
Protein transmission in neurodegenerative disease

Chao Peng1, John Q. Trojanowski2, Virginia M.-Y. Lee2,✉

1Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 
Los Angeles, CA, USA.

2The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for 
Neurodegenerative Disease Research, The Perelman School of Medicine at the University of 
Pennsylvania, Philadelphia, PA, USA.

Abstract

Most neurodegenerative diseases are characterized by the intracellular or extracellular aggregation 

of misfolded proteins such as amyloid-β and tau in Alzheimer disease, α-synuclein in Parkinson 

disease, and TAR DNA-binding protein 43 in amyotrophic lateral sclerosis. Accumulating 

evidence from both human studies and disease models indicates that intercellular transmission 

and the subsequent templated amplification of these misfolded proteins are involved in the onset 

and progression of various neurodegenerative diseases. The misfolded proteins that are transferred 

between cells are referred to as ‘pathological seeds’. Recent studies have made exciting progress 

in identifying the characteristics of different pathological seeds, particularly those isolated from 

diseased brains. Advances have also been made in our understanding of the molecular mechanisms 

that regulate the transmission process, and the influence of the host cell on the conformation and 

properties of pathological seeds. The aim of this Review is to summarize our current knowledge 

of the cell-to-cell transmission of pathological proteins and to identify key questions for future 

investigation.

The term ‘neurodegenerative disease’ encompasses a large group of conditions that are 

clinically and pathologically diverse, the majority of which are characterized by the 

accumulation of misfolded proteins into insoluble aggregates (or inclusions) in the CNS 

accompanied by a progressive loss of neurons in the affected regions. The protein aggregates 

involved vary between diseases, for example, amyloid-β (Aβ) and tau aggregates in 

Alzheimer disease (AD)1,2, misfolded α-synuclein in Parkinson disease (PD)3, TAR DNA-

binding protein 43 (TDP43) and superoxide dismutase 1 (SOD1) pathology in amyotrophic 

lateral sclerosis4, and mutated huntingtin (HTT) in Huntington disease5. Numerous studies 

have explored the toxic effects of these protein aggregates on the CNS and have investigated 

the molecular mechanisms underlying the resulting neuronal dysfunction6–9. The findings 

of these studies have highlighted the crucial role of misfolded proteins in the aetiology and 

pathogenesis of neurodegenerative diseases.
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Interestingly, the spatial distribution of pathological proteins in diseased brains follows 

stereotypical patterns10,11, which were historically attributed to differences in the 

vulnerability of the subtypes of neurons in different brain regions12. However, over the 

past decade, studies using post-mortem brain tissue and various animal and cell models 

have suggested that many neurodegenerative disease-related pathological proteins undergo 

cell-to-cell transmission. Following transmission to the recipient cell, pathological proteins 

act as templates to induce their normal endogenous counterpart protein to misfold, 

leading to the amplification of the pathological protein conformation13–16, known as 

‘templated amplification’. The intercellular transmission and templated amplification of 

these ‘pathological seeds’ might lead to the spreading of pathological protein aggregates 

along neuronal networks, which could explain the stereotypical distribution of protein 

pathology in the brain. Multiple studies have now investigated the nature of these 

pathological seeds and the mechanisms that modulate the transmission process. For 

example, studies using post-mortem brain tissue from individuals with neurological disease 

have shown that different pathological seeds can have unique properties and conformations. 

The aim of this Review is to summarize the evidence supporting the transmission hypothesis 

and to discuss the latest progress in this field, particularly regarding our understanding of 

the cell-to-cell transmission of α-synuclein, Aβ and tau. We also identify key questions for 

future study.

Evidence of protein transmission

Stereotypical distribution of protein aggregates in diseased brains.

The distribution of pathological protein in the brains of individuals with neurodegenerative 

disease follows highly predictable spatiotemporal patterns. For example, in individuals 

with PD, α-synuclein pathology is first found in the olfactory bulb and the dorsal motor 

nucleus of the glossopharyngeal and vagal nerves. This pathology then spreads in a rostral 

direction from the brainstem to the midbrain and forebrain, eventually reaching the cerebral 

cortex11,17. In individuals with AD, pathological tau first appears in the locus coeruleus 

and transentorhinal cortex, and then spreads to the entorhinal and hippocampal regions, 

followed by the basal temporal cortex and the insular cortex. In the later stages of AD, tau 

pathology can be found throughout the neocortex10,18,19. Interestingly, the distribution of Aβ 
pathology in the brains of individuals with AD follows a different pattern to the distribution 

of tau. Aβ plaques first develop in the orbitofrontal neocortex and basal temporal cortex, and 

then spread throughout the neocortex before finally reaching the hippocampus, midbrain, 

brainstem and cerebellum10,20,21.

Historically, the stereotypical distribution of pathological proteins in the CNS was thought 

to result from differences in vulnerability between brain regions12 or the progressive 

spreading of pro-inflammatory cytokines22. For example, neurons that are more vulnerable 

to α-synuclein pathology in individuals with PD tend to have highly branched axons, slow 

tonic activity and low levels of Ca2+-buffering proteins12. However, these features do not 

fully explain the distribution pattern of α-synuclein pathology in diseased brains. During the 

past decade, multiple studies, which are discussed later in this Review, have demonstrated 

that templated amplification and dissemination of various pathological proteins can occur 
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in animal and cell models. These observations support the view that this stereotypical 

involvement of different brain regions is the result of the spreading of pathological proteins 

between anatomically connected brain areas23.

However, the transmission hypothesis has several limitations. First, the post-mortem 

studies that identified the stereotypical distribution of pathology are limited by a lack of 

longitudinal data and therefore do not provide direct evidence of sequential evolvement 

of different brain regions during disease progression. Nevertheless, PET imaging with 

ligands for specific pathological proteins has now been used to visualize changes in tau 

and Aβ pathology over time in the same patients, confirming the major conclusions of 

post-mortem studies24,25. Second, the stereotypical spreading pattern is not observed in 

all patients12, indicating that the factors affecting the distribution of pathology can vary 

between individuals. Finally, some of the brain regions that are anatomically connected 

to areas containing pathological proteins do not develop pathology and the spreading 

of pathological proteins is not proportional to the strength of synaptic connections12. 

Therefore, the selective vulnerability of different neuronal populations could be a crucial 

modifier of the transmission process12. This selective vulnerability could result from 

differences in the release or uptake of pathological seeds or in the intracellular environment 

that modulates the templated amplification process.

The pathological seeds responsible for transmission might not exist in the form of mature 

aggregates that can be easily detected through histopathological methods. Therefore, to 

complement traditional histopathological studies, other studies have also been performed to 

map the seeding activity of pathological proteins isolated from different brain regions. In 

these studies, potential pathological seeds were isolated from different brain regions and 

their ability to seed protein aggregation was tested in reporter cell lines26,27. For example, in 

one study, preparations from brain regions free of tau deposition, including regions that are 

usually affected further along the Braak staging pathway, could induce tau aggregation in a 

reporter cell line26. Using similar methods, the origin of tau seeding activity was mapped to 

the transentorhinal and entorhinal cortices27.

Transplantation.

Strong evidence for the transmission hypothesis comes from studies of patients who have 

received transplants of human fetal brain-derived cells as a therapy for PD. In these patients, 

α-synuclein aggregates were observed in the grafted cells, indicating transmission from the 

host to the graft28,29. More recently, intracerebral deposition of Aβ was found in individuals 

with iatrogenic Creutzfeldt–Jakob disease (CJD) caused by human-derived growth hormone 

treatment or dura mater grafts30–34. Intracerebral Aβ deposition was also observed in 

individuals who had received neuronal grafts but who died from causes other than CJD31,35, 

indicating that Aβ seeds in transplanted materials could induce Aβ pathology regardless of 

the existence of CJD pathology. Tau has been detected in several batches of cadaver-derived 

human growth hormone, but substantial amounts of pathological tau were not identified in 

individuals with iatrogenic CJD36.
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Disease models.

Numerous studies have shown that pathological seeds generated from recombinant proteins, 

animal models or diseased brains can induce the development of protein pathology in 

various in vitro and animal models (TABLE 1). Injection of α-synuclein preformed fibrils 

(misfolded α-synuclein generated from recombinant α-synuclein monomers) or pathological 

α-synuclein isolated from transgenic mice or human brains, promoted the development of 

α-synuclein pathology in M83 transgenic mice, which express a familial PD-associated 

mutant form of human α-synuclein37–39. Importantly, α-synuclein preformed fibrils as 

well as pathological α-synuclein derived from diseased brains also induced α-synuclein 

pathology in wild-type mice15,40 and in primary neuronal cultures derived from wild-

type mice16,41. Most instances of α-synucleinopathy are sporadic and are not the result 

of a mutation or amplification of SNCA (the gene encoding α-synuclein). Therefore, 

induction of α-synuclein aggregation in non-transgenic mice is an important observation 

that indicates the potential for transmission of α-synuclein in individuals with sporadic PD. 

Moreover, α-synuclein aggregation in non-human primates was induced by the intracerebral 

injection of recombinant α-synuclein preformed fibrils or Lewy body-containing extracts 

from brains of individuals with PD, and the resulting pathology could be found far 

from the injection site42,43. In both mice and non-human primates, brain regions with 

α-synuclein pathology also showed neurodegeneration; pathology and neurodegeneration 

were particularly prominent in the dopaminergic neurons of the substantia nigra15,42,43. 

In addition to the seeding models described above, the transmission of α-synuclein has 

also been explored using virus-mediated selective expression of human α-synuclein in the 

medullary neurons of rats44. In this model, the exogenous α-synuclein protein produced by 

the medullary neurons was observed to spread in a caudal direction to brain regions such as 

the pons, midbrain and forebrain.

Recombinant proteins

Proteins that are artificially expressed in, and purified from, bacteria.

Cell-to-cell transmission of tau was first demonstrated with brain extracts obtained from 

transgenic mice that express the P301S mutant form of human tau and develop tau 

aggregation with age. Pathological tau-containing extracts from these mice were injected 

into the brains of mice that express human wild-type tau and do not naturally develop tau 

pathology. The induction of tau pathology was observed in multiple brain regions in the 

injected mice45. Synthetic tau preformed fibrils induced tau aggregation in transgenic mice 

that express the P301L mutant form of human tau but not in wild-type mice46. However, 

pathological tau derived from the brains of individuals with tauopathies, such as AD, 

induced tau pathology in wild-type mice14,47, demonstrating that pathological tau proteins 

in human diseased brains have unique conformations that are not readily recapitulated by 

their recombinant protein counterparts14,47–50. The transmission of pathological tau has also 

been demonstrated in transgenic mice that express P301L mutant tau only in layer II of the 

entorhinal cortex51. In these mice, the tau pathology induced by the mutant form spread 

to neighbouring cells in the entorhinal cortex and to connected brain regions, including 

the hippocampus and cingulate cortex. However, the expression pattern of P301L mutant 
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tau in this model has been a matter of debate, as expression has also been detected in 

cortical regions outside of layer II of the entorhinal cortex, complicating the interpretation 

of the results52. Nevertheless, restricted expression of mutant tau in layers II and III of 

the entorhinal cortex of mice has been achieved using an adeno-associated virus-based 

technique; in these mice, pathological tau was transmitted to the dentate gyrus53.

Injection of synthetic Aβ fibrils or extracts from brain tissue of individuals with AD or 

from Aβ mouse models into the brains of transgenic mice expressing human Aβ precursor 

protein (APP) instigated the aggregation of Aβ peptides to form senile plaques54–56. These 

Aβ plaques were found in brain regions that were far from the injection site but were 

anatomically connected to it, suggesting that trans-synaptic transmission of Aβ seeds occurs. 

Interestingly, unlike transmission of α-synuclein and tau, the transmission of Aβ seeds has 

not been achieved in wild-type mice, which could be a result of the sequence difference 

between human and mouse Aβ peptides and the low Aβ expression levels in wild-type mice.

Studies have also demonstrated the cell-to-cell transmission of other pathological proteins, 

including SOD1 (REF.57), mutant HTT58,59 and TDP43 (REFS60–62). Interestingly, TDP43-

containing brain extracts from individuals with frontotemporal dementia induced TDP43 

aggregation in transgenic mice expressing mutant TPD43 as well as, to a lesser extent, in 

wild-type mice62.

Transmission from the peripheral nervous system to the CNS.

Some evidence supports the hypothesis that the initial misfolding of α-synuclein occurs 

in the enteric nervous system and spreads retrogradely to the brainstem. For example, 

α-synuclein pathology has been detected in the enteric nervous system63–65 and in the 

submandibular glands66 of individuals with PD. Furthermore, vagotomy or appendix 

removal has been reported to reduce the risk of PD (evidence suggests the appendix contains 

a considerable amount of misfolded α-synuclein)65,67. Transmission of pathological seeds 

from the periphery to the brain has been observed in various animal models. For example, 

intraperitoneal, intramuscular, intraglossal or intravenous infusion of α-synuclein preformed 

fibrils into M83 A53T mutant α-synuclein transgenic mice facilitated the development of 

α-synuclein pathology in the CNS with varying degrees of efficiency68–70. More recently, 

injection of α-synuclein preformed fibrils into the gastric wall of wild-type mice was shown 

to induce α-synuclein pathology in the CNS71.

Aβ peptides can be produced in peripheral tissues72–75 and are capable of crossing 

the blood–brain barrier76,77, suggesting that peripherally derived Aβ contributes to Aβ 
pathology in the brain. In favour of this hypothesis, Aβ pathology was found in the 

brains of patients who had received human-derived growth hormone treatment or dura 

mater grafts, suggesting peripheral-to-CNS transmission of pathological Aβ30–34. Oral, 

intravenous, intraocular and intranasal administration of Aβ-containing brain extracts to 

young APP transgenic mice (which do not yet show age-related Aβ pathology) failed to 

induce cerebral Aβ amyloidosis; however, intraperitoneal administration of the extracts did 

promote Aβ deposition in the brains of these mice78,79. A study that performed parabiosis 

between APPPS1 transgenic mice and wild-type mice identified human Aβ in the brains 

of the wild-type mice, suggesting that Aβ seeds circulating in blood can enter the CNS80. 
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Evidence supporting periphery-to-brain spreading of tau seeds is not as strong as that for Aβ 
and α-synuclein; however, intraperitoneal injection of brain extracts containing pathological 

tau did induce tau aggregation in the brains of P301S tau transgenic mice6.

Parabiosis

The anatomical joining of two individuals.

The transmission process

Intracellular transportation.

The transmission process starts with the formation and amplification of the initial 

pathological seeds in the donor cell. These seeds are then transported intracellularly 

to the site of release (FIG. 1). Studies using microfluidic chambers have shown that 

pathogenic forms of tau, α-synuclein, Aβ and HTT can all be transported along axons 

in primary neuronal cultures. Both anterograde and retrograde transport of these proteins 

was observed, although the pathological HTT protein showed a preference for retrograde 

transmission81–83. Interestingly, Aβ fibrils were transported an estimated ten times more 

efficiently than pathological forms of α-synuclein and HTT82.

Microfluidic chambers

Cell culture chambers that enable the isolation of the axonal or dendritic component from 

cell bodies.

Release.

The molecular mechanisms responsible for the secretion of pathological proteins by donor 

cells have been investigated in multiple studies. Even though α-synuclein lacks a secretory 

signal peptide sequence, the protein can be detected in the plasma and cerebrospinal fluid 

(CSF) of individuals with PD84,85, supporting the view that α-synuclein is secreted into 

the extracellular space. Similarly, tau has been detected in the CSF of individuals with 

AD86 and in the brain interstitial fluid of wild-type mice87. Protein secretion into the 

extracellular space can occur via multiple routes, including diffusion, classical secretion 

and unconventional secretion such as pore-mediated translocation, ABC transporter-based 

secretion, membrane-bound organelle-based secretion and the Golgi bypass pathway.

Exosome-based secretion, one of the unconventional secretion pathways, is by far the 

most extensively studied pathway for the secretion of pathological proteins. Exosomes 

are membrane-bound extracellular vesicles that are formed as internal vesicles of 

a multivesicular body and released to the extracellular space by the fusion of the 

multivesicular body with the plasma membrane. α-Synuclein has been found in exosomes 

isolated from cell cultures, and human CSF and plasma88–96, suggesting that exosomes 

could mediate the release of α-synuclein from donor neurons. In support of this hypothesis, 

levels of α-synuclein were higher in exosomes isolated from the plasma of individuals 

with PD than in exosomes from healthy controls90. Furthermore, exosomes isolated from 
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individuals with Dementia with Lewy bodies induced α-synuclein aggregation when 

injected into the brains of wild-type mice97. Similarly, phosphorylated tau (tau aggregates 

are hyperphosphorylated) was detected in exosomes isolated from the CSF of individuals 

with AD or from primary neuronal cultures98,99. The transmission of tau-containing 

exosomes was thought to occur through trans-synaptic connections, as studies using 

microfluidic devices suggested that synaptic connectivity is required for exosomes to 

mediate the transfer of tau99.

APP, Aβ and secretases that cleave APP to produce Aβ have been detected in exosomes 

isolated from cultured cells expressing human APP or the brains of APP transgenic 

mice100–102. Exosomes isolated from the serum and plasma of individuals with AD contain 

higher levels of phosphorylated tau and Aβ42 (a major component of Aβ plaques) than 

exosomes from healthy controls103. Intracerebral injection of Aβ42-containing exosomes 

facilitated Aβ plaque formation in the brains of 5XFAD transgenic mice, which express 

AD-associated mutant forms of human APP and presenilin 1 (REF.104). Conversely, 

some evidence suggests that exosomes deliver proteolytically active enzymes to assist in 

degrading extracellular Aβ and might therefore also inhibit Aβ pathology105. Despite these 

findings, the role of exosomes in the secretion of pathological proteins is not yet clear; for 

example, two studies using two different neuronal cell lines detected only a small fraction 

of secreted α-synuclein in exosomes106,107. In another study, when tau was expressed at 

physiological levels in neurons derived from human induced pluripotent stem cells, the 

protein could not be detected in exosomes108.

Some evidence suggests that transmission of pathological proteins occurs via methods other 

than exosome-based secretion; for example, an anti-tau antibody blocked the transfer of tau 

between cultured cells, suggesting that tau was released into the medium as free protein109. 

If tau had been packaged in exosomes, the protein–antibody interaction would have been 

prevented by the lipid membrane. In support of this hypothesis, only a very small portion of 

secreted tau was located in the isolated vesicle fraction108,110. Some evidence suggests that 

tau could be released through ectosomes111 or by direct translocation110. Another possibility 

is that pathological seeds are released to the extracellular space after cell death and diffuse 

into the surrounding area; however, no direct evidence exists that this is the case in diseased 

brains. Regardless of the route of secretion, diffusion could have a particularly important 

role in the spreading of Aβ pathology as Aβ aggregates are extracellular. The existence 

of cerebral amyloid angiopathy in various lines of APP transgenic mice also suggests that 

diffusion of pathological Aβ from neurons into blood vessels occurs112–115. Further studies 

are needed to evaluate the relative contributions of different secretion pathways to the 

release of pathological seeds.

Ectosomes

Vesicles (0.1–1 μm in diameter) that are budded and released directly from the plasma 

membrane.
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Direct translocation

Pore-mediated translocation across the plasma membrane.

Uptake.

The internalization of pathological seeds by recipient cells is the next step in the 

transmission process and multiple mechanisms for this uptake have been proposed. 

Evidence suggests that misfolded tau and α-synuclein are internalized at the somatodendritic 

compartment as well as at the axon and presynaptic terminals16,81–83. Heparin sulfate 

proteoglycan-mediated macropinocytosis was identified as a key mechanism for the 

uptake of both tau and α-synuclein, which could be blocked by heparin116,117. Wheat 

germ agglutinin, a drug that facilitates adsorptive endocytosis, promoted the uptake 

of tau in cultured cells, suggesting that adsorptive endocytosis is involved in the 

internalization process13. α-Synuclein fibrils are internalized through endocytosis and 

degraded in lysosomes118; however, α-synuclein monomers can be internalized through 

direct translocation119. One study found that α-synuclein fibrils bind to the extracellular 

immunoglobulin-like domains of the transmembrane protein LAG3 (REF.120). Genetic 

deletion of LAG3 or treatment with anti-LAG3 antibodies reduced the uptake of α-synuclein 

fibrils and the subsequent induction of α-synuclein pathology in primary neurons in vivo. 

Irrespective of the specific mechanisms of entry, most studies indicate that endocytosis is the 

predominant pathway for the internalization of pathological seeds.

Once inside the recipient neuron, pathological seeds need to exit the endosomal vesicle 

in order to access cytosolic proteins and begin templated amplification. α-Synuclein, tau 

and mutant HTT fibrils are all able to induce vesicle rupture121,122, which could enable 

the pathological seeds to access the cytosol123. Finally, the amplification of the transmitted 

seeds requires the existence of a ‘substrate’, that is, the normal counterparts of pathological 

proteins in the cytoplasm. The expression level of these substrates could contribute to the 

selective vulnerability of different neuronal populations7.

In addition to the release–uptake hypothesis described above, tunnelling nanotubes might 

mediate the direct intercellular transport of pathological proteins. In support of the 

tunnelling nanotube hypothesis, misfolded tau, α-synuclein and mutant HTT can all 

be observed in nanotube structures124–126. Interestingly, the addition of aggregated α-

synuclein, mutant HTT and tau to cell cultures increased the number of tunnelling 

nanotubes124–126, which might facilitate the transmission process. Cell-to-cell transmission 

of α-synuclein via tunnelling nanotubes also occurred in cultured astrocytes and 

pericytes127,128, indicating that this kind of transmission is not limited to neurons.

Tunnelling nanotubes

Protrusions that extend from the plasma membrane and enable the communication of cell 

contents between two cells.
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Molecular nature of the seeds

Understanding the molecular nature of pathological seeds in diseased brains will be crucial 

for the elucidation of transmission mechanisms and the development of targeted therapeutic 

interventions. However, tools that can track the behaviour of pathological seeds and analyse 

their properties in human brains are lacking. One way to identify potential seeds is to 

investigate the seeding ability of different misfolded protein species isolated from diseased 

brains. The underlying hypo thesis of this kind of investigation is that aggregates with a 

higher seeding ability are likely to have a greater role in the spreading of pathology. After 

ultracentrifugation of brain extracts from APP transgenic mice, Langer et al. identified a 

small fraction of soluble Aβ (<0.05% of total Aβ) that was more proteinase K sensitive, 

meaning that it forms a more open and less aggregated structure, than insoluble Aβ. 

However, this soluble Aβ induced greater Aβ pathology than insoluble Aβ when injected 

into young APP transgenic mice, suggesting that this form of soluble Aβ is a more potent 

seed than insoluble Aβ for the transmission of Aβ pathology129. Potent soluble Aβ seeds 

were also identified in brain tissue but not CSF from individuals with AD130. A more 

detailed analysis found that insoluble Aβ from intracellular membrane fractions had a 

stronger seeding ability when injected into APP transgenic mice than insoluble Aβ from a 

general brain homogenate131. This finding suggests that membrane-associated Aβ could be a 

source of the seeds that contribute to the spreading of pathology.

For intracellular aggregates such as α-synuclein and tau, the pathological seeds must be 

able to undergo transport between cells while maintaining the ability to induce templated 

amplification. Very mature aggregates are unlikely to be pathological seeds because of their 

large size, which would hinder cell-to-cell transmission. Therefore, smaller species that 

can be readily released and internalized by cells are the more promising candidates. In 

one study, soluble high-molecular-weight tau was derived from brain interstitial fluid and 

cortical extracts taken from tau transgenic mice or individuals with AD. This tau species 

was taken up by cells in primary neuronal cultures, transported intracellularly and passed to 

connected neurons, suggesting that it could be a pathological seed. Interestingly, the uptake 

process seems to require phosphorylated tau132.

Mirbaha et al. used size exclusion chromatography to isolate tau repeat domain assemblies 

ranging from 1 to >100 tau units, and only species containing more than 3 tau units 

were internalized and induced aggregation in HEK293 cells117. This size threshold was 

the same for tau assemblies isolated from the brains of individuals with AD, suggesting 

that trimers are the minimal unit of tau pathological seeds. However, Jackson et al. used a 

sucrose gradient to isolate tau aggregates from P301S mice and found that only assemblies 

containing more than 10 tau units could induce tau aggregation in HEK293 cells133. These 

inconsistent findings are very likely to be the result of the two studies using different 

systems to evaluate the seeding ability of tau assemblies: Mirbaha et al. used a cell line that 

expresses the P301S mutant repeat domain of tau, whereas Jackson et al. used a cell line 

that expresses the full form of P301S mutant tau. A more recent study observed that even 

the tau monomer, which is traditionally considered to be unstructured, can exist in different 

conformations134. The monomer derived from sonicated tau fibrils was able to trigger tau 

aggregation in HEK293 cells, and this observation was replicated using tau monomers 
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isolated from the brains of individuals with AD, suggesting that the pathological tau seed 

could even be a monomer with a pathological conformation. The difference between this 

study and the study of tau trimers by Mirbaha et al.117 is that lipofectamine was used in the 

former to facilitate the transduction of tau into cells.

In an experimental setting, the seeding of α-synuclein pathology by α-synuclein preformed 

fibrils required the breakdown of fibrils by sonication, suggesting that very long α-synuclein 

fibrils are not efficient seeds118, likely as a result of inefficient uptake. However, sonication 

generates a heterogeneous population of short fibrils and potentially also oligomers135, 

any of which could be responsible for seeding. α-Synuclein oligomers generated from 

recombinant proteins are soluble and have shown seeding ability in primary neurons; 

therefore, oligomers are potential pathological seeds136,137. However, the definition of 

oligomers encompasses a spectrum of α-synuclein aggregates that are all smaller than 

fibrils but are structurally diverse and have very heterogeneous seeding properties. For 

example, low-molecular-weight oligomers are less efficient seeds than the larger and more 

stable oligomers138. One specific α-synuclein oligomer (4-hydroxy-2-nonenal induced) 

did not show any seeding activity in vivo139, indicating that only oligomers with certain 

conformations are pathological seeds.

Despite the long list of potential pathological seeds, identifying which candidates are 

responsible for the spread of protein pathology in individuals with neurological disease 

will be extremely challenging unless new technologies are developed to track and isolate 

individual species of misfolded proteins in diseased brains. Another possibility is that the 

seeds are not pathological proteins and that protein misfolding in neurons is induced by 

other factors.

Conformational diversity.

Accumulating evidence indicates that many pathological proteins, including prions, 

α-synuclein41,140–144, Aβ145–148, tau47,48,149, SOD1 (REF.150) and mutant HTT58, 

exist in multiple different conformations41,47,48,140–145,148,149,151 (TABLE 2). Different 

conformations of the same pathological protein have the potential to show dramatically 

different seeding capacities and spreading behaviours, which in turn could contri bute to the 

pathological and clinical diversity of neurodegenerative diseases. For example, prion protein 

exists in many different conformations, known as strains, which contributes to the diversity 

of prion diseases152.

Although conformational variants of many pathological proteins have now been identified, 

how these different strains are generated remains unclear. One study demonstrated that 

the different intracellular environments of oligodendrocytes and neurons could lead to 

the generation of different α-synuclein strains, which highlights the effect of the local 

environment on the misfolding process41 (FIG. 2). Studies using artificially generated 

strains of recombinant proteins have also provided important information about how 

different strains could develop in diseased brains. For example, repeated seeding of α-

synuclein preformed fibrils led to the development of a new strain that could also induce 

tau pathology in primary neurons140, which suggests that continuous transmission and 
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templated amplification of pathological α-synuclein in diseased brains might also lead to the 

development of new strains.

The different neurodegenerative disease-related proteins have distinct properties; however, 

the formation of β-sheet-enriched structures is a shared feature and a crucial step for 

the formation and amplification of pathological protein conformations. Many studies have 

tried to illustrate and model the structural basis of the conversion into a pathological 

conformation153–159. For example, using a seven-amino acid peptide that could form either 

an α-helix or a β-strand, two studies showed that a pre-formed β-strand can promote the 

unfolding of an α-helix to form another β-strand155,157. The results of a detailed study of 

the aggregation process of SOD1 suggested the existence of several distinct steps, including 

dimer dissociation, metal loss and oligomer formation156. Recently, cryogenic electron 

microscopy was used to analyse the structure of pathological proteins purified from diseased 

brains160–164, providing crucial information on the structural basis of the misfolding and 

aggregation process in diseased brains, including the arrangement and composition of the 

core of the protein aggregates.

Conformation and potency.

Different conformational variants of pathological seeds can have dramatically different 

seeding abilities. For example, pathological α-synuclein isolated from oligodendrocytes 

was conformationally distinct from pathological α-synuclein isolated from neurons, with 

the oligodendrocyte-derived form having a ~1,000-fold greater seeding ability than the 

neuron-derived form41. Similarly, pathological tau isolated from brains of individuals 

with progressive supranuclear palsy (PSP) was conformationally distinct from, and had 

greater seeding ability than, pathological tau isolated from brains of individuals with AD14. 

Pathological TDP43 protein isolated from patients with frontotemporal lobar degeneration 

(FTLD) with a Granulin mutation had a greater seeding ability than those isolated 

from individuals with sporadic FTLD62. In addition, distinct conformational strains of 

recombinant α-synuclein have been shown to have different seeding abilties140–142.

One interesting observation is that pathological proteins isolated from diseased brains 

generally have a greater seeding ability than aggregates generated with recombinant 

proteins, suggesting that the environment in diseased brains leads to the formation of 

unique protein conformations that are different from those generated in vitro. For example, 

pathological tau isolated from tauopathy brain samples induced more tau pathology than 

synthetic tau fibrils when injected into the brains of wild-type mice14,47. Similarly, the 

induction of TDP43 aggregation in wild-type mice has only been achieved with pathological 

TDP43 isolated from brains of individuals with FTLD62. The seeding activity of Aβ 
aggregates purified from brains of individuals with AD is much higher than the seeding 

activity of synthetic Aβ aggregates56,130. The seeding ability of α-synuclein derived from 

diseased brains has not yet been compared with the seeding ability of α-synuclein preformed 

fibrils. However, in one study, pathological α-synuclein derived from transgenic mouse 

brains had a greater seeding ability than a pathological form of recombinant α-synuclein37. 

The extracts from diseased brains that were used in these studies contained other proteins 

and lipids, in addition to the pathological proteins of interest. Therefore, the high potency of 
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brain-derived seeds could be the result of co-factors in the extracts that promote the seeding 

process. The development of new technologies to generate highly purified pathological 

proteins from diseased brains will be needed to exclude the contribution of contaminating 

proteins to seeding activity.

Conformation and glial cell pathology.

Different conformations of pathological proteins might induce pathology in specific cell 

types. For example, the injection of pathological tau derived from brains of individuals 

with AD into tau transgenic or wild-type mice only induced tau pathology in neurons, 

whereas tau derived from the brains of individuals with cortical basal degeneration (CBD) 

or PSP induced pathology in neurons, astrocytes and oligodendrocytes47,48,149. Pathology 

in these cell types is a pathological feature of CBD and PSP. In contrast, the cell type 

specificity of α-synuclein spreading in the experimental setting does not seem to correlate 

with clinical features. In individuals with multiple system atrophy, the vast majority of 

α-synuclein aggregation is in oligodendrocytes; however, the injection of pathological α-

synuclein isolated from multiple system atrophy brains into wild-type mice only induced 

α-synuclein aggregation in neurons41.

Conformation and spreading pattern.

Some evidence suggests that the conformation of pathological seeds modulates the 

transmission pattern of these pathological proteins along the neuron network. For 

example, different pathological α-synuclein strains show different spreading patterns after 

intracerebral injection into wild-type mice41. Similarly, the results of a PET imaging study 

suggested that the spreading of tau aggregates in individuals with AD is mainly determined 

by neuronal connectivity, whereas tau aggregates in individuals with PSP spread into brain 

areas with a high metabolic demand and a lack of trophic support165.

Modifiers of the transmission process

Neuronal activity.

Of the factors that could influence the transmission of pathological seeds, neuronal activity 

is one of the most well studied and has been repeatedly shown to promote the propagation 

of various pathological proteins99,166–172 (FIG. 1). For example, in a microdialysis study, the 

concentration of Aβ in the brain interstitial fluid of mice could be modulated by neuronal 

activity and was correlated with the concentration of lactate, which is a marker of neuronal 

activity169. Using a similar technique, another study showed that an increase in neuronal 

activity can rapidly increase the level of extracellular tau in the brain168. In a more recent 

study, which used a virus-mediated method to overexpress human tau in primary neurons 

and mice, elevated neuronal activity caused an increase in tau secretion in vitro and in 

tau transmission in vivo170. Furthermore, a study that used optogenetic and chemogenetic 

approaches to modulate neuronal activity demonstrated that higher neuronal activity leads 

to increased tau pathology in mice expressing a mutant form of human tau167. Elevated 

neuronal activity also caused a rapid increase in extracellular levels of α-synuclein in both 

primary neuronal cultures and mice, and reduced neuronal activity caused a decrease in 

extracellular α-synuclein in both experimental models166.
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Consistent with a role for neuronal activity in pathological protein transmission, 

extracellular tau and Aβ levels change according to the sleep–wake cycle, and chronic 

sleep deprivation, which causes an increase in neuronal activity, can facilitate the secretion 

and propagation of Aβ and tau172,173. Mechanistically, the increased secretion of tau 

induced by neuronal activity could be mediated by increased Golgi dynamics174. Given 

these highly consistent findings, which come from multiple studies using various different 

models, abnormal neuronal activity, such as the seizure-like activity seen in individuals with 

AD175 and sleep disorders in individuals with PD176, is likely to facilitate or modulate the 

spreading of pathological proteins.

Glial cells.

The activation of microglia and astrocytes has been observed in various neurodegenerative 

diseases; however, the role of these glial cells in the disease process is complicated. 

Evidence suggests that activated glial cells facilitate the clearance of pathological proteins 

from the extracellular space and thus inhibit the spreading of pathological seeds from cell 

to cell. For example, microglial cells can phagocytose both soluble and insoluble forms 

of tau175,177. Astrocytes can take up tau fibrils in vitro and can also reduce tau pathology 

in mutant tau transgenic mice178. Microglia and astrocytes are also involved in multiple 

mechanisms of Aβ clearance. First, glial cells produce Aβ-degrading enzymes, such as 

matrix metalloproteinases179, tissue plasminogen activator180 and metalloendopeptidases181, 

which help to clear Aβ peptides. Second, microglia and astrocytes can directly phagocytose 

fibrillary Aβ176,182.

A specific population of microglial cells associated with neurodegenerative diseases, known 

as disease-associated microglia, have been identified by single-cell sequencing183. Disease-

associated microglia have been detected near Aβ plaques and Aβ particles, suggestiing that 

this microglial population might be involved in the clearance of Aβ aggregates183. Similarly, 

evidence suggests that pathological α-synuclein is phagocytosed and cleared by astrocytes 

and microglia184–186. The overexpression of IL-6 activates microglia and astrocytes and 

attenuates the spread of pathology induced by α-synuclein preformed fibrils in mice187. 

Interestingly, in one study, monomeric α-synuclein enhanced microglial phagocytosis, 

whereas aggregated α-synuclein inhibited this process, suggesting a mechanism by which 

aggregated α-synuclein can avoid degradation by microglial cells188.

The results of more recent studies suggest that microglia and astrocytes actually facilitate 

the spreading of pathological proteins and promote disease progression. For example, 

pharmacological depletion of microglia dramatically suppressed the propagation of tau 

pathology in an adeno-associated virus-based tau mouse model, and inhibiting exosome 

secretion by microglia also significantly reduced the spreading of pathological tau both 

in vitro and in vivo53. These findings suggest that tau can be taken up by microglia and 

secreted in exosomes. Similarly, tau aggregates develop in astrocytes and oligodendrocytes 

in the brains of individuals with CBD or PSP189,190, indicating that transmission of tau 

can occur between neurons and glial cells, or between glial cells191. Microglia might 

also promote the transmission of Aβ pathology. Apoptosis-associated speck-like protein 

containing a CARD (ASC) specks secreted by microglia have been shown to bind to and 
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promote the aggregation of Aβ192. In addition, ASC deficiency blocked the seeding of 

Aβ pathology in APPSwePSEN1dE9 transgenic mice by brain homogenates from aged 

APPSwePSEN1dE9 mice.

Pathological α-synuclein can be transmitted between neurons and astrocytes193 and, as 

mentioned earlier, α-synuclein might also be transmitted between astrocytes via tunnelling 

nanotubes127,128. Using a mouse model that expresses human α-synuclein specifically 

in oligodendrocytes, we showed that pathological α-synuclein can undergo transmission 

between different oligodendrocytes, a process that is independent of α-synuclein pathology 

in neurons41.

Finally, glial cells could also modulate the transmission process by influencing the 

conformation of the pathological seeds. As discussed earlier, the intracellular environment of 

oligodendrocytes can modify the conformation of the pathological seeds in a different way 

to the intracellular environment of neurons, which leads to differences in seeding ability41. 

Microglia and astrocytes also have a key role in the neurodegenerative process, which has 

been extensively reviewed elsewhere194–196.

Genetic risk factors.

Evidence suggests that some genetic risk factors for neurodegenerative diseases contribute 

to disease development and progression by modulating the transmission of pathological 

proteins. For example, the gene encoding amphiphysin 2 (also known as BIN1) is the 

second most prevalent risk locus for late-onset AD197. In one study, amphiphysin 2 

inhibited tau propagation in vitro by decreasing the endocytosis of pathological tau by 

primary neurons122. Mutations in the gene encoding leucine-rich repeat serine/threonine-

protein kinase 2 (LRRK2), which usually increase the activity of the kinase198–202, are 

the most common cause of hereditary PD199. LRRK2 activity promoted the propagation of 

pathological α-synuclein in vitro and in vivo via the phosphorylation of RAB35 (REF.203), 

which is a small GTPase involved in vesicle trafficking. The effect of LRRK2 activity on 

the seeding ability of α-synuclein preformed fibrils has also been studied in both cell and 

animal models204–206. The apolipoprotein E type 4 allele is the strongest genetic risk factor 

for late-onset AD207. One study used PET imaging to compare the distribution of Aβ and 

tau in the brains of healthy adults with regional gene expression values from the Allen 

Human Brain Atlas. The propagation patterns of both Aβ and tau were associated with a 

lipid metabolism-related genetic profile in which apolipoprotein E has an important role208.

Interaction between pathological proteins.

The co-existence of multiple pathological proteins in diseased brains is common in 

various neurodegenerative diseases. For example, ~50% of individuals with AD have α-

synuclein pathology in the brain in addition to the characteristic Aβ and tau pathology209. 

Furthermore, ~50% of post-mortem brains from individuals with PDD have sufficient 

AD co-pathology to warrant a second diagnosis of AD210. The co-existence of different 

pathologies suggests that one pathological protein could promote the spreading of another.

Histopathological and genetic data suggest that Aβ plaques drive the spreading of tau 

pathology out of the medial temporal lobe211–215, and this suggestion is supported by studies 
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using various disease models. For example, brain extracts from APP transgenic mice as well 

as synthetic Aβ fibrils can promote tau aggregation in mutant tau transgenic mice216–219 

and synthetic Aβ aggregates can induce tau fibrillization in cells as well as in test tubes217. 

Furthermore, transgenic mice expressing mutant forms of human APP and tau had greater 

tau pathology than mice expressing the mutant form of tau only216,220. In a more recent 

study, pathological tau isolated from the brain tissue of individuals with AD was injected 

into the brains of mice that had Aβ pathology. In these animals, tau fibrilization was 

promoted in the dystrophic neurites surrounding Aβ plaque cores221. A similar observation 

was made in transgenic mice that express the four-repeat domain of human tau as well as a 

mutant form of human APP185.

The interaction of pathological α-synuclein with Aβ and tau has also been extensively 

studied. For example, co-incubation of α-synuclein and tau promoted the fibrilization 

of both proteins222. α-Synuclein preformed fibrils inhibited tau-promoted microtubule 

assembly and induced tau aggregation in cells overexpressing tau223. Increased 

phosphorylation of tau has been observed in mice that overexpress a PD-associated mutant 

form of human α-synuclein224,225. Importantly, one study compared two conformationally 

distinct α-synuclein strains and found that only one of the strains was able to induce tau 

aggregation in wild-type primary neurons and in tau transgenic mice140.

The interaction between α-synuclein and Aβ is more complicated than the interaction 

between α-synuclein and tau. Cross-seeding between α-synuclein and Aβ has been 

observed using recombinant proteins in vitro226. A transgenic mouse model of tau, Aβ 
and α-synuclein pathology showed enhancement of all three types of pathology when 

compared with mouse models of the individual pathologies227. Similarly, expression of the 

Aβ peptide promoted the formation of α-synuclein pathology in α-synuclein transgenic 

mice and in mice that had been injected with misfolded α-synuclein228,229. However, in one 

study, injection of α-synuclein preformed fibrils or brain homogenates from mice expressing 

mutant human α-synuclein into APP transgenic mice failed to induce Aβ aggregation. In 

the same mouse line, expression of the A30P form of mutant α-synuclein even reduced the 

Aβ plaque load230. Therefore, more studies are needed to clarify the interaction between 

α-synuclein and Aβ pathology.

Therapeutic implications

Studying the transmission and amplification process of the pathological proteins associated 

with neurodegenerative disease has important therapeutic applications. Cell-based therapies, 

which aim to replace degenerating cells with healthy ones, have been tested in clinical 

trials but might not provide long-term benefit because of pathological protein transmission 

from the patient to the transplanted cells. For example, as discussed earlier, α-synuclein 

aggregation was found in transplanted fetal ventral mesencephalic neurons in individuals 

with PD28,29. Therefore, therapies that target the transmission process could slow down 

disease progression and might improve the outcome of cell therapy.

Currently, passive immunotherapy using antibodies targeting various pathological proteins 

is being investigated as a potential treatment for neurodegenerative disease. For example, 
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one study systemically administered antibodies against the proximal C-terminal amino acids 

(91–99) of α-synuclein to mice with lentivirus-mediated overexpression of α-synuclein. 

In these mice, the antibodies blocked the transportation and aggregation of α-synuclein 

in axons and reduced axonal degeneration231. In two other studies, antibodies against 

the C-terminus of α-synuclein were shown to promote α-synuclein clearance and reduce 

behavioural deficits in α-synuclein transgenic mice232,233. Furthermore, antibodies against 

misfolded α-synuclein reduced α-synuclein preformed fibril-induced pathology in both 

primary neurons and wild-type mice234. These anti bodies also ameliorated dopaminergic 

neuron degeneration and improved motor deficits in mice. Antibodies targeting N-terminal 

and mid-domain regions of tau prevented the uptake and propagation of pathological tau in 

cell cultures235. Similarly, antibodies targeting Aβ reduced Aβ levels in animal models and 

individuals with AD236.

The protective effect of these antibody therapies was thought to be mediated by 

lysosomal232 or microglial-dependent degradation of pathological proteins237. However, 

the conformational diversity of the pathological seeds might complicate the development 

of immunotherapies because antibodies efficient for one pathological strain might not 

be as effective for another strain. As with any therapy that targets the CNS, developing 

strategies that enable antibodies to cross the blood–brain barrier will dramatically improve 

the efficiency of passive immunotherapy for neurodegenerative diseases.

Active immunization has also been explored as a potential therapy for neurodegenerative 

diseases. For example, immunization with α-synuclein proteins or peptides reduced 

α-synuclein accumulation and behavioural deficits in various α-synuclein transgenic 

models238–240. As internalization of pathological seeds is a key process for transmission, 

researchers are also investigating the potential of therapies that target the molecules involved 

in the uptake of pathological protein. For example, synthetic heparin mimics blocked the 

heparin sulfate proteoglycan-mediated uptake of pathological tau and α-synuclein in vivo 

and in vitro116, and antibodies targeting LAG3 blocked the transmission of pathological 

α-synuclein120. In addition to targeting the pathological seeds, reducing the concentration 

of the substrate, that is, the normal protein counterparts, using approaches such as antisense 

oligonucleotides is another strategy to inhibit the transmission process241. Finally, analysing 

pathological proteins in the CSF or even the blood of patients could facilitate the early and 

accurate diagnosis of various neurodegenerative diseases. For example, protein misfolding 

cyclic amplification has been used to detect pathological α-synuclein in the CSF as a 

diagnostic strategy for PD242. A similar technique was also used to detect aggregated tau in 

brains of individuals with AD243.

Protein misfolding cyclic amplification

The amplification of misfolded protein by repeated incubation with corresponding 

monomers.
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Conclusions and future directions

During the past 5 years, the focus of neurodegenerative research has shifted from testing 

the transmission hypothesis to exploring the underlying molecular mechanisms of the 

transmission process. Given the complexity and therapeutic significance of the mechanisms 

underlying the transmission of pathological proteins in neurological diseases, this topic is 

likely to continue being the focus of the field for some time.

One challenge for the field is that the vast majority of studies were performed using 

preformed fibrils generated from recombinant proteins. However, accumulating evidence 

demonstrates crucial conformational and biological differences between preformed fibrils 

and pathological aggregates isolated from diseased brains14,62. In the future, analysing the 

cell-to-cell transmission of pathological proteins from diseased brains will be essential. 

However, these kinds of studies are currently constrained by the limited availability of brain 

tissue and the small amounts of pathological proteins that can be isolated from diseased 

brains. Therefore, developing improved methods to purify and amplify these pathological 

seeds from diseased brains will be extremely beneficial for the field.

Another major challenge to understanding the molecular mechanisms underlying 

transmission is the conformational diversity of the pathological proteins. As different strains 

of an increasing number of pathological proteins have been identified, conformational 

diversity now seems to be a phenomenon that is common to the majority of 

neurodegenerative disease-associated proteins, and many more strains are likely to have not 

yet been discovered. Analysing the distribution and interaction of different protein strains in 

diseased brains is extremely challenging. However, the recent development of conformation-

specific antibodies244,245 could facilitate the discovery and analysis of different strains in 

brains affected by neurodegenerative disease.

Despite the progress made, several key gaps in our knowledge remain. First, we do not yet 

know how pathological seeds form in diseased brains nor do we understand the molecular 

nature of these seeds. Second, whether pathological seeds cause neuronal and/or glial 

cell toxicity is unclear. Finally, although different strains of various pathological proteins 

have now been identified, how these different strains are generated remains unknown. The 

development of new technologies to track, isolate and analyse pathological proteins in 

diseased brains will be essential in addressing these important questions.
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Key points

• Cell-to-cell transmission and the subsequent amplification of pathological 

proteins is emerging as a common mechanism for the progression of various 

neurodegenerative diseases.

• Transmission within the CNS as well as from the peripheral nervous system 

to the CNS has been reported for multiple pathological proteins.

• Multiple molecular mechanisms involved in the secretion, uptake and 

transport of pathological seeds have been identified.

• Neurodegenerative disease-related pathological proteins are conformationally 

diverse.

• Various factors can modulate the transmission process, including neuronal 

activity, glial cells, genetic risk factors and interactions with other 

pathological proteins.

• Antibodies against pathological seeds, which are designed to block the 

transmission process, are currently in clinical trials.
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Fig. 1 |. Mechanisms for the transmission of pathological proteins between cells.
Pathological proteins, or ‘seeds’, are released from donor neurons and enter the extracellular 

space either as naked protein or in vesicles such as exosomes. Naked protein might be 

taken up by recipient neurons through receptor-mediated endocytosis (a), direct penetration 

of the plasma membrane (b) or fluid-phase endocytosis (c). Seeds in vesicles could be 

internalized through the fusion of vesicles with the plasma membrane (d). Seeds could 

also be transferred from a donor neuron to a recipient neuron via tunnelling nanotubes 

that directly connect the two cells (e). The transmission process can be modulated by 

multiple factors, including the clearance of pathological proteins by glial cells, neuronal 

activity, genetic risk factors and interaction of the seeds with other pathological proteins. 

Potential therapeutic interventions include antibodies that target the pathological seeds or the 

transmission machinery. Adapted from REF.23, Springer Nature Limited.
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Fig. 2 |. Generation of different pathological protein strains.
Different intracellular environments can result in different pathological protein strains 

and several potential mechanisms for this differentiation have been suggested. a | 

Different intracellular environments could affect the initial protein misfolding process. 

b | Different intracellular environments could affect the templated amplification process. 

c | If pathological seeds were a mixture of different conformations or strains, different 

intracellular environments could lead to the selection and amplification of a specific 

conformation from the mixture.
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