatum network [29,30,152,155,165,166,236,240,241]. By contrast, another model has
suggested a mechanism for estimation of interoceptive confidence implemented by precision units
located within the laminar structure of the insula [14]. Future work needs to establish the exact
differences in the confidence signals computed at the insula laminar structure and the insula-striatum-
dopamine network. The dopaminergic system also has direct projections to the insula (figure 3c)
[231,242,243]. Precise roles of dopaminergic-insula connectivity have yet to be established, such as
whether this pathway modulates synaptic plasticity or postsynaptic sensitivity involved in cognitive
or movement control hypothesized for the dopaminergic-PFC pathway [240,244,245]. Similarly, we
suggested that acetylcholinergic input onto the insular cortex may facilitate information transmission
from other cortical regions, such as proposed for the PFC, hippocampus and thalamus [222]; however,
the striatum also receives direct input from the cholinergic system, but the role of cholinergic insula
and cholinergic striatum projections have yet to be established [246–248].
5. Insula and representations of conscious feelings
In order to simplify our treatment, we will use here a general notion found in the literature that emotions
are unconscious arousal states linked with visceral and physiological processes under reflexive control,
and feelings are conscious representations of emotions [14,21,23,249–257]. Subcortical and brainstem
systems store neural representations of unlearned motivational drives that are capable of generating
innate behavioural repertoires, e.g. consummatory, freezing, approach, avoidance and aggression
[3,4,210,258,259]. Interestingly, these innate behavioural repertoires are also associated with
background automatic visceral responses, e.g. increased heart rate, high blood pressure, bowel
evacuation, pupil dilation, salivation and sweating, that are thought to elicit basic innate emotions,
such as fear, anger, hunger, disgust, happiness, pleasure and surprise [210,249,251,260,261]. These
findings led to influential neuropsychological theories proposing that emotions arise from a
combination of interoceptive signals triggered by physiological changes in the functioning of visceral
systems and associated behavioural repertoires [210,249,250,256]. The IMAC model suggests that
mesaceptions, interoceptive predictions and interoceptive prediction errors computed in subcortical
brain regions, e.g. amygdala, and in brainstem nuclei, e.g. NTS, reticular formation nuclei, PAG, PBN,
dopaminergic and serotonergic nuclei, give rise to basic emotions or emotional substrata. For example,
low glucose and insulin afferent signals onto brainstem systems generate interoceptive prediction
errors that activate a mesaceptive representation of the emotion of hunger and trigger homeostatic
responses and food-specific consumption behaviours through a specialized neural pathway in the
hypothalamus [259,262]. This interpretation that emotions arise from brainstem interoceptive
prediction errors is consistent with previous proposals that emotions emerge from dynamics in the
rate of change, increase or decrease, of free-energy or interoceptive prediction errors triggered by
visceral and physiological deviations from their expected functional parameters or setpoints [29]. The
hypothalamus and other subcortical and brainstem systems, e.g. NTS, medullary reticular formation,
area postrema, PBN, PAG and amygdala, have specialized and interacting neural survival circuits
involved in interoceptive processing that may give rise to other mesaceptions involved not only in
emotions related to feeding but also in emotions related to drinking, sex, aggression, excitement, fear,
thermoregulation and neural immunity [210,259,263,264].

There have been multiple suggestions that cortical brain regions, including the insular cortex,
contribute to generation of conscious feelings emerging from emotions [21,22,249,265–270].
Involvement of the insula in conscious feelings is suggested on the basis of the convergence of
multiple types of somatic, visceral, motor, environmental, emotional, motivational, social and
cognitive signals onto its structure [21,22,257]. However, this view is not immediately supported by
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studies showing that patients with bilateral insula lesions are still able to consciously report feelings and

self-awareness [271–275]. Although we generally agree with the idea that the insula may participate in
consciousness processes, we believe that the insula alone may not be capable of generating
consciousness of feelings and bodily states.

Then how does consciousness of feelings emerge from insula metaception? The IMAC model offers a
specific hypothesis that consciousness of feelings and bodily states emerges from insula metaceptive
representations and insula-PFC interactions, and is built up from experiences, innate emotional states,
visceral and physiological responses associated with them. This hypothesis is informed by findings
showing that the hierarchical organization of interoceptive representations mapped onto the modular
architecture of the insula resembles the hierarchical organization of cognitive processes mapped onto the
PFC and striatum [70,276]. Furthermore, human functional neuroimaging and stimulation studies have
implicated functions of the SMA, DLPFC and VMPFC in conscious processes [268,277–282], modulation
of visceral and physiological responses [283–285] and cognitive processes, such as automaticity,
introspection, reasoning, categorization, interpretation of meanings and concept formation [129,286–291].
The pattern of insula-PFC anatomical connectivity allows the PFC to form higher- or third-order
interoceptive representations, and to use complex cognitive functions, such as introspection, to inspect,
interpret, categorize and reason on the contents, causes, and consequences of second-order interoceptive
representations furnished by the insular cortex. For instance, in a situation in which someone
experiences an aversive event that leads to an increase in heart rate, the insula will send interoceptive
prediction errors to the PFC, which may interpret, categorize and contextualize them as a speeding
heart associated with an imminent threat or a simple change of body posture, or after having a meal,
the PFC may signal whether uncomfortable stomach signals indicate an unpleasant meal or an overly
distended stomach caused by overeating. The insula-PFC networks may also support generalization of
basic emotions into more complex feelings, such as social fear and anxiety, embarrassment, pride, guilt
and grief. On a constructivist reading, these metaceptive representations provide the best explanation for
the constellation of interoceptive, exteroceptive and proprioceptive representations at lower levels,
furnishing predictions that resolve lower-level prediction errors.

Empirical findings, showing PFC-striatum networks engaged in distinct stages of learning, e.g. the
DLPFC-mStr and VMPFC-vStr in early flexible-conscious learning and the SMA-pStr in late habitual-
unconscious learning, suggest that even among insula-PFC parallel networks there may be
hierarchical representations of conscious feeling. Accordingly, the lower-order gINS-SMA network
may generate implicit or habitual metaceptions commonly associated with ‘gut’ or intuitive feelings
that may be subpersonal and may be acquired after repeated experiences and may support the
implementation of habitual action-interoception policies in response, for instance, to emotionally
salient events, e.g. quickly escape from a snake attack or protect oneself from a sport injury. By
contrast, the higher-order dINS-DLPFC and aINS-VMPFC networks may contribute to representations
of explicit, introspective, conscious feelings that contribute to understanding one’s physiological and
visceral states in the early stages of learning of novel experiences or to reason and implement action-
interoception policies, e.g. behavioural decisions, visceral and physiological responses, that solve
current or future demands of the body and environment, e.g. cooking a meal in anticipation of high
hunger or turning on the air conditioner to decrease indoor and body temperature. These higher-
order conscious feelings may also be used to generate action-interoception policies that solve lower-
order interoceptive representations and associated interoceptive prediction errors arriving from the
gINS-SMA network or from the brainstem; i.e. affective qualia that contextualize belief updating at
lower levels. According to this view, lower-order implicit or habitual metaceptions of the gINS-SMA
network and mesaceptions may be assimilated into conscious processing, as they inform belief
updating in insula-PFC networks.

Here, we proposed a mechanism of how insula-PFC networks may be involved in the generation of
consciousness of feelings and bodily states. Other works have suggested, however, that conscious feelings
emerge from other cortico-cortical, cortical-brainstem pathways or within the brainstem and
hypothalamus [42,167,271,273,292]. The exact roles and the nature of interactions and contributions of
these neural pathways for conscious feelings have yet to be identified.
6. IMAC implications for understanding depression
Patients suffering from depressive disorder exhibit multiple somatic and visceral symptoms, such as
fatigue, reduced libido, disturbances in heart rate, blood pressure, gastrointestinal function, pupil
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dilation, skin conductance, neuro-immunological dysfunctions and metabolic syndromes [293–298].

Somatic and visceral symptoms also predict the development and persistence of depression [299–302].
Associated with somatic symptoms are structural and functional abnormalities of the insular cortex
and other cortical and subcortical brain regions involved in interoception [303–315]. Issues such as
how visceral disturbances come about, how they change from an acute state to a chronic state with an
almost irreversible point-of-no-return in treatment-resistant depressive patients, and what neural
mechanisms are recruited to defend visceral systems, reset their healthy functions and protect
humans from developing mood disorders, have yet to be clarified. Previous works have already
described how disturbances in interoceptive Bayesian belief updating, e.g. of priors or internal
representations, predictions and precision, may explain depression and other psychiatric disorders
[14,23,24,36,316]. Below, we consider how the IMAC neural architecture and the hierarchical
organization of the insula interoceptive pathways may prevent acute aversive experiences from
developing into severe depression.

Interoceptive representations located in the brainstem, brainstem-gINS, brainstem-subcortical and
insula-PFC-striatum networks can be used, independently or in combination, as neural defense
systems against aversive and stressful experiences that may have negative impacts upon mental health
and functioning of visceral systems. One important feature of the first-order interoceptive
representations or mesaceptions, located in brainstem and subcortical regions, is their involvement not
only in generation of neural activity necessary to maintain the body’s survival functions, but also in
control of viscero-chemical processes, e.g. hypothalamic-pituitary-adrenal axis, corticotropin-releasing
hormone, energy metabolism, that are dysfunctional in depressive states and have detrimental
consequences on the body, such as accumulation of visceral adipose, insulin resistance, cardiovascular
problems, suppression of thyroid and reproductive functions and release of cortisol that have toxic
effects on brain synaptic plasticity, structure and function [317–320].

Aversive experiences that are processed unconsciously in the brain or that may be perceived as non-
threatening, but still generate atypical visceral responses, e.g. increased heart rate or increased cortisol,
and interoceptive prediction errors, may be resolved at the brainstem level, e.g. NTS, MRF, PBN, PAG,
by use of mesaceptions and implementation of innate interoceptive policies or higher-order habitual
interoceptive policies located in the gINS-SMA network that can quickly correct interoceptive
prediction errors and their ensuing visceral and viscero-chemical responses, thereby precluding
permanent harmful physiological changes [321]. Candidate brainstem–subcortical systems include
regions implicated in supervised, Pavlovian and instrumental learning of aversive and rewarding
behaviors such as the cerebellum, amygdala, habenula and striatum–dopaminergic system
[210,232,233,310] (figure 3c). However, highly salient aversive experiences may generate impactful
interoceptive prediction errors that first-order or habitual interoceptive representations may be unable
to resolve. In such situations, the body needs to rely on more elaborate cognitive processes, e.g.
attention, working memory, introspection and interoceptive strategies, e.g. model-based, exploratory,
implemented in the insula-PFC-striatum networks. Thus, while brainstem visceral nuclei may serve as
the first line of defense against aversive experiences, and for the preservation of mental health, the
brainstem-gINS, brainstem-subcortical and insula-PFC-striatum networks can serve as extended lines
of defense, given that their learning functions underwrite the formation of novel, flexible and
stereotypical interoceptive representations.

The extension of the hypothetical functions proposed in the IMAC architecture, to a defense system
against depression, may be compromised when a pathological depressive state is present and linked
with significant physiological, visceral and brain abnormalities. For instance, research with
depressive patients in our laboratory has revealed four main findings [unpublished]: (i) abnormal
heart rate variability, including increased heart rate and diminished sympathetic and
parasympathetic control; (ii) bilateral reduced structural volume of brain regions involved in
interoception, including the aINS, dINS, gINS, ACC, amygdala and hypothalamus; (iii) volume
abnormalities of these regions associated with the degree of depressive symptoms, e.g. mood,
somatic and visceral; (iv) reduced volume of the gINS linked to higher disturbances of sympathetic
origin. These findings demonstrate the existence of widespread structural abnormalities in first-
order, e.g. amygdala and hypothalamus, and second-order (insula) interoceptive systems generating
Pavlovian interoceptive predictions as well as higher-order interoceptive predictions (habitual,
model-based or exploratory) for cardiac control and possibly other visceral disturbances observed in
depression. There are pharmacological and cognitive mechanisms, not explored in the IMAC model,
that appear to reduce depressive symptoms and reverse visceral disturbances, such as cognitive
behavioural therapy, drug treatments and neurofeedback [298,322–325].
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7. Conclusion

In this opinion piece, we applied the active inference framework to propose the IMAC model in an
attempt to explain how the hierarchical modular organization of the insular cortex supports formation
of higher-order cortical interoceptive representations. The IMAC framework contrasts with the view
that interoceptive afferents simply impress themselves on the central nervous system (figure 3a).
Contributions of the IMAC model can be summarized in four main points (figure 3b): (i) parallel
networks linking the insular cortex with the PFC and striatum are specialized for hierarchical
generation of interoceptive policies that map interoceptive predictions to particular behaviors in an
experience-dependent manner; (ii) the dopaminergic system emits precision signals quantifying the
confidence of the insular interoceptive predictions; acetylcholine is hypothesized to underwrite
plasticity in formation of novel interoceptive mappings by the dINS and aINS, and stability of
interoceptive predictions in the gINS implicated in maintenance of visceral survival functions; (iii) two
novel concepts, metaception and mesaception, were introduced to distinguish interoceptive
representations in the insular and brainstem-subcortical systems, respectively; (iv) mesaceptions and
metaceptions can explain emergence of unconscious emotions, conscious feelings and the rise of
visceral dysfunctions observed in depression.

Future work using neuroimaging methods with humans is needed to test predictions made by the
IMAC model, such as the dissociation of involvement of the parallel insula–PFC–striatum networks in
distinct stages of formation of interoceptive representations and in the hierarchical representation of
conscious feelings. Anatomical and functional neuroimaging studies also need to identify not only
how disturbances in cortical, subcortical and brainstem systems contribute to development of visceral
dysfunctions and mood disorders but also how such disturbances come about, such as whether
neural degeneration of the insular cortex starts in its agranular region and progresses to its granular
region, or the other way around. The field of interoception neuroimaging is progressing steadily with
human studies, but it will also benefit from experimental studies with animals, to provide a more
detailed map of the molecular, cellular and neuroanatomical connections among visceral organs and
how their interoceptive signals are interpreted by the brain.
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