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Abstract 

Background:  Addressing the laborious nature of traditional biological experiments 
by using an efficient computational approach to analyze RNA-binding proteins (RBPs) 
binding sites has always been a challenging task. RBPs play a vital role in post-tran-
scriptional control. Identification of RBPs binding sites is a key step for the anatomy of 
the essential mechanism of gene regulation by controlling splicing, stability, localiza-
tion and translation. Traditional methods for detecting RBPs binding sites are time-
consuming and computationally-intensive. Recently, the computational method has 
been incorporated in researches of RBPs. Nevertheless, lots of them not only rely on the 
sequence data of RNA but also need additional data, for example the secondary struc-
tural data of RNA, to improve the performance of prediction, which needs the pre-work 
to prepare the learnable representation of structural data.

Results:  To reduce the dependency of those pre-work, in this paper, we introduce 
DeepPN, a deep parallel neural network that is constructed with a convolutional neural 
network (CNN) and graph convolutional network (GCN) for detecting RBPs binding 
sites. It includes a two-layer CNN and GCN in parallel to extract the hidden features, 
followed by a fully connected layer to make the prediction. DeepPN discriminates the 
RBP binding sites on learnable representation of RNA sequences, which only uses the 
sequence data without using other data, for example the secondary or tertiary struc-
ture data of RNA. DeepPN is evaluated on 24 datasets of RBPs binding sites with other 
state-of-the-art methods. The results show that the performance of DeepPN is compa-
rable to the published methods.

Conclusion:  The experimental results show that DeepPN can effectively capture 
potential hidden features in RBPs and use these features for effective prediction of 
binding sites.

Keywords:  Bioinformatics, RNA-binding protein, Convolutional neural network, Graph 
convolution network
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Introduction
RNA-binding proteins (RBPs) are highly involved in cellular processes contributing to 
gene regulation [1, 2], for example RNA editing, mRNA localization and translational 
regulation [3]. Detecting the binding sites of RBPs has become an important research 
objective [4]. However, those approaches of analysis and prediction of RBP binding 
sites are often time-intensive and subject to experimental variation. The experimen-
tal approaches for RBPs site detecting include high-throughput sequencing of RNA 
isolated by crosslinking immunoprecipitation (HITS-CLIP) which is a method for 
genome-wide of RNA-binding sites or RNA modification sites in vivo [5], light-activated 
ribonucleotide enhanced cross-linking and immunoprecipitation (PAR-CLIP) which 
is a biochemical method used to detect sites of protein-mRNA interaction sites [6] and 
individual-nucleotide resolution cross-linking and immunoprecipitation (iCLIP) which 
can identify RNA-protein binding sites with nucleotide resolution [7]. Those methods 
not only bring the richness of sequencing, but also increase the complexity of biological 
experiments.

Considering the limitation of experimental methods, many computational tools have 
been developed to improve the detecting of RBPs binding sites. MEMERIS [8] detects 
the RBPs binding information with the help of simultaneously integrating information 
about secondary structures and sequences. RNAcommender [9] uses matrix factoriza-
tion methods to infer binding RNAs for RBPs by employing protein domain compo-
sition and the secondary structures of RNA. CapR is an algorithm that calculates the 
RBPs binding sites with secondary structural context [10]. RNAcontext learns both the 
sequence and structure binding preferences of RBPs and assumes that the primary role 
of RNA secondary structure in RBP binding is to establish a structural context for the 
RNA sequence recognized by the RBP [11]. The iONMF [12] integrates multiple infor-
mation to detect the binding sites, such as k-mer sequence data, secondary structure 
information and Gene Ontology information.

The methods discussed above are mainly based on  mathematical computation. For 
example, RNAcommender uses factorization of matrices to construct a model. QRS [13] 
proposes a combination of hierarchical clustering and spectral clustering for scRNA-
seq analysis. Recently, with the rapid development of deep learning algorithms, deep 
learning has gradually become a new research hotspot in computational biology with its 
ability to detect hidden features in large-scale biological data to make predictions [14]. 
Given the good results achieved by the Convolutional Neural Network (CNN) [15] for 
tasks such as image classification, (like the applications to X-ray imaging [16]), CNN are 
receiving more attention from biologists. After numerous researches such as DeepSEA 
using CNN to identify functional effects of noncoding variants [17] and Basset which 
offers a powerful computational approach to annotate and interpret the noncoding 
genome by applying the CNN [18], the CNN has been the main method to capture the 
RBPs information in various deep learning methods. For example, CNN is applied in 
DeepBind to improve the performance of detecting the RBPs binding sites [19]. Mean-
while, CNN has also been combined with other deep learning methods. The iDeep uti-
lized the deep belief networks (DBNs) and CNNs to predict the RBPs binding sites [20]. 
DeeperBind concatenated a long short-term memory network (LSTM) [21] layer based 
on the original DeepBind method [22]. iDeepS constructed two separate CNNs to learn 
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the sequence data and secondary structural information of RNA respectively. It used the 
LSTM after CNN to help infer the binding sites [23]. DanQ dealt with the long-term 
dependencies in the output of CNNs by using the LSTM [24]. Some methods do not use 
CNN, like Deepnet-rbp, who utilized the DBNs to calculate both sequence and tertiary 
structural information of RBPs [25].

Another rapidly developed deep learning method, especially in recent years, is Graph 
Neural Networks (GNNs). GNNs are learnable methods used to detect the hidden fea-
ture of non-Euclidean when it come up. The Graph Convolutional Network (GCN) is 
the most predominant one. GCNs are mainly divided into two categories, spectral based 
and spatial based GCNs [26]. It was first proposed by Bruna et al. in 2013 [27] based on 
spectral theory and convolution theorem. Considering its high time complexity, many 
researchers make efforts to improve it [28, 29]. In spectral based GCN methods, the 
most popular one is the Chebyshev method, which is used to construct the ChebNet 
[28]. With the Chebyshev approximation, it could be efficiently computed by applying 
fast Fourier transforms. Graph Attention Network (GAT) is a well-known spatial based 
GCN method [30]. GCNs have become popular in protein analysis, drug discovery [31] 
and medical research. In Decagon [32], the GCN is utilized in embedding the multi-
modal graphs of drugs to predict drug combinations on side effects. The standard molec-
ular feature extraction methods are generalized based on circular fingerprints by using 
the GCN [33]. It has also been applied in the research of protein structure and crystal 
property prediction [34, 35]. On the multi-modal functional magnetic resonance imag-
ing (fMRI) issues, Qu et al. [36] proposed a deep learning model based on multi-modal 
GCN for multiple data fusion in 2021. The model captured both the hidden features 
of fMRI on time series and the function of brain regions. Good results were achieved 
on wide range achievement test. Most researches apply GCN on non-Euclidean data, 
however, GCN could also deal with Euclidean data as well, such as image semantic seg-
mentation [37]. In this paper, the ChebNet which is one of the spectral GCNs is used to 
construct the DeepPN method.

In this work, we propose a parallel deep neural network named as DeepPN that is 
based on CNN and ChebNet, and apply it to identify RBPs binding sites on 24 real data-
sets. The feature vectors are fused by the convolutional neural network and the graph 
convolutional neural network. In DeepPN, the CNN module and ChebNet module are 
in parallel, which means they extract the hidden features at the same time from the 
learnable representations of RNA sequences. After CNN and ChebNet capturing the 
features from the RNA sequences, there is a concatenate layer utilized to combine the 
feature vectors from two neural networks and then input them to the fully connected 
layers for the prediction. The network is evaluated on 24 datasets from GraphProt [38]. 
Experimental results show that our method achieves competitive results with other pub-
lished methods, and can extract more discriminative features from RNA sequences on 
some datasets than existing methods.

Related work
RNA-binding proteins have always played a significant role in the study of gene regu-
lation and it is also an important pathway for gene related researches. For instance, 
Embryonic lethal abnormal vision protein 1 (embryonic abnormal vision like 1/human 
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antigen R, ELAVL1/HuR) is an RNA-binding protein involved in differentiation and 
stress response, mainly through stabilizing messenger RNA (mRNA) [39]. It has been 
shown that ELAVL1 protein can promote tumor cell proliferation through binding to 
a series of proliferation-related target mRNAs and through post-transcriptional regula-
tion, leading to increased expression of target mRNAs involved in cell cycle progression 
and cell division. The gradual application of high-throughput sequencing technologies 
has led to a deeper exploration of previously understudied biodiversity, which encom-
passes different scientific fields such as protein binding site prediction, resulting in the 
accumulation of a large amount of biological data. Although these traditional research 
tools based on biological experiments can be effective in these areas, they are over-
whelmed by the massive output of biological data. They are often impractical or too 
expensive when dealing with such large and complex data. All of these have greatly con-
tributed to the development of deep learning technology in the field of bioinformatics 
represented by RNA-binding proteins.

Deep learning is a data-oriented research method with matrix data. This allows deep 
learning to have better analytical performance in the face of sparse matrices of high 
dimensionality. Bioinformatics data are often highly sparse matrix, such as DNA or 
RNA sequence data stored in one-hot form, which makes deep learning algorithms aptly 
exploit their ability to find hidden features in high-dimensional data and achieve bet-
ter analysis results. For example, in Zeng et al. [40], they applied a systematic study of 
CNNs models for DNA sequences. This study shows that multiple filters enhance net-
work learning of sequence data by targeting the effects of different width, depth, and 
pooling layer designs in CNN on the analysis of sequence and motif of DNA-binding 
proteins. In a recent study by Zhen et al. [41], a deep learning model consisting of LSTM 
with attention mechanism [42] was proposed for analyzing the RBP binding sites after 
cutting using k-mer method for RBP sequences. This method tests the effect of varying 
the length of the k-mer vector on the model performance. The effect of performance 
is demonstrated by showing the variation of model performance under various k-mer 
related parameter settings.

With the continuous development of graph convolution, GCN has been gradually 
applied to the field of bioinformatics. Xuan et al. [43] proposed a deep learning model 
based on GCN and CNN for lncRNAs in 2019. The framework has two parallel dual 
branches, one of which is a GCN branch for topological information of lncRNAs and 
associated diseases. The other branch uses CNN to analyze local features. However, 
in our experiments, we use the GCN directly to capture hidden features within the 
sequence, complementing the features captured by the GCN with the CNN in different 
feature spaces, and do not need to supplement the data external to the sequence. Experi-
mentally, the GCN and CNN form a two-branch structure that yields objective predic-
tion results. This paper validates the effectiveness of applying GCN to RNA sequence 
analysis.

Method
Overview of the DeepPN

To address the problems in existing methods, we have proposed a parallel deep neural net-
work DeepPN. Generally speaking, a too deep structure would cause the sequence features 
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captured early to gradually disappear as the depth deepens. Therefore, in this paper, 
DeepPN tries to improve the feature capturing capability for RBP sequences from the width 
perspective in a parallel way. Meanwhile, it is expected that the methods under different 
perspectives can capture features that are not the same as each other, so that the captured 
features can complement each other.

The entire structure of DeepPN is shown in Fig. 1. It has mainly two branches, one is the 
CNN module and the other is the ChebNet module. The RNA sequences are computed 
with the following formula:

The convolutional module scans the RNA sequences with 4 channels in one-hot for-
mat. Concurrently, the ChebNet module works on the same RNA sequences after pre-
processing layer. The output of two modules will be concatenated to become a new 

(1)H = gDeepPN gCNN (X), gChebNet(X)

Fig. 1  The structure of the DeepPN. The RBP sequence is processed by one-hot method. Then it enters the 
main part for hidden feature extraction and finally the result is obtained by three fully connected layers
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feature vector. Finally, fully connected layers work  with the dropout method [44] as a 
predictor to generate the probability from the input feature vector. The following for-
mula is utilized to calculate the conditional likelihood:

where yi represents the truth label. W  and b are parameters of the output from the mod-
ule. H is the high dimensional feature vector of the RNA sequence, which is captured by 
the method. At last, n is the number of the RNA sequences. In order to achieve better 
performance, the framework will be trained to minimize the value of ζ.

In the training process, the batch size of DeepPN is 16. In the design of the batch size, 
DeepPN adopts the method of mini batch to reduce the memory load pressure, and at 
the same time, a reasonable design of mini batch size can speed up the learning effi-
ciency to a certain extent and reach the optimal solution faster. In the selection of the 
optimizer, DeepPN adopts the Adam method. The learning rate is set to 0.001. Above is 
an overview of the main structure of DeepPN, in the next section, each part of the Cheb-
Net and CNN modules will be introduced step by step.

ChebNet in the DeepPN

ChebNet [28] is based on the GCN that is defined in spectral domain [27, 28], which is 
mainly reflected in different definitions of filters. The filter of the spectral domain GCN 
could be computed by 

gθ (�) =
∑K−1

k=0
θk�

k . � is the diagonal matrix of eigenvalues and 

θ is a vector of polynomial coefficients. However, such filter method still has high com-
putational cost for operations of Fourier basis. To solve this issue, an efficient solution 
called Chebyshev expansion [28] with approximate kernels is used to improve the filter 
method. The Chebyshev polynomial Tk(x) is calculated by:

With T0 = 1 and T1 = x , Formula (3) is capable to reduce computational complexity 
significantly due to its recursion. The filter can be redefined as:

In this paper, there is a two-layer ChebNet used to capture the features from the RNA 
sequences, which is shown in Fig.  1. We assume that the hidden features exist in the 
structure of the RBPs sequences. Therefore, a two-layer ChebNet with activation method 
and flatten method is designed. The raw data will be preprocessed before they are meas-
ured by two ChebNet layers. The output of this module can be represented as the follow-
ing formula:

The gChebNet means the function of the ChebNet and l(x) means raw data after pre-
processing layer. ChebNet also needs a filter, and the most common way is to rely on 

(2)ζ = −

n
∑

i=1

yi log (W ·H+ b)+
(

1− yi
)

log (1− (W ·H+ b))

(3)Tk(x) = 2xTk−1(x)− Tk−2(x)

(4)gθ=

K−1
∑

k=0

θkTk

(

�̃

)

, where �̃ = 2�/�max − In

(5)vj = FFlatten
(

LeakyReLU
(

gChebNet
(

l(X),Adjacency(X)
)))
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the adjacency matrix of the data. To avoid over-smoothing, in this module, the activa-
tion function uses LeakyReLU [45] method. Once the data enters ChebNet module, 
the information is aggregated. After the flatten function, vj , the final vector with high-
dimensional feature information, will be generated.

CNN in the DeepPN

In DeepPN, a two-layer convolutional neural network is adopted to calculate the local 
hidden information of the RNA sequences. There are convolutional operation, activation 
function and flatten operation in the convolutional module. Each convolutional layer has 
the same kernel size. Moreover, the first layer contains 16 filters and second layer has 32 
filters. The second layer will be fed feature representation from the first layer. In each 
convolutional filter, a sliding window with kernel size is used to calculate the local hid-
den features of the RNA sequences. The output of the convolutional module can be rep-
resented as the following formulas:

In Formula (6), FFlatten represents the flatten operation, and f ′ denotes the convolution 
operation. The LeakyReLU is for the activation operation. X is the input RNA sequences 
which are operated by the one-hot method. Wf  represents the sliding window with ker-
nel size. b is the bias term. Vector vj is calculated by the filter that includes the activation, 
convolutional and flatten operation.

Results
Our method was built with Keras in python and the hardware is the NVIDIA Quadro 
RTX5000. The RAM of GPU is 16 gigabytes and the hard drive storage space is 2 tera-
bytes. To evaluate the performance of DeepPN, the accuracy and loss of the prediction 
of RBPs binding sites are measured on the test dataset, which are also compared with 
other state-of-the-art methods on the same RBP dataset. The data analysis process is as 
follows: firstly, CNN and ChebNet capture the hidden features, then fuse the features, 
and finally the fully-connected layer performs classification and prediction. The whole 
experimental procedure is that the data is pre-processed before the analysis is per-
formed, making the data fit the model analysis requirements. Subsequently, data analy-
sis is performed to obtain data analysis results, which contain metrics such as accuracy. 
These metrics are then analyzed and compared to produce the experimental results.

RBPs binding sites datasets

Our experiments are evaluated on 24 datasets which are RBPs binding sits from the 
HITS-CLIP, PAR-CLIP and iCLIP methods. The positive RBPs binding sites data in 23 
datasets are obtained from doRiNA [46] except the PTB binding sites dataset is from 
the research of genome-wide analysis of PTB-RNA [47]. Each dataset has positive and 
negative RBPs binding sites data, in which the positive data are from the CLIP-based 
experiment results and the negative results are created by using bedtools shuffling the 
coordinates of binding sites within all genes with at least one binding site [48]. Bedtools 

(6)
{

vj = FFlatten
(

LeakyReLU
(

f ′(X)
))

f ′(X) = Wf · (X)+ b′
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is a software used for the comparison, manipulation and annotation of genomic features 
data.

In generating data that can be learned for training, kDeepBind [49] proposes a method 
to generate sequence feature vectors in a k-gram [50] statistical way to assist in the anal-
ysis. The k-gram method counted the frequencies of different length permutations of 
four bases, A, G, C and U, occurring in the sequences. The following feature extraction 
formula is satisfied when k is 3:

in which S is the overall ensemble and Ni , Nj and Nk denote the permutations of differ-
ent A, G, C and U.

Considering the methods of processing data, the time for three types of data process-
ing methods, one-hot, k-gram and k-mer, were compared, as shown in Table 1. For this 
comparison, the 101 length in kDeepBind [49] was used as the standard intercepted 
sequence length. Also, with k-gram, k was taken as 3. In k-mer, k was set to 4. From 
Table 1, it can be demonstrated that one-hot is the fastest in processing data. Although 

(7)
S = S1 ∪ S2 ∪ S3 = {Ni} ∪

{

Ni,Nj

}

∪
{

Ni,Nj ,Nk

}

=
{

A, G, C, U, AA, AC, . . . , GG, AAA, AAC, . . . , GGG
}

Table 1  Time spent in processing data for one-hot, k-gram and k-mer (seconds)

The shortest total time and average time among the three data processing methods are shown in bold font

RBPs One-hot(s) k-gram(s) k-mer(s)

C17ORF85 PAR-CLIP 1.21 166.94 56.26

CAPRIN1 PAR-CLIP 4.43 698.55 236.86

C22ORF28 PAR-CLIP 5.17 776.85 264.13

ALKBH5 PAR-CLIP 0.72 108.97 36.60

ELAVL1 HITS-CLIP 4.86 730.46 247.91

HNRNPC iCLIP 10.34 1707.43 544.39

SFRS1 HITS-CLIP 9.56 1646.51 557.26

AGO2 HITS-CLIP 21.79 3801.02 1310.53

TDP43 iCLIP 39.82 6768.75 2195.09

AGO1-4 PAR-CLIP 17.09 2875.98 975.49

TIAL1 iCLIP 21.40 3501.71 1181.97

TIA1 iCLIP 7.76 1350.94 454.44

EWSR1 PAR-CLIP 8.70 1373.17 467.09

ELAVL1 PAR-CLIP(A) 11.60 2005.25 677.86

ELAVL1 PAR-CLIP(B) 5.19 847.13 288.93

FUS PAR-CLIP 18.47 2863.57 994.37

PUM2 PAR-CLIP 5.65 904.35 307.65

IGF2BP1-3 PAR-CLIP 4.61 696.19 234.87

MOV10 PAR-CLIP 7.79 1214.91 429.22

ELAVL1 PAR-CLIP(C) 58.01 9836.02 3327.17

ZC3H7B PAR-CLIP 12.16 1955.89 656.31

PTB HITS-CLIP 24.31 3705.75 1285.36

TAF15 PAR-CLIP 4.78 702.27 237.64

QKI PAR-CLIP 6.17 982.99 328.93

Sum 311.58 51221.59 17296.34

Average 12.98 2134.23 720.68
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the k-gram method can obtain the statistical features of the sequences, it is time-con-
suming. Moreover, when the input of different length of sequences need to be filled with 
placeholders, the complexity of the k-gram method increases steeply and it is not a very 
efficient way to process the data. In this paper, it is preferred that the model capture 
the hidden features by itself thus reducing the complexity of the preprocessing work. 
Therefore, only one-hot approach is used for training prediction data generation in the 
experiments.

The length of sequence of RBPs binding sites is set the same as iDeepV [51]. After they 
are processed by the one-hot encoding method, they will form a matrix of positive and 
negative samples that can be accessed by the model and applied for model training. The 
total number of samples are shown in Table 2. Here we randomly divide each dataset 
into training set and test set with a ratio of 8:2. AGO1-4 PAR-CLIP is an assembled 
dataset which combines the data from AGO1 PAR-CLIP to AGO4 PAR-CLIP. Similarly, 
IGF2BP1-3 PAR-CLIP integrates the datasets from IGF2BP1 PAR-CLIP to GIF2BP3 
PAR-CLIP. The ELVAL1 HITS-CLIP, ELAVL1-CLIP(A), ELAVL1 PAR-CLIP(B) and 
ELAVL1 PAR-CLIP(C) all contain ELAVL1 binding sites derived by different experiment 
techniques.

Performance of the DeepPN

Considering that different RBP datasets have different amounts of data, the same hyper-
parameters may have different training effects in the face of different amounts of data, 
for example, the training processes of CAPRIN1 PAR-CLIP, C17ORF85 PAR-CLIP and 
SFPS1 HITS-CLIP are different as shown in Fig.  2. The accuracy in test datasets on 
SFRS1 HITS-CLIP and CAPRIN1 PAR-CLIP are both over 0.8, i.e., 0.8485 and 0.8308. 
In this experiment, DeepPN is required to avoid the problem of overfitting when fac-
ing data with different scales, in order to achieve better performance as much as pos-
sible. The problem of overfitting is that as the model is continuously trained, invalid data 
may be added to the learning as potential features due to the requirement to continu-
ously improve the results, thus resulting in a situation where the actual prediction results 
keep decreasing. Therefore, this situation needs to be avoided as much as possible. Based 

Table 2  The number of total samples including positive and negative samples in each dataset

RBP Samples RBP Samples

C17ORF85 PAR-CLIP 3754 EWSR1 PAR-CLIP 31649

CAPRIN1 PAR-CLIP 16041 ELAVL1 PAR-CLIP(A) 51249

C22ORF28 PAR-CLIP 18505 ELAVL1 PAR-CLIP(B) 18702

ALKBH5 PAR-CLIP 2410 FUS PAR-CLIP 66061

ELAVL1 HITS-CLIP 17031 PUM2 PAR-CLIP 17343

HNRNPC iCLIP 41266 IGF2BP1-3 PAR-CLIP 15377

SFRS1 HITS-CLIP 36633 MOV10 PAR-CLIP 26780

AGO2 HITS-CLIP 92346 ELAVL1 PAR-CLIP(C) 238888

TDP43 iCLIP 167110 ZC3H7B PAR-CLIP 40980

AGO1-4 PAR-CLIP 68212 PTB HITS-CLIP 88274

TIAL1 iCLIP 78984 TAF15 PAR-CLIP 13904

TIA1 iCLIP 34184 QKI PAR-CLIP 19418



Page 10 of 16Zhang et al. BMC Bioinformatics          (2022) 23:257 

Fig. 2  The accuracy and loss without using early-stopping method in C17ORF85 PAR-CLIP, CAPRIN1 PAR-CLIP 
and SFRS1 HITS-CLIP
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on the above idea, a method called early-stopping is adopted in our experiment, which is 
designed to monitor the performance of the model. When the performance of the model 
tends to decrease according to the metrics which generally is the correctness rate, fur-
ther training of the model is stopped at a reasonable point in time. The patience of the 
early stopping for model performance decreasing is set up as 2 epochs on the accuracy 
of the test dataset, which means that if the accuracy of the test dataset decreases in 2 
epochs, the model stops the prediction and outputs the result.

The accuracy results incorporating the early stopping method is shown in Fig. 3, part 
A. In this experiment, the comparison results with ChebNet is added. From the figure, 
it can be found that the prediction results are inferior to DeepPN when only relying on 
ChebNet which is a GCN algorithm. Compared to the results of ChebNet, most datasets 
achieve acceptable results. The ELAVL1 PAR-CLIP(C) has the best performance among 
all the datasets, which is 0.9746. For both methods, the more samples used for training 
and testing, the better results are likely to be obtained. The relationship between sample 
numbers and the test accuracy is illustrated in in Fig. 3, part B. The average test accuracy 
in 7 datasets with more than 60,000 samples and 7 datasets with less than 18,000 samples 

Fig. 3  The test accuracy on all the RBP datasets for DeepPN and ChebNet (A). The test accuracy on large 
datasets are much better than small datasets for both DeepPN and ChebNet (B). The distribution of the test 
accuracy for DeepPN and ChebNet (C)
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are chosen to be compared, and it can be seen that the larger the sample size, the better 
the results achieved. However, in both categories of datasets, DeepPN achieves better 
results than ChebNet alone. The ALKBH5 PAR-CLIP gets the lowest accuracy 0.6474 
for both methods. That may be because it is the dataset with lowest number of samples, 
which may limit the number of features detected and affect the accuracy of prediction. 
There are 10 datasets whose  accuracy results are exceeded 0.9 and 20 datasets  whose 
accuracy are exceeded 0.8 for both methods in Fig. 3, part C. Nevertheless, DeepPN has 
10 datasets above 0.9 compared to 8 for ChebNet, and DeepPN outperforms ChebNet.

Comparison with other methods

To compare DeepPN with other related work, we have realized three typical methods as 
baselines, including GraphProt, Deepnet-rbp and iDeepV. These four methods include 
deep learning method, non-deep learning method, a method based on structural data, 
and deep learning method with k-mer function. The results are shown in Table 3. The 
AUC (Area Under Curve) is used to evaluate those four methods.

The average AUC of DeepPN, GraphProt, Deepnet-rbp and iDeepV are 0.919, 0.887, 
0.903 and 0.913. The data distribution of AUC score for the DeepPN is similar to that of 

Table 3  The AUC results for each method

The best performance is marked in bold

The AUC results for GraphProt, Deepnet-RBP and iDeepV are taken from original papers

RBP DeepPN GraphProt Deepnet-rbp iDeepV

C17ORF85 PAR-CLIP 0.837 0.800 0.820 0.740

CAPRIN1 PAR-CLIP 0.886 0.855 0.834 0.824

C22ORF28 PAR-CLIP 0.785 0.751 0.792 0.823
ALKBH5 PAR-CLIP 0.660 0.680 0.714 0.643

ELAVL1 HITS-CLIP 0.978 0.955 0.966 0.966

HNRNPC iCLIP 0.977 0.952 0.962 0.979
SFRS1 HITS-CLIP 0.936 0.898 0.931 0.905

AGO2 HITS-CLIP 0.868 0.765 0.809 0.886
TDP43 iCLIP 0.936 0.874 0.876 0.935

AGO1-4 PAR-CLIP 0.912 0.895 0.881 0.925
TIAL1 iCLIP 0.926 0.833 0.870 0.929
TIA1 iCLIP 0.928 0.861 0.891 0.941
EWSR1 PAR-CLIP 0.954 0.935 0.966 0.962

ELAVL1 PAR-CLIP(A) 0.967 0.959 0.966 0.973
ELAVL1 PAR-CLIP(B) 0.976 0.935 0.961 0.962

FUS PAR-CLIP 0.977 0.968 0.980 0.976

PUM2 PAR-CLIP 0.952 0.954 0.971 0.965

IGF2BP1-3 PAR-CLIP 0.928 0.889 0.879 0.923

MOV10 PAR-CLIP 0.904 0.863 0.854 0.896

ELAVL1 PAR-CLIP(C) 0.994 0.991 0.994 0.990

ZC3H7B PAR-CLIP 0.898 0.820 0.796 0.883

PTB HITS-CLIP 0.938 0.937 0.983 0.936

TAF15 PAR-CLIP 0.974 0.970 0.983 0.978

QKI PAR-CLIP 0.975 0.957 0.983 0.965

Average 0.919 0.887 0.903 0.913
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iDeepV. The reason of this similarity may lie in the fact that DeepPN and iDeepV are two 
methods without using the structural data and only using the sequence data. However, 
the result of the DeepPN is slightly better than that of the iDeepV on average AUC score. 
The performance of the 4 methods is shown in Fig. 4. DeepPN and iDeepV show same 
number of exceed AUC scores for more than 0.8 on 24 datasets, outperforming Graph-
port and Deepnet-rbp.

DeepPN returns the highest AUC results for 10 of the RBPs datasets, while Deepnet-
rbp returns the highest AUC for 8 RBPs datasets including identical AUC socre for the 
ELAVL1 PAR-CLIP(C). iDeepV ranks the third with highest AUC in 7 RBPs datasets. 
Graphprot, not a deep learning method, does not return the highest AUC for a dataset.

Specifically, first as both use only sequence data, DeepPN classifies better than 
iDeepV on some datasets. For instance, C17ORF85 PAR-CLIP has a result of 0.873 on 
DeepPN and 0.740 on iDeepV,. a 13% improvement relative to iDeepV. DeepPN still 
outperforms Deepnet-rbp which uses structural data. The AUC result for the ZC3H7B 
PAR-CLIP dataset from DeepPN is 0.898, which is a 12% improvement relative to Deep-
net-rbp. Similarly, in TDP43 iCLiP, DeepPN improves by 6.8% and in IGF2BP1-3 PAR-
CLIP improves by 5.5%.

Also, it can be observed that for DeepPN and iDeepV, often the larger the dataset is, 
the better classification results are achieved. For example, as the ELAVL PAR-CLIP (C) 
dataset with the largest data volume, DeepPN achieved the best AUC result of 0.994. The 
second largest TDP43 iCLIP achieved the best result relative to the other three methods. 
For the smaller datasets, the performance of all methods decreases. However, compared 
with the iDeepV, our method performs better on some smaller datasets. In C17ORF85 
PAR-CLIP dataset with 3754 samples, DeepPN outperforms the other methods. Con-
versely, in the very small ALKBH5 PAR-CLIP which only has 2410 samples, Deepnet-rbp 
and GraphProt show better performance than DeepPN; notably, this is the only dataset 
where GraphProt convincingly outperforms DeepPN (AUC 0.680 vs 0.660).

Fig. 4  The quantity of different ranges of AUC score for each method
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Discussion
DeepPN is presented in this paper which focuses on the prediction of RBPs binding sites 
from sequence information alone. It is aimed to assist researchers to prioritize candidate 
RBPs binding sites rather than using high-cost, time-consuming experimental investi-
gations including genome wide CLIP-seq methods and functional testing in  vivo and 
in vitro model system.

Meanwhile, it is found that a larger data volume is more helpful for the model to 
achieve better prediction results when using only sequence data for training. Through-
out the performance results of DeepPN and iDeepV, both achieve good results on the 
dataset with larger data volume represented by ELAVL1 PAR-CLIP(C), but the results 
on ALKBH5 PAR-CLIP with smaller data volume are more average. It may be indicated 
that larger data contain richer hidden features, making it easier for the model to capture 
the features. Correspondingly, in the case of smaller sequences, the additional structural 
information helps to improve the classification results, which is reflected by the best 
results of Deepnet-RBP on ALKBH5 PAR-CLIP.

In this experiment, DeepPN differs from kDeepBind [49] and iCircRBP-DHN [52] in 
utilizing statistical frequencies to complement the features. It is built with more focus on 
enhancing the analysis with different deep learning models. At the same time, it does not 
focus too much on the processing of the dataset itself, while in the recent study, EDCNN 
[53] is based on iDeepE [54], and the data is cut into a local analysis part and a global 
analysis part to make the analysis effect improved. In future research, we will track the 
partitioning of the dataset and enhance the interpretability of the model.

Conclusion
In this paper, a deep parallel method called DeepPN is proposed with CNN and Cheb-
Net for the RBP binding sites prediction. Moreover, the ChebNet based on the spec-
tral GCN has been utilized in the RNA sequence analysis, which indicates that GCNs 
are beneficial to capture relative features from RNA sequences. The proposed method is 
evaluated on 24 datasets with RBPs. Considering that GCNs are mostly used in protein 
analysis now, our work suggests that GCN can also be used in sequence data analysis.

Abbreviations
CNN	� Convolutional Neural Network
GCN	� Graph Convolutional Network
RBP	� RNA-binding protein
ChebNet	� Chebyshev spectral convolutional neural network
AUC​	� Area under the ROC curve
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