Skip to main content
. Author manuscript; available in PMC: 2022 Jun 29.
Published in final edited form as: Menopause. 2020 Oct;27(10):1117–1125. doi: 10.1097/GME.0000000000001589

Table 4.

Multiple regression models investigating factors associated to BMI Changes

Model All Women in
Sample
n=73,525
Underweight Normal
Weight
Overweight Class I Obesity Class II
Obesity
Class III
Obesity
N=72291 N=850 N=29,849 N=24,640 N=10,891 N=3,854 N=2,207
Antidepressants 0.17 - 0.0001 0.43 - 0.043 0.12 - 0.0001 0.23 - 0.0001 0.28 - 0.0001 0.27 - 0.002 0.63 - 0.073
Antipsychotics 0.3 - 0.32 NA 0.57 - 0.199 0.23 - 0.501 0.44 - 0.645 0.39 - 0.685 1.93 - 0.57
Betablockers 0.02 - 0.311 0.18 - 0.378 0.02 - 0.47 0.04 - 0.159 0.04 - 0.357 0.01 - 0.866 −0.26 - 0.451
OTC Insulin 0.44 - 0.0001 −1.11 - 0.274 0.34 - 0.008 0.38 - 0.0001 0.34 - 0.008 0.79 - 0.0001 1.29 - 0.04
Glucocorticosteroids −0.13 - 0.017 −0.66 - 0.07 0 - 0.993 −0.18 - 0.015 −0.31 - 0.007 −0.12 - 0.608 −0.18 - 0.847

Each row represents a model which main regressor is a weight promoting drug class, as each column represent a stratus by BMI class (except for the first column that represents all sample). All models are adjusted for baseline health conditions as diabetes, hypertension and hypercholesterolemia, physical activity, sleep medications, smoking and diet.

Values represent regression coefficients along with p-values (β - p value). Regression coefficients show the average change in BMI observed moving from non-user to intermittent user to persistent user relatively to the specific drug. Regression coefficients of covariates are shown in table S6.