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Abstract

Optical coherence tomography (OCT) is a prevalent imaging technique for retina. However, it 

is affected by multiplicative speckle noise that can degrade the visibility of essential anatomical 

structures, including blood vessels and tissue layers. Although averaging repeated B-scan frames 

can significantly improve the signal-to-noise-ratio (SNR), this requires longer acquisition time, 

which can introduce motion artifacts and cause discomfort to patients. In this study, we propose 

a learning-based method that exploits information from the single-frame noisy B-scan and a 

pseudo-modality that is created with the aid of the self-fusion method. The pseudo-modality 

provides good SNR for layers that are barely perceptible in the noisy B-scan but can over-smooth 

fine features such as small vessels. By using a fusion network, desired features from each modality 

can be combined, and the weight of their contribution is adjustable. Evaluated by intensity-based 

and structural metrics, the result shows that our method can effectively suppress the speckle noise 

and enhance the contrast between retina layers while the overall structure and small blood vessels 

are preserved. Compared to the single modality network, our method improves the structural 

similarity with low noise B-scan from 0.559 ± 0.033 to 0.576 ± 0.031.
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1 Introduction

Optical coherence tomography (OCT) is a powerful non-invasive ophthalmic imaging tool 

[9]. The limited light bandwidth of the imaging technique on which OCT is based upon, 

low-coherence interferometry [15], gives rise to speckle noise that can significantly degrade 

the image quality. In clinical practice, the thickness of the retina layers, such as the ganglion 

cell layer (GCL), inner plexiform layer (IPL) and retinal nerve fiber layer (RNFL), are of 

interest [16]. Retinal OCTs also reveal the vascular system, which is important for ocular 

diseases like diabetic retinopathy [12]. The speckle noise in single frame B-scans makes the 

border of layers unclear so that it is hard to distinguish adjacent layers, such as the GCL and 

IPL. The noise also produces bright dots and dark holes that can hurt the homogeneity of 
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layers and affect the visibility of the small vessels within them. A proper denoising method 

is thus paramount for ophthalmic diagnosis.

Acquiring multiple frames at the same anatomical location and averaging these repeated 

frames is the mainstream technique for OCT denoising. The more repeated frames are 

acquired, the closer their mean can be to the ideal ground truth. However, this increases 

the imaging time linearly, and can cause discomfort to patients as well as increase 

motion artifacts. Other hardware-based OCT denoising methods including spatial [1] and 

angular averaging [14] will similarly prolong the acquisition process. Ideally, an image 

post-processing algorithm that applies to a single frame B-scan is preferable. Throughout the 

paper, we denote single frame B-scan as high noise (HN) and frame-average image as low 

noise (LN).

The multiplicative nature of speckle noise makes it hard to be statistically modelled, as 

the variation of noise intensity level in different tissue increases the complexity of the 

problem [4]. In a recent study, Oguz et al. [11] proposed the self-fusion method for 

retinal OCT denoising. Inspired by multi-atlas label fusion [17], self-fusion exploits the 

similarity between adjacent B-scans. For each B-scan, neighboring slices within radius r are 

considered as ‘atlases’ and vote for the denoised output. As shown in Fig. 1, self-fusion 

works particularly well in preserving layers, and in some cases it also offers compensation 

in vessels. However it suffers from long computation time and loss of fine details, similar to 

block-matching 3D (BM3D) [5] and k singular value decomposition (K-SVD) [8].

Deep learning has become the state-of-the-art in many image processing tasks and 

shown great potential for image noise reduction. Although originally used for semantic 

segmentation, the U-Net [13] architecture enables almost all kinds of image-to-image 

translation [7]. Formulated as the mapping of a high noise image to its ‘clean’ version, the 

image denoising problem can easily be seen as a supervised learning algorithm. Because of 

the poor quality of single frame B-scan, more supplementary information and constraints are 

likely to be beneficial for feature preservation. For instance, observing the layered structure 

of the retina, Ma et al. [10] introduce an edge loss function to preserve the prevailing 

horizontal edges. Devalla et al. [6] investigate a variation to U-Net architecture so that the 

edge information is enhanced.

In this study, we propose a novel despeckling pipeline that takes advantage of both self-

fusion and deep neural networks. To boost the computational efficiency, we substitute 

self-fusion with a network that maps HN images to self-fusion of LN, which we call a 

‘pseudo-modality’. From this smooth modality, we can easily extract a robust edge map to 

serve as a prior instead of a loss function. To combine the useful features from different 

modalities, we introduce a pseudo-multimodal fusion network (PMFN). It serves as a 

blender that can ‘inpaint’ [3] the fine details from HN on the canvas of clean layers from the 

pseudo-modality. The contributions of our work are the following:

• A deep network to mimic the self-fusion process, so that the self-fusion of LN 

image becomes accessible at test time. This further allows the processing time to 

be sharply reduced.
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• A pseudo-modality that makes it possible to extract clean gradient maps from 

high noise B-scans and provide compensation of layers and vessels in the final 

denoising result.

• A pseudo-multimodal fusion network that combines desired features from 

different sources such that the contribution of each modality is adjustable.

2 Methods

Figure 2 illustrates the overall processing pipeline.

Preprocessing.

We crop every B-scan to size [512, 500] to discard the massive background that is not of 

interest. Then we zero-pad the image to [512, 512] for convenience in downsampling.

5-Frame Average.

In our supervised learning problem, the ground truth is approximated by the low noise 

5-frame-average B-scan (LN). The repeated frames at location i are denoted by Xi
1, …, Xi

5

in Fig. 2-a. Because of eye movement during imaging, some drifting exists between both 

repeated frames and adjacent B-scans. We apply a rigid registration for motion correction 

prior to averaging.

Pseudo-Modality Creation.

For self-fusion, we need deformable registration between adjacent slices. This is realized by 

VoxelMorph [2], a deep registration method that provides deformation field from moving 

image to target. This provides considerable speedup compared to traditional registration 

algorithms. However, even without classical registration, self-fusion is still time-consuming. 

To further reduce the processing time, we introduce Network 1 to directly learn the self-

fusion output. Time consumed by generating a self-fusion image of a B-scan drops from 

7.303 ± 0.322 s to 0.253 ± 0.005 s. The idea allows us to also improve the quality of our 

pseudo-modality, by using Si, the self-fusion of LN Yi images rather than that of HN images. 

Thus, Network I maps a stack of consecutive HN B-scans to self-fusion of LN.

In Fig. 2-b, the noisy B-scan and its neighbors within a radius are denoted as 

Xi − r
j , …, Xi + r

j , where j = 1, 2, …, 5 represent the repeated frames. Their corresponding 

LN counterparts are named similarly, [Yi−r, …, Yi+r]. The ground truth of Network I (i.e., the 

self-fusion of Yi) and its prediction are annotated as Si and Si
j respectively. Since Si

j contains 

little noise, we can use its image gradient Gi
j, computed simply via 3 × 3 Sobel kernels, as 

the edge map.

Psudo-Multimodal Fusion Network (PMFN).

Figure 2-c shows the PMFN that takes a three-channel input. The noisy B-scan Xi
j has fine 

details including small vessels and texture, while the speckle noise is too strong to clearly 
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reveal layer structures. The pseudo-modality Si
j has well-suppressed speckle noise and clean 

layers, but many of the subtle features are lost. So, merging the essential features from these 

mutually complementary modalities is our goal. To produce an output that inherit features 

from two sources, Network II takes feedback from the ground truth of both modalities in 

seeking for a balance between them. We use L1 loss for Yi to punish loss of finer features 

and mean squared error (MSE) for Si to encourage some blur effect in layers. The weight of 

these loss functions are determined by hyper-parameters. The overall loss function is:

Loss = α∑
x, y

Y i
j(x, y) − Y i(x, y) + β

N ∑
x, y

Y i
j(x, y) − Si(x, y)

2
(1)

N is the number of pixel in the image. Parameters α and β are the weights of the two 

loss functions, and they can be tuned to reach a tradeoff between layers from the pseudo-

modality and the small vessels from the HN B-scan.

3 Experiments

3.1 Data Set

OCT volumes from the fovea and optic nerve head (ONH) of a single human retina were 

obtained. For each region, we have two volumes acquired at three different noise levels 

(SNR=92 dB, 96 dB, 101 dB). Each raw volume ([NBscan,H,W] = [500, 1024, 500]) contains 

500 B-scans of 1024 × 500 voxels. For every B-scan, there are 5 repeated frames taken at 

the same position (2500 Bscans in total) so that a 5-frame-average can be used as low-noise 

‘ground truth’. Since all these volumes are acquired from a single eye, to avoid information 

leakage, we denoise fovea volumes by training on ONH data, and vice versa.

3.2 Experimental Design

In this study, our goal is to show that the denoising result is improved by the processing 

pipeline that introduces the pseudo-modality. Thus, we will not focus on varying the network 

structure for better performance. Instead, we will use the Network II with single channel 

input Xi
j as the baseline. For this baseline, the loss function will only have feedback from 

Yi. We hypothesize that the relative results between single modality and pseudo-multimodal 

denoising will have a similar pattern for other architectures for Network II, but exploring 

this is beyond the scope of the current study. Since the network architecture is not the focus 

of our study, we use the same multi-scale U-Net (MSUN) architecture, shown in Fig. 3 and 

proposed by Devalla et al. [6], for both Networks I and II.

The B-scan neighborhood radius for self-fusion was set at r = 7. Among the five repeated 

frames at each location, we only use the first one (Xi
1), except when computing the 5-average 

Yi. All the models are trained on NVIDIA RTX 2080TI 11GB GPU for 15 epochs with batch 

size of 1. Parameters in network are optimized by Adam optimizer with starting learning rate 

10−4 and a decay factor of 0.3 for every epoch. In Network II, we use α = 1 and β = 1.2.
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4 Results

4.1 Visual Analysis

We first analyze the layer separation and vessel visibility in the denoised results.

Figure 4 displays the denoising performance of the proposed algorithm for different input 

SNR levels. Compared to the baseline model, we observe that PMFN has better separation 

between GCL and IPL, which enables the vessels in GCL to better stand out from noise. 

Moreover, the improvement of smoothness and homogeneity in outer plexiform layer (OPL) 

makes it look more solid and its border more continuous. In addition, the retinal pigment 

epithelium (RPE) appears to be more crisp.

In Fig. 5, to better assess the layer separation, we focus on a B-scan with high speckle 

noise (SNR=92) that severely obscures the boundary between layers. In the top row, we 

zoom into a region of interest (ROI) that contains 5 tissue layers (from top to bottom): 

GCL, IPL, inner nuclear layer (INL), OPL and outer nuclear layer (ONL). As the baseline 

model learns only from the high noise B-scan, layer boundaries are not clear: GCL and 

IPL are indistinguishable, and although the INL and OPL are preserved, they are not as 

homogeneous as in the PMFN result. PMFN remedies these problems.

Another way of assessing the separability of layers or, in other words, the contrast between 

adjacent layers, is plotting the column intensity (Fig. 5-d). Since the layers within the 

ROI are approximately flat, we take the mean vector along the row. In order to rule out 

the potential difference of intensity level, we normalize the mean vector with the average 

intensity of ROI.

v = 1
W ∑

i

W
vi − μROI (2)

where W is the width of the ROI, vi is a column vector in the window and μROI is a vector 

that has the mean of the ROI as all its elements. We plot the v for Fig. 5-a, Fig. 5-b and 

Fig. 5-c in Fig. 5-d. The border between layers are approximated with vertical dash lines 

for this visualization. In Fig. 5-d, the proposed method tends to have lower intensity in dark 

bands and higher intensity in bright ones. This indicates that it has better contrast between 

adjacent layers. Figure 5-e summarizes the mean intensity within each layer. Because of 

high intensity speckle noise, the baseline result completely misses the GCL-IPL distinction, 

whereas our method provides good separation.

4.2 Quantitative Evaluation

We report the signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), contrast-to-

noise ratio (CNR) and structural similarity (SSIM) of our results. Normally, these metrics 

need an ideal ground truth without noise as a reference image. But such a ground truth is 

not available in our task, since the 5-frame-average LN image is far from being noiseless. 

Therefore, we make some adjustments to the original definitions of SNR and PSNR. 
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We use S N R = 10 log10
∑x, y [f(x, y)]2

∑x, y [b(x, y)]2
 where f(x, y) is the pixel intensity in foreground 

window and b(x, y) is background pixel intensity. This assumes there is nothing but pure 

speckle noise in the background, and that the foreground window only contains signal. 

Similarly, the PSNR can be approximated by P S N R = 10 log10
nxnymax[f(x, y)]2

∑x, y [b(x, y)]2
. The nx 

and ny are the width and height of the ROI, respectively. Finally, the CNR is estimated by 

CNR =
μf − μb

0.5 σf
2 + σb

2  where μf and σf are the mean and standard deviation of the foreground 

region; μb and σb are those of the background region.

Every layer has a different intensity level, so we report each metric separately for RNFL, 

IPL, OPL and RPE. We manually picked foreground and background ROIs from each layer, 

as shown in Fig. 6, for 10 B-scans. To avoid local bias, these chosen slices are far apart 

to be representative of the whole volume. When computing metrics for a given layer, the 

background ROI (yellow box) is cropped as needed to match the area of the foreground ROI 

(red box) for that layer. Figure 7 (a) to (c) display the evaluation result for SNR, PSNR and 

CNR respectively. For all layers, the proposed PMFN model gives the best SNR and CNR 

results, while the PSNR stays similar with the baseline multi-scale UNet model.

We also report the structural similarity index measure (SSIM) [18] of the whole B-scan. The 

SSIM for each input SNR level is reported in Fig. 7-d. The proposed method outperforms 

the baseline model for all input SNR.

5 Conclusion and Future Work

Our study shows that the self-fusion pseudo-modality can provide major contributions to 

OCT denoising by emphasizing tissue layers in the retina. The fusion network allows 

the vessels, texture and other fine details to be preserved while enhancing the layers. 

Although the inherent high dimensionality of the deep network has sufficient complexity, 

more constraints in the form of additional information channels are able to help the model 

converge to a desired domain.

It is difficult to thoroughly evaluate denoising results when no ideal reference image 

is available. Exploring other evaluation methods remains as future work. Additionally, 

application of our method to other medical image modalities such as ultrasound images is 

also a possible future research direction.

Acknowledgements.

This work is supported by Vanderbilt University Discovery Grant Program.

References

1. Avanaki MR, Cernat R, Tadrous PJ, Tatla T, Podoleanu AG, Hojjatoleslami SA: Spatial 
compounding algorithm for speckle reduction of dynamic focus OCT images. IEEE Photonics 
Technol. Lett. 25(15), 1439–1442 (2013)

Hu et al. Page 6

Ophthalmic Med Image Anal (2020). Author manuscript; available in PMC 2022 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV: VoxelMorph: a learning framework for 
deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

3. Bertalmio M, Sapiro G, Caselles V, Ballester C: Image inpainting. In: Proceedings of the 27th 
Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424 (2000)

4. Chen Z, Zeng Z, Shen H, Zheng X, Dai P, Ouyang P: DN-GAN: denoising generative adversarial 
networks for speckle noise reduction in optical coherence tomography images. Biomed. Sign. 
Process. Control 55, 101632 (2020)

5. Chong B, Zhu YK: Speckle reduction in optical coherence tomography images of human finger skin 
by wavelet modified BM3D filter. Optics Commun. 291, 461–469 (2013)

6. Devalla SK, et al. : A deep learning approach to denoise optical coherence tomography images of 
the optic nerve head. Sci. Rep. 9(1), 1–13 (2019) [PubMed: 30626917] 

7. Isola P, Zhu JY, Zhou T, Efros AA: Image-to-image translation with conditional adversarial 
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 1125–1134 (2017)

8. Kafieh R, Rabbani H, Selesnick I: Three dimensional data-driven multi scale atomic representation 
of optical coherence tomography. IEEE Trans. Med. Imaging 34(5), 1042–1062 (2014)

9. Li M, Idoughi R, Choudhury B, Heidrich W: Statistical model for OCT image denoising. Biomed. 
Optics Express 8(9), 3903–3917 (2017)

10. Ma Y, Chen X, Zhu W, Cheng X, Xiang D, Shi F: Speckle noise reduction in optical coherence 
tomography images based on edge-sensitive cGAN. Biomed. Optics Express 9(11), 5129–5146 
(2018)

11. Oguz I, Malone JD, Atay Y, Tao YK: Self-fusion for OCT noise reduction. In: Medical Imaging 
2020: Image Processing, vol. 11313, p. 113130C. International Society for Optics and Photonics 
(2020)

12. Ouyang Yanling., Shao Qing., Scharf Dirk., Joussen Antonia M., Heussen Florian M.: Retinal 
vessel diameter measurements by spectral domain optical coherence tomography. Graefe’s 
Arch. Clin. Exp. Ophthalmol. 253(4), 499–509 (2014). 10.1007/s00417-014-2715-2 [PubMed: 
25128960] 

13. Ronneberger Olaf., Fischer Philipp, Brox Thomas: U-Net: convolutional networks for biomedical 
image segmentation. In: Navab Nassir, Hornegger Joachim, Wells William M., Frangi 
Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). 
10.1007/978-3-319-24574-4_28

14. Schmitt J: Array detection for speckle reduction in optical coherence microscopy. Phys. Med. Biol. 
42(7), 1427 (1997) [PubMed: 9253050] 

15. Schmitt JM, Xiang S, Yung KM: Speckle in optical coherence tomography: an overview. In: 
Saratov Fall Meeting 1998: Light Scattering Technologies for Mechanics, Biomedicine, and 
Material Science, vol. 3726, pp. 450–461. International Society for Optics and Photonics (1999)

16. Tatham AJ, Medeiros FA: Detecting structural progression in glaucoma with optical coherence 
tomography. Ophthalmology 124(12), S57–S65 (2017) [PubMed: 29157363] 

17. Wang H, Suh JW, Das SR, Pluta JB, Craige C, Yushkevich PA: Multi-atlas segmentation with joint 
label fusion. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 611–623 (2012) [PubMed: 22732662] 

18. Zhou W: Image quality assessment: from error measurement to structural similarity. IEEE Trans. 
Image Process. 13, 600–613 (2004) [PubMed: 15376593] 

Hu et al. Page 7

Ophthalmic Med Image Anal (2020). Author manuscript; available in PMC 2022 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Self-fusion for high-noise (HN) single B-scan and low-noise (LN) 5-average images (excess 

background trimmed). SNR of the HN images is 101 dB.
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Fig. 2. 
Processing pipeline. Dotted box refers to a deep learning network. Process on dash arrow 

exists only in training. Solid arrows are for both training and testing.
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Fig. 3. 
Network architecture. The solid line passes the computation result of the block while the 

dash line refers to channel concatenation. Arrays in main trunk blocks indicate the output 

dimension.
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Fig. 4. 
Fovea denoising results for different input SNR. (Excess background trimmed.)
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Fig. 5. 
Layer separation analysis. The top row shows an ROI containing 5 layers of tissue (GCL, 

IPL, INL, OPL, ONL) for each of (a) 5-average LN image, (b) baseline result and (c) PMFN 

result. (d) plots the intensity across the 5 layers within the ROI. (e) plots the mean intensity 

per layer. Vertical dashed lines approximate layer boundaries.
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Fig. 6. 
Sample B-scans showing background (yellow) and foreground (red) ROIs used for SNR, 

CNR and PSNR estimation. 10 B-scans are chosen throughout the fovea volume to avoid 

bias. (Color figure online)

Hu et al. Page 13

Ophthalmic Med Image Anal (2020). Author manuscript; available in PMC 2022 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Quantitative evaluation of denoising results.
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