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T regulatory cells (Tregs) have a key role in the maintenance of immune homeostasis and the regulation of immune tol-
erance by preventing the inflammation and suppressing the autoimmune responses. Numerical and functional deficits 
of these cells have been reported in systemic lupus erythematosus (SLE) patients and mouse models of SLE, where 
their imbalance and dysregulated activities have been reported to significantly influence the disease pathogenesis, 
progression and outcomes. Most studies in SLE have focused on CD4+ Tregs and it has become clear that a critical role 
in the control of immune tolerance after the breakdown of self-tolerance is provided by CD8+ Tregs. Here we review the 
role, cellular and molecular phenotypes, and mechanisms of action of CD8+ Tregs in SLE, including ways to induce these 
cells for immunotherapeutic modulation in SLE.
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Introduction

Systemic lupus erythematosus (SLE) is an autoimmune dis-
ease characterized by widespread inflammation, autoanti-
body production, and immune complex deposition. SLE af-
fects major organ systems in the body, with lupus nephritis as 
a leading cause of death.[1–3]

In SLE, immune homeostasis is impaired. Many investiga-
tions have attempted to modulate the abnormal immune reg-
ulation in SLE, having as a therapeutic goal the restoration 
of immune self-tolerance and the suppression of the activity 
and number of pathogenic cells and the production of auto-
antibodies by inducing T regulatory cells (Tregs).

[4–10] Many bio-
technology and pharmaceutical companies are also currently 
working to translate the knowledge on the biology of Tregs and/
or to bioengineer Tregs into transformational medicines that 
could benefit patients with various inflammatory and autoim-
mune diseases including SLE.

While a decrease in the number and/or function of CD4+ 
Tregs has been extensively studied in SLE,[11–19] the role and 
characterization of CD8+ Tregs in the disease is less clear. 
Our group identified and characterized a CD8+ T cell subset 
that prevented the generation of pathogenic autoantibody 

production and maintained immune self-tolerance in murine 
lupus.[6, 8]

The investigation of the regulatory networks, genes, and sig-
naling pathways involved in the regulation of the functional 
activity and survival of CD8+ Tregs can be important for the 
development of therapies of restoration of immune homeosta-
sis in SLE and other autoimmune diseases. The critical ques-
tions toward a clinical translational use of the findings are: (1) 
What is/are the precise surface phenotype(s) of the CD8+ Tregs 
which suppress autoantibody production? (2) What are the 
critical molecular elements in the CD8+ Tregs that are required 
for their survival, expansion, and suppression of helper  
T cell activity and suppression of autoantibody production by 
B cells? (3) What are the roles of transforming growth factor 
(TGF)-β, Bcl2, regulator of G-protein signaling (RGS) pro-
teins, and interferons (IFNs) expression in the suppressive 
mechanisms of the CD8+ Tregs? (4) Can peptides that target 
Major Histocompatibility Complex (MHC) I/II T-cell domains 
augment the CD8+ Treg activity in SLE patients?

This review will discuss the aspects of Treg-mediated immune 
regulation, current knowledge in the field and approaches 
of Treg-based immunotherapy for improved management of 
SLE.
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Cellular and molecular phenotypes of CD8+ T regulatory 
Cells (Tregs)

Although several cellular and molecular markers have been 
described for the identification of CD8+ Tregs (see Table 1, 
Figure 1, 2 and [20]), there is no single surface marker that is 
specific for CD8+ Tregs.

Isolated CD8+ Tregs frequently express several genes that 
include CD8α, FoxP3, CD25high, CD28low, CTLA-4, CD122, 
CD103, CD38, CD45RA, CD45RO, CD56, CXCR3, lympho-
cyte activation gene 3 (LAG-3), and CD127low.[20, 22–25]

Analogous to the CD8+CD122+ T cells found in mice, Shi et al. 
showed that in humans CD8+CXCR3 (CD183+) T cells were 
regulatory in nature and mediated suppressive functions 
through IL-10.[41] In mice, CD8+CD122+ T cells contained 
populations which were both positive and negative for the 
expression of programed death-1 (PD-1); however, the sup-
pressive activity was only present in the PD-1+ subset and 
depended on production of IL-10.[42] Also in mice, Deng et al. 
reported that CD8+CD103+ Tregs inhibited the progression of 
lupus nephritis by attenuating glomerular endothelial cell inju-
ry,[43] and the adoptive transfer of CD8+CD103+ inducible Tregs 
(iTregs) to Murphy Roths Large (MRL)/lpr mice associated with 
decreased levels of autoantibodies, reduced renal pathologi-
cal lesions, lowered renal deposition of IgG/C3, and less pro-
teinuria.[43]

CD8+CD28− and CD8+CD28low Tregs were reported in mice and 
in human,[44] while CD8+CD183+CD25highCD278+ Tregs that in-
hibited B-cell proliferation and immunoglobulin (IgG), IgM. 
IgA production were identified by Gupta and colleagues in 
humans.[45]

Our group showed that the treatment of  (New Zealand Black 
X New Zealand White)F1 (BWF1) lupus-prone mice with 
the anti-DNA-based peptide pCons induced distinct popula-
tions of CD8+ Tregs.

[6, 8, 30, 31] Those CD8+ Tregs included both 
CD8+CD28− and CD8+CD28+ cells but the expression of 
FoxP3 and TGF-β mRNAs was higher and longer-lasting in 
the Tregs of the CD28− subset.[6] Other pCons-induced molecu-
lar markers[6, 8] included are RGS2low, RGS16, RGS17, Bcl-2 
Associated X-protein (BAXlow), glutamic pyruvate transami-
nase (GPT-2low), and growth arrest and DNA damage induc-
ible 45β protein (GADD45β). The phenotype of the pCons-
induced CD8+ Tregs that protected lupus mice and reduced 
anti-DNA autoantibodies and proteinuria[6, 8, 21, 39] also includ-
ed programed cell death-1 (PD1low), CD62Lhigh, and CCR7low 
(Singh et al., in press, Front Immunol (2021) doi: 10.3389/
fimmu.2021.718359).

Cellular and molecular markers of CD4+ Tregs

There are similarities and differences between CD8+ Tregs and 
CD4+ Tregs. Compared to CD8+ Tregs, CD4+ Tregs have been 
better characterized (Table 2). Markers for human and murine 
CD4+ Tregs include CD25, FOXP3, CD127low, GITR, CTLA-4, 
CD28, GARP, HLA-DR, CD45RA, CD45RO, ICOS, Bcl-6, 
CCR6, CD39, CD73, CD49d, and Helios.[40, 46, 47] Nocentini  
et al. showed that CD4+CD25low and GITR+ T cells had a 
regulatory phenotype and suppressed the proliferation of T 
effector cells, were expanded in inactive lupus patients.[48] 
Others found that human Tregs preferentially expressed tu-
mor necrosis factor receptor 2 (TNFR2), in addition to CD25, 
FoxP3, and CD45RO+ markers,[49, 50] and Okubo et al. demon-
strated that tumor necrosis factor-alpha (TNF-α) or a TNFR2 
agonist promoted the expansion in vitro of TNFR2+ Tregs with a 
strong suppressive function.[51]

Table 1:  CD8+ Treg markers and mechanisms of action.

Subset Natural/induced Markers Mechanism of action Ref.

CD8+FoxP3+ (mice) Induced PD-1low, CD62Lhigh, CCR7low Secretion of TGF-β [6, 8, 21]

CD8, CD8α, CD25high, CD28low/high, 
FoxP3, CTLA-4, CD103, CD122, 
CXCR3, LAG-3, CD127 low (mice, 
humans)

 Natural/induced CD25high, CD28low/high, FoxP3, CTLA-
4, CD103, CD122, CXCR3, LAG-3, 
CD127low

Secretion of IL-10, Reduc-
tion of IFN-γ, Cell-to-cell 
contact dependent

[20, 22–25]

CD8, Qa-1, NKG2A (CD94) (mice) Natural Qa-1 (mice), HLA-E (humans), Ly49 Suppress T effector cells, use 
perforin

[23, 26–29]

CD8, CD25, FoxP3 (humans)  Natural CD8, CD25, FoxP3, CD127low (mice 
and humans)

Suppress T effector cells [22]

CD8 (mice) Natural  CD28+CD28−, CD103, CD122, ICOS+ 
in mice

Suppress T effector cells [22, 30–36]

CD8, ILT3/ILT4 (mice) Natural ILT3, ILT4 Make APCs tolerogenic [37, 38]

CD8, CD103 (mice) Induced  CD103 CD39, attenuate glomerular 
endothelial cell damage

[20, 22–25, 35, 39]

CD8, CD25, CXCR3 (CD183) CD178 
(ICOS) (humans)

 Natural CD8+CD25hi, CD183+ CD178+FoxP3+ Suppress B cells prolifera-
tion and IgG production

[40]

CD8, CD28 (humans)  Natural  CD8+CD28− Inhibit T cell proliferation 
and cytotoxic functions

[21, 33]

APC, antigen presenting cells; ILT, Ig-like transcript; IgG, immunoglobulin; LAG-3, lymphocyte activation gene 3; PD-1, programed death-1; ICOS, Inducible co-stimulator.
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Table 2:  CD4+ Tregs markers and mechanisms of action.

Subset Natural/induced Markers Mechanisms of Action Ref.

 CD4+ Tregs (mice, humans)  Induced/natural CD4, CD25, FoxP3, IL-10, 
IL-35, GITR, CD127low

Suppress T effector cells, 
cell-to-cell contact, 
downregulation of 
CD80/CD86, metabolic 
disruption

[18, 40, 63–75]

CD4+ Tregs (humans)  Natural CD4, CD25, GARP, CD45RA/
RO, CCR6 Helios, CD127low

Suppress T effector cells [35, 40, 46, 47, 63, 
76–78]

Tr1  Natural CD4, CD25, IL-10, IL-35 Suppress T effector cells, 
induction of B7-H4 on 
APCs through IL-10, TGF- 
β, IL-35

[40, 46, 47, 79]

 Th1, Th2, Th3 Natural CD4, CD25, CXCR CXCR3+  
T cells that can produce 
IFN-γ, IL-4

Suppress T effector cells 
through IL-10, TGF- β, 
IFN-γ, IL-4

[63–67]

IL-17+ FoxP3+ Tregs (mice, humans) Natural CD4, FOXP3, CCR6, RORγt Suppress CD4+ T cell 
proliferation 

[40, 46, 47]

CD45RA+ FoxP3low Tregs (mice, humans) Natural CD4, CD45RA, FOXP3 Resting Tregs [40, 46, 47]

Follicular Tregs (mice) Natural CD4, Foxp3, CXCR5, Bcl6 Germinal centers [40, 46, 47]

CD4+CD25low/-GITR+ (humans)  Natural CD4+ CD25low/-GITR+ Suppress T effector cells [48]

CD4+CD25+ CXCR2+FoxP3+ CD45RO+ (humans)  Natural/induced CD4+CD25+ CXCR2+FoxP3+ 
CD45RO+

Suppress T effector cells [51]

CD4+CD161+ FoxP3+ (humans) Natural CD127low, IL-2, IFNγ, IL-17 Suppress T effector cells [57, 58]

CD4+CXCR5+ FoxP3+ (mice, humans) Natural CD4+CXCR5+ Suppress B-cell antibody 
production

[59]

Follicular CD4+Bcl6−FoxP3+ Tregs (mice, humans)  Natural CD4+Bcl6−FoxP3+ Suppress germinal 
center reactions

[60]

APC, antigen presenting cells; Tregs, T regulatory cells; Tr1, type-1 regulatory.

Also CD4+FoxP3− type-1 regulatory (Tr1) cells that express IL-
10 are involved in the maintenance of tolerance and display 
strong immunosuppressive functions.[52–54] Duhen et al. identi-
fied CD4+ Tregs subsets based on the expression of chemokine 
receptors, with differentially expressed lineage-specific tran-
scription factors that responded differently to Th1, Th2, and 
Th17.[55, 56] Pesenacker et al. and Afzali et al. defined a new 
subset of Tregs in human cord blood with a CD4+CD161+ phe-
notype that, although proinflammatory in nature, had a similar 
suppressive potential as conventional Tregs,

[57, 58] while Chung 
et al., and Linterman et al. identified a subset of CD4+ Tregs ex-
pressing CXCR5 and Bcl6 that localized in the germinal cen-
ters of both mice and humans.[59, 60] Other tissue-resident Tregs 
can be mostly activated cells with memory suppression.[61, 62]

Induction of CD8+ and CD4+ Tregs in SLE

Homeostatic balance in the controlled regulation of the immune 
response is impaired in lupus patients,[80] and decreased num-
bers of CD4+ and CD8+ Tregs associate with accelerated and 
deteriorating pathology in animal models and in humans with 
SLE,[4, 12–16, 21] indicating that Tregs play an important role in the 
protection from SLE.[6, 8, 21, 23, 26, 32–35, 81, 82]

We reported that both CD4+ and CD8+ Tregs are functionally 
deficient in both BWF1 mice and patients with SLE (they are as 

well reduced in other autoimmune conditions).[4–10, 76–78] While 
CD4+ Tregs have been intensively studied,[63–67] less is known 
about the CD8+ Tregs in the suppression of autoimmunity.

Functional properties of peptide-induced CD8+ and 
CD4+ Tregs in SLE

The functional properties of CD8+ Tregs can be modulated by 
the administration of anti-DNA-based peptides to alter dis-
ease progression.[6, 8, 21, 83–89] We showed that BWF1 lupus 
mice were protected from autoimmune disease after i.v. in-
jection of high doses of pCons, an artificial peptide based 
on the VH sequence of murine anti-dsDNA antibodies that is 
presented by both MHC class I and II molecules.[83] Immune 
tolerance induced by the pCons peptide associated with an 
expansion of both CD8+ and CD4+ Tregs that independently 
suppressed the proliferation of naïve CD4+ T cells and  
B cells.[6, 8, 18, 21, 39] pCons induced CD4+ Tregs with high FoxP3 
expression and suppressed anti-DNA autoantibody produc-
tion both in vitro and in vivo but also induced an expansion 
of CD8+[6, 21, 90] that suppressed autoimmune responses in a 
FoxP3-dependent manner.[6, 8, 21] After pCons administration, 
CD8+ Tregs developed a unique genetic/molecular profile con-
sisting of the upregulation of genes including FoxP3, Trp53, 
Bcl2, CCR7, IFNAR1, and Ifi202b (Table 3). Downregulated 
genes included RGS2, GPT2, BAX, PD1, CTLA4, CD122, 
GADD45, and phosphodiesterase 3b (PDE3b).[91] In all, their 
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suppressive capacity depended on the expression of FoxP3, 
PD1, and IFI202b.[8, 39]

While extensive studies have evaluated the role of CD4+ 
Tregs as suppressor of autoimmune responses, the mode of 
action of CD8+ Tregs have been explored less[6, 8, 16, 18, 21, 92–96] but 
shown to prevent lupus-like disease in murine graft versus 
host disease (GVHD).[97–99]

The induction of CD8+ Cytotoxic T lymphocytes (CTLs) is re-
sponsible for the killing of autoantibody-producing B cells and 
the inhibition of murine lupus.[100]

A nucleosomal histone peptide in (SWR × NZB)F1 (SNF1)  
mice delays lupus nephritis and B-cell activation by inducing 

(CD4+ and CD8+) TGF-β+ Tregs in mice[85, 101, 102] and also blocks 
pathogenic autoimmune responses in human SLE.[103]

Interestingly, SLE patients treated with methylprednisolone 
have CD8+ Tregs associated with decreased disease activity,[104] 
and CD8+ Tregs are induced by all-trans retinoic acid.[105]

The MHC class 1b molecule Qa-1 restricted CD8+ α/α+ 
TCR α/β+ T cells has been shown to regulate immunity in 
mice,[27, 106, 107] and a population of Qa-1-restricted CD8+ T 
cells can inhibit murine lupus-like disease by targeting au-
toreactive CD4+ T follicular helper cells (TFH).[23, 28] Peptide-
specific CD8+ Tregs that suppress partly through perforin have 
also been described,[23, 26, 28, 29]; other tolerogenic peptides 
based on the light chain complementarity-determining region 

Figure 1:  �CD8+ Tregs SLE. In SLE, subsets of CD8+CD25+FoxP3+ Tregs—whose additional phenotypic markers are schematically depicted here—
can suppress the activity of T effector (Teff) cells and APCs, also suppressing autoantibody production through the secretion of TGF-β 
and other cytokines/chemokines. APC, antigen presenting cells; LAG-3, lymphocyte activation gene 3; SLE, systemic lupus erythema-
tosus; Tregs, T regulatory cells; and Teff, T effector. Modified from Martha R. Vieyra-Lobato, Jorge Vela-Ojeda, Laura Montiel-Cervantes, 
Rubén López-Santiago, Martha C. Moreno-Lafont, “Description of CD8+ Regulatory T Lymphocytes and Their Specific Intervention 
in Graft-versus-Host and Infectious Diseases, Autoimmunity, and Cancer”, Journal of Immunology Research, vol. 2018, Article ID 
3758713, 16 pages, 2018. https://doi.org/10.1155/2018/3758713

Table 3:  Gene changes in CD8+ Tregs induced by anti-DNA antibody-based peptide in lupus mice.

Upregulated genes Downregulated genes

Foxp3, IL-2, TGF- β, CD25, CD28, Trp53, CD122, Bcl2, CCR7, IFNAR1, Ifi202b RGS2, GPT2, BAX, PD1, CTLA-4, GADD45β, PDE3b

PDE3b, phosphodiesterase 3b; RGS, regulator of G-protein signaling; Tregs, T regulatory cells.
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1 (hCDR1) of human anti-dsDNA antibodies that induce 
CD4+CD25+ and CD8+CD28− Tregs, which suppressed lympho-
cyte proliferation and autoantibody production in BWF1 lupus 
mice have also been described.[1, 19, 20, 87, 108]

Transcription factors and mechanisms of action  
of Tregs

FoxP3 is a critical transcription factor in the regulatory ac-
tivity of both CD4+ and CD8+ Tregs.

[109] A decreased expres-
sion of FoxP3 results in loss of tolerance to self-antigens 

in SLE patients,[110] and SLE patients have a decreased 
expression of FoxP3 as compared to healthy matched 
controls.[77]

Recent studies have shown that both CD4+ and CD8+ Tregs 
express another transcription factor, Helios, which appears as 
essential for the maintenance of a stable phenotype and sup-
pressive activity during inflammation and autoimmunity.[111]  
Helios is a member of the Ikaros gene transcription factor 
family expressed by FoxP3+ Tregs (both in mice and humans). 
It is thought that Helios+ cell subsets arise from thymus while 

Figure 2:  �Schematic representation of the mechanisms of immune suppression of CD8+
 
Tregs  in SLE. A. CD8+ Tregs  secrete cytokines/chemo-

kines such as TGFβ, IL-10, and CCL4 that suppress immune responses. B. CD8+ Tregs can also suppress in a cell contact-dependent 
fashion that may depend on the surface expression of membrane-bound TGFβ (and/or CTLA-4). C. MHC class I-restricted CD8+ 
Tregs are capable to kill activated CD4+ T effector (Teff) cells that express Qa-1/HLA-E. D. CD8+ Tregs can render APCs tolerogenic by 
downregulating co-stimulatory molecules such as CD80 and CD86, and upregulating inhibitory receptors such as ILT3 and ILT4. 
APC, antigen presenting cells; ILT, Ig-like transcript; SLE, systemic lupus erythematosus; and Tregs, T regulatory cells. Modified with 
permission from Ref # 20, Dinesh RK et al, Autoimmun Rev. 2010  Jun;9(8):560-8. Copyright, 2010, Elsevier.
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Helios− subsets are induced from FoxP3− T cells. Helios+  
T cells are highly suppressive and express more highly demeth-
ylated Treg-specific demethylated region (TSDR) that facilitate 
FoxP3 transcription and therefore expression.[112] Helios+  hu-
man memory Tregs appear to co-express (T cell immunoreceptor 
with Ig and ITIM domains (TIGIT) and Fc receptor-like protein 3 
(FCRL3),[113] and suppressive Helios+ FoxP3+ Tregs with migra-
tory potential are expanded in inflamed tissues of SLE patients 
with active disease.[114]

It seems that transcription factor, BTB Domain And CNC 
Homolog 2 (Bach2), is also important for Tregs, since a loss of 
it results in Th2-mediated inflammatory lung disease while its 
expression is required for TGF-β-induced FoxP3 expression 
and the suppression of T effector cells.[115–117]

CD4+CD25+LAG+ Tregs are instead regulated by Early growth 
response 2 (Egr2), a zinc-finger transcription factor required 
for the induction of T cell anergy, and produce TGF-β3 in an 
Egr2- and Fas-dependent manner.[118]

Another transcription factor, nuclear factor erythroid 2-related 
factor 2 (NRF2), is a transcriptional activator which regulates 
oxidative stress.[119] Although specific functions of NRF2 in 
Tregs are not fully understood, a recent study has shown that 
NRF2 is a negative regulator of Treg function and that FoxP3 
specific activation of NRF2 results in the loss of immune tol-
erance and the accumulation of IFN-γ-producing T effector 
cells and inflammation.[120] In SLE, several lines of evidence 
suggest that NRF2 plays a central role in the pathogenesis of 
the disease by exerting anti-inflammatory effects—although 
others show pro-inflammatory effects. One study showed 
that aged female NRF2-deficient mice were prone to develop 
a condition closely resembling human SLE,[121] and another 
study in B6/lpr mice associated NRF2 deficiency with lupus 
nephritis and Th17 cells.[122] Mechanistically, NRF2 binds to-
gether with small Maf proteins to the antioxidant response 
element (ARE) in the regulatory regions of target genes and 
with KEAP1 (Kelch ECH associating protein 1), a repressor 
protein that binds to NRF2 and promotes its degradation by 
the ubiquitin-proteasome pathway. Genetic deletion of Keap1 
resulted in higher percentages of Tregs,

[123] and the absence of 
NRF2 in donor T cells enhanced the persistence of Tregs and 
reduced systemic inflammation in murine GVHD.[124]

Notwithstanding the above consideration, the general mech-
anisms of actions of the Tregs include: (1) suppression of T 
and B cells through inhibitory cytokines; (2) induction of cy-
tolysis in target cells; (3) targeting antigen presenting cells 
(APC) such as dendritic cells, and (4) metabolic disruption 
in target cells.

Tregs secrete inhibitory cytokines such as IL-10, TGF-β, and 
IL-35 that can suppress target cells including APCs and 
CD4+CD25− T effector cells.[68, 69, 125, 126] For example, pCons-
induced Tregs secreted TGF-β and IL-10,[6, 8, 18, 21, 76] is also ob-
served in other studies.[70–72]

The cytolysis of target cells by Tregs involved perforin and 
granzyme B.[18, 90]

Tregs can also target directly APCs to suppress their function 
or render them tolerogenic through an upregulation of inhibi-
tory receptors such as Ig-like transcript (ILT)-3 and ILT-4.[37, 38] 
Bezie et al. showed that CD8+FoxP3+ Tregs depend on the ex-
pression of CTLA-4 to suppress T effector cells in vitro,[73] and 
other studies found that Tregs can downregulate costimulatory 
molecules such as CD80 and CD86 on the APCs.[36, 74, 79]

Finally, the “metabolic disruption” in target cells by Tregs 
causes suppression of T effector cells by utilizing/sequester-
ing IL-2 and/or IL-15, thus depriving the target cells of critical 
growth factors.[75, 127]

Concluding remarks

Studies and findings on Tregs are ready to be translated into 
approaches for the restoration of immune tolerance in SLE 
and advancement toward clinical settings. In particular, the 
bioengineering of Tregs and the use of polyclonal and antigen-
specific Treg cell therapies based on CD4+ and CD8+ chimeric-
antigen-receptor (CAR) Tregs in ongoing investigations by many 
biotechnology and pharmaceutical companies are providing 
encouraging results that appear to rapidly translate into the 
clinical practices.[128-134] More research will allow to fine-tuning 
and avoid off-target effects in different Tregs-based immuno-
therapies, optimizing the immunotherapeutic benefits for SLE 
patients.
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