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Development of diverse coding 
metamaterial structure for radar 
cross section reduction applications
Tayaallen Ramachandran1, Mohammad Rashed Iqbal Faruque1*, Mohammad Tariqul Islam2, 
Mayeen Uddin Khandaker3 & K. S. Al‑mugren4

Despite their widespread use for performing advanced electromagnetic properties, metamaterial 
suffers from several restrictions in this technological era. Generally, technology affects the way 
individuals communicate, learn, think and plays an important role in society today. For this 
reason, there has been a surge of interest in a coding metamaterial field that possesses the ability 
to manipulate electromagnetic waves and realize different functionalities. This research work 
investigates circular-shaped coding metamaterial for microwave frequency applications through 
several analyses. First, the 1-bit coding metamaterial that is made up of only “0” and “1” elements 
with 0 and π phase responses by adopting two types of unit cells such as square-shaped Rogers 
RT6002 substrate material with and without metamaterial structure were analysed in this work. 
The proposed element ‘1’ successfully manifests several more than 180○ phase responses at several 
frequency ranges, for instance, 7.35 to 9.48 GHz, 12.87 to 14.25 GHz and 17.49 to 18 GHz (C, X, 
and Ku-bands), respectively. Besides that, three types of coding sequences were proposed and the 
radar cross-section (RCS) reduction values of the designs were numerically calculated by utilising 
Computer Simulation Technology (CST) software. Meanwhile, the single-layered coding metamaterial 
with 6 lattices was compared with double and triple-layered metamaterial structures. At 2 GHz, the 
triple-layered structure exhibit reduced RCS values with near to − 30 dBm2 for all coding sequences. 
Therefore, the transmission coefficient results of the triple-layered coding metamaterial sequences 
were numerically calculated. Several advanced coding metamaterial designs were constructed 
and the properties were discussed in terms of RCS values and scattering patterns. Meanwhile, 
the scattering and effective medium parameters of the unit cell metamaterial structure were also 
analysed in this work. In a nutshell, the 1-bit coding metamaterial in a controlled sequence can control 
electromagnetic waves and realize different functionalities.

Research investigations regarding metamaterial have become familiar among the scientific community in the past 
few decades. Potential applications of metamaterial are diverse and include electromagnetic absorption reduc-
tion, sensor, terahertz frequency application, metamaterial filter, metamaterial absorption, etc. are successfully 
adapted metamaterial design structures to gain unique results1–5. Generally, the metamaterial design structure 
has its unique way of light interacting when compared to conventional materials. Conventional material can be 
easier found in nature but lacks in producing extraordinary electromagnetic properties. For instance, left-handed 
behaviour is very possible in man-made design structures instead of conventional materials. However, the current 
advanced technology is required beyond normal metamaterial structure design to optimise the performance to 
utilise in many application fields. Moreover, for specific applications likely metamaterial antenna, the conven-
tional material is difficult to manufacture in large quantities. Meanwhile, the metamaterial absorption commonly 
has a very low narrow absorption band and shows a dispersion phenomenon outstandingly in the far-infrared 
domain. Therefore, many new concepts and ideas are developed in recent years such as metasurface, mechanical 
metamaterial, photonic metamaterial, acoustic metamaterial, plasmonic metamaterial, etc.
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On the other hand, the coding metamaterial is the next step in advanced technology due to its properties 
to manipulate electromagnetic (EM) waves and realise different functionalities. Besides that, limited coding 
metamaterial studies are carried out up to date but have a great potential to be applied in many applications. 
However, research investigations to reduce RCS values were carried out by adopting many approaches. Invis-
ibility cloaking is one of the methods used in RCS reduction where the EM waves are forced to bend around the 
target6,7. Meanwhile, a perfect absorber by adopting metamaterial is another approach to reducing RCS value 
by absorbing all the incident EM waves8,9. However, in this work, we adopted a newly discovered mechanism 
for reducing the RCS value by redirecting EM waves to all directions utilising a 1-bit coding metamaterial. This 
coding pattern was realised by adopting special “0” and “1” elements which compose of two types of material. 
Although limited studies were carried out in this field, Cui et al.10 successfully proposed digital metamaterial 
through two steps. The author successfully produced coding metamaterial by utilising two types of unit cells to 
mimic “0” and “1” elements. 1-bit and 2-bit coding analyses with various coding sequences were investigated 
and analysed in this research work. The work11 proposed a concept of frequency coding metamaterial to manifest 
various controls of EM energy radiations. This analysis utilised a fixed spatial coding sequence when changes in 
frequency occurred. Besides that, the author introduced a digitalized frequency sensitivity where the units were 
encrypted with “0” and “1” digits to realise low and high phase sensitivity. This sensitivity is used to describe the 
coding property of the unit cell. Meanwhile, in 2020, Cuong et al.12 investigated a broadband coding metamaterial 
for microwave absorber applications. The proposed work was designed, simulated and measured by carrying out 
various optimisation parametric studies. The initial unit cell metamaterial design with four types of coding blocks 
such as 2 × 2, 3 × 3, 4 × 4, and 6 × 6 were analysed and used for the construction of numerous 12 × 12 topologies 
with a sensible dimension. On the other hand, Liu13 introduced a controllable random metasurface which was 
possible by adding only a simple random coding sequence to the gradient coding sequence. This work aims to 
influence the probability of random scattering exhibited in a specific range of angles. On the other hand, the 
coding metamaterial has also been utilised in the terahertz frequency application recently. Jin et al.14 proposed 
a 1-bit flexible coding metamaterial with “0” and “1” elements by adopting two types of unit cells to shape the 
reflection and scattering of terahertz waves. In this research work, the analysis of low-reflection and scattering 
metamaterial in a wide terahertz range was performed. In 2021, Yang et al.15 investigate the tailoring of the scat-
tering properties of a coding metamaterial by utilising machine learning. This work demonstrated two different 
reflection phase unit cells and the built-up model of semi-analytical for the unit cells. To optimise the coding 
matrix, the genetic algorithm is coupled with the scattering pattern analysis.

A systematic review of a prospective observational study by Zhang et al.16 presents recent progress of three 
newly discovered metamaterials known as coding, digital and programmable metamaterials. In this work, a 
discussion on the ability to control the EM waves in real-time and the building of multi-purpose devices was 
analysed. Both the 1-bit and 2-bit coding metamaterial concepts have also been investigated and analysed in 
this work. The investigation of optimised coding diffusion metasurface to reduce RCS values was performed by 
Ali et al.17 in 2019. This work also adopted a 1-bit coding metamaterial with two types of unit cells to mimic “0” 
and “1” elements. The full dimension of the proposed coding metamaterial is 264 × 264 × 3 mm3. Meanwhile, Liu 
et al.18 introduced a concept of anisotropic coding metamaterial for terahertz frequency applications. Therefore, 
the different directions of coding behaviour are dependent on the polarization status of terahertz waves. The 
proposed tailored coding elements on the ultrathin and flexible polarization-controlled anisotropic metasurfaces 
were also experimentally investigated.

On the other hand, several unique RCS reduction analyses were carried out, for instance, Mirkovic et al.19 and 
Zhou et al.20 in 2016 and 2021, respectively. Mirkovic analysed for the first time the electromagnetic modelling 
techniques (typically applied to man-made objects) can accurately predict organismal radio scattering charac-
teristics from an anatomical model by adopting the method of moments implemented in the WIPL-D software 
package. Meanwhile, Zhou proposed a comprehensive design method based on the sorting factor Pareto solu-
tion to reduce the RCS value. On the other hand, many metamaterial and metasurface designs were investigated 
for the C, X, and Ku-bands in recent years. In 2019, Barde et al.21 investigated a very compact simple double 
square-shaped design of a metamaterial absorber for Ku and K band applications. Meanwhile, the similar first 
author proposed a wideband metamaterial absorber for Ku band application in 202022. Furthermore, Roy et al.23 
proposed an ultra-thin wideband metasurface polarization converter that is utilised for linear conversion i.e., X 
polarized to Y polarized and vice versa. All these three research works adopted ANSYS HFSS 19.1 software to 
perform all the numerical simulations.

According to the comprehensive survey, the previous studies reveal that many coding metamaterials were 
applied in a wide range of applications. However, this new coding metamaterial field required further research 
investigation to optimise the outcomes in the desired applications. Besides that, few of the previous studies 
adopted a bigger scale of coding metamaterial structure. Electronic devices with the miniaturisation concept 
have become the latest technological growth in industrial applications. Therefore, this research investigates a 
small-sized circular-shaped coding metamaterial structure by adopting a 1-bit coding sequence. Moreover, the 
introduced coding metamaterial effectively reduced RCS values in the frequency range from 2 to 18 GHz. Besides 
that, the multi-layered metamaterial structure by adopting the coding concept has been analysed in this work.

Coding metamaterial
All the analysis data in this research investigation are based on coding metamaterial concepts. Therefore, 1-bit 
coding metamaterial was adapted and initially unique metamaterial unit cells composed of binary digital ele-
ments such as “0” and “1” with 0 and 180○ phase responses were considered. These elements in a controlled 
coding sequence can realize different functionalities and manage to manipulate the EM waves. Figure 1 illustrates 
the phase response properties of both proposed elements such as ‘0’ and ‘1’ with the phase difference curve. The 
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proposed element ‘1’ successfully manifests several more than 180○ phase responses at several frequency ranges, 
for instance, 7.35 to 9.48 GHz, 12.87 to 14.25 GHz and 17.49 to 18 GHz (C, X, and Ku-bands), respectively. Both 
of the unit cells utilised similar substrate material and dimensions (further details in “Element “1” metamaterial 
design”). The element “0” was constructed by adapting only Rogers RT6002 as substrate material while element 
“1” has an additional circular-shaped metamaterial structure. Although the stated elements can be simply defined 
as perfectly electric and magnetic conductors, reaching a higher frequency band requires a metamaterial structure 
designed on the substrate material to achieve binary elements10. The pre-existing conventional metamaterial act 
as analog technology which manipulates the EM fields by utilising effective medium parameters. However, the 
various coding sequences consisting of “0” and “1” elements can easily control the EM fields.

Radar cross‑section.  Several coding sequences by utilising the trial and error method such as those graph-
ically portrayed in Fig. 2a–c were adapted and the RCS values were compared by the number of metamaterial 
layers in each subfigure. The three types of coding sequences have the arrangement of unit cells as demonstrated 
in Table 1. Therefore, using the trial and error method, these sequences were arranged in different forms to ana-
lyse the performances changes. Although this simple trial and error is typically used to discover new ideas, it also 
plays an important role in the scientific method as well. The optimization of the coding sequence by utilising “0” 
and “1” elements with 0 and π phase responses can achieve the best RCS reduction values. Radar cross-section 
is typically used to measure how detectable an object is by radar. The target that is located from the radar at a 
distance of R can greatly affect the definition of RCS and can be expressed as in Eq. (1).

σ = Radar cross-section [m2 or dBm2]; R = distance between the target and radar receiver [m]; Pr = Backscat-
tered or reflected power density [Watt/m2]; Pi = incident power density on target [Watt/m2].

Besides that, the RCS is defined as regards square meters or in the more conventional unit which is known as 
dBsm (dBm2). In other words, the RCS is also known as the ratio of the backscattered power density (Pr) to the 
incident power density (Pi) on the target. A few key factors influence the RCS values, for example, the signal fre-
quency, the physical geometry of material, the direction of radar and the polarization of the scattered signal. There 
are two types of RCS values that can be measured such as monostatic and bistatic. The receiver and transmitter 
antennas are located at the same place for monostatic RCS while the bistatic RCS have different antenna positions. 
Generally, different structural composite materials will manifest dependent RCS values in any frequency range.

Therefore, one of the objectives of this research work is to investigate coding metamaterial on a smaller scale 
known as the miniaturization concept to realise an optimised RCS reduction value. The 6 lattices were adopted 
in this research work and all the optimised codes for the analysis are based on 6 × 6 with “0” or “1” elements. The 
monostatic RCS simulation results of the proposed coding metamaterial were obtained by utilising the com-
mercially available software CST Microwave Studio. It is visible that, all the coding sequences manifest almost 
similar optimised RCS reduction values as shown in Fig. 2a which have near to − 10 dBm2 at the frequency ranges 
of 14 to 18 GHz. Note that, the RCS values at 2 GHz were slightly moved from − 40 dBm2 to − 30 dBm2 when 
metamaterial layers were increased. Besides that, the RCS reduction curves pattern also have minor discrepancies 
for double layer coding metamaterial structure. For example, at the fifth RCS reduction curve, coding sequence 
3 exhibits higher magnitude values when compared to the other two sequences. Meanwhile, coding sequence 1 
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Figure 1.   Phase response of elements ‘0’ and ‘1’.
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has double curve points with magnitude values less than − 30 dBm2. On the other hand, the triple-layer coding 
metamaterial sequences have better outcomes compared to the other two layers.

The three-dimensional scattering patterns of the multi-layered coding metamaterial are presented in Fig. 3a–c. 
This figure helps to observe the bistatic scattering features of the proposed three types of coding sequences. The 
incident waves scattered in an almost similar pattern for all three multi-layered designs. However, a slight differ-
ence can be visible where the Coding Sequence 1 has the least scatter beams and the number of beams increases 
as the changes in the sequences were made. Moreover, Coding Sequence 2 has the lowest bistatic RCS values at 
− 13.9 dBm2 and the comparison revealed only less than 5% of discrepancies occurred. On the other hand, Table 2 
demonstrates the comparison of several RCS reduction application research and proposed design. Overall, the 
reference24 manifests the highest RCS reduction values but it has the larger metamaterial compared to the rest of 
the designs. Meanwhile, the reference25 possesses the second smallest metamaterial design but it only exhibits the 
least reduction value. Moreover, the reference10 successfully reduced the RCS values to − 23 dBm2 by adopting a 
100 × 100 mm2 metamaterial design. However, the advanced technology requires miniaturised design structures 
to be applied in a wide range of applications. Therefore, a novel 48 × 48 mm2 coding metamaterial design was 
proposed to gain optimised RCS reduction applications.
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Figure 2.   RCS results of three different metamaterial coding sequences for; (a) Single-layer, (b) Double-layer, 
(c) Triple-layer.

Table 1.   Arrangement of both elements in each proposed coding sequence.

Coding sequence Row 1 Row 2 Row 3 Row 4 Row 5 Row 6

1 011001 001001 010101 001100 110,011 101,010

2 101,010 101,010 101,010 101,010 101,010 101,010

3 101,010 010101 011101 110,010 010011 101,100
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Scattering parameters of coding metamaterial.  Scattering parameters also known as S-parameters 
define the electric behaviour of linear electrical networks on metamaterial when experiencing electrical signals 
in various steady-state stimuli. Due to the triple-layer coding metamaterial produces better RCS reduction val-
ues, therefore transmission coefficient results of these design structures were analysed in this paper. Each coding 
sequences manifest various transmission coefficient results. The comparison of these three sequences reveals 
that two to five resonance frequencies were manifested below − 15 dB (as shown in Fig. 4) and the outcomes 
are influenced by the coding sequence arrangement of “0” and “1” elements. We used various combinations of 
coding sequences where the element “1” was increased in the following sequences. For example, the total num-
ber of element “1” used in Coding Sequence 1 was 17 and for the following sequence was increased by 18. The 
changes in the coding patterns clearly show an increment in the number of resonance frequencies. The Coding 
Sequence 3 was able to manifest five peak points while sequences 1 and 2 only produce two and four resonances, 
respectively.

Figure 3.   The full-wave simulation results of triple layer coding metamaterial for: (a) Coding sequence 1, (b) 
Coding sequence 2, (c) Coding sequence 3.

Table 2.   Several advanced coding metamaterial structures and RCS values.

References Size (mm2) Frequency range (GHz) Design RCS reduction (dBm2)
10 100 × 100 7 to 14 Coding metamaterial − 23
24 212.5 × 95 5 to 8 Metamaterial 6
25 80 × 80 2 to 18 Metamaterial − 30.1

Proposed 48 × 48 0 to 18 Coding metamaterial Near − 10

2 4 6 8 10 12 14 16 18

-25

-20

-15

-10

-5

0

Tr
an

sm
is

si
on

 C
oe

ff
ic

ie
nt

 (d
B)

Frequency (GHz)

 Coding Sequence 1
 Coding Sequence 2
 Coding Sequence 3

Figure 4.   Transmission coefficient of coding metamaterial for single layers.
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Advanced coding metamaterial design.  The second objective of this research paper is to analyse mul-
tiple advanced coding metamaterial designs by adapting Coding Sequence 1 arrangement with similar proposed 
elements. Several cuboid designs that possess single or multi-layered structures were constructed in this analysis 
as illustrated in Table 3. Designs 1 and 2 were constructed with single and triple-layered Coding Sequence 1 
arrangement respectively. Therefore, Designs 1 and 2 exhibit RCS values less than 0 (on the positive axis), while 
the rest of the design structures were able to reach near − 10 dBm2. Although the first or last two designs exhibit 
almost similar RCS values, the design produced diverse scattering patterns. Design 1 has a sharp and slightly 

Table 3.   Several advanced coding metamaterial structures and RCS values.
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higher scattered beams pattern when compared to other designs. Meanwhile, these bistatic scattering features 
indicated that Design 2 has the least value by reducing the RCS value to 4.48 dBm2. Therefore, it indicates that 
various coding metamaterial sequences with diverse shapes will influence the RCS and scattering patterns. In a 
nutshell, the RCS values were successfully reduced by adopting advanced coding metamaterial design and it will 
the novelty of this research work.

Validation.  In this subsection, the S21 result of the single-layer Coding Sequence 1 metamaterial design 
was validated by performing a measurement process in Agilent N5227A Vector Network Analyser (VNA). Five 
types of adapters were used in this experiment, namely A-INFOMW WG to Coaxial adapter P/N: 187WCAS, 
A-INFOMW WG to adapter P/N: 137WCAS, A-INFOMW WG to adapter P/N: 112WCAS, A-INFOMW WG 
to adapter P/N:75WCAS and A-INFOMW WG to adapter P/N:51WCAS. Each waveguide port has different 
working frequency ranges. Therefore, the fabricated metamaterial was placed in between these waveguide ports 
respectively, to measure the S21 responses to Fig. 5a–c illustrate the fabricated coding metamaterial, VNA setup 
and the S21 results. As demonstrated in Fig. 5c, the comparison of numerically simulated and measured data 
reveals promising outcomes. Although all the resonances frequencies exhibit almost similar peak points, the 
magnitude values significantly differ from each other. This phenomenon may be caused by calibration error 
that has a great influence on the data produced. Besides that, the proposed circular split rings are small in size, 
thus unintentional flaws might have happened when removing excess copper from the substrate material. The 
numerically simulated S21 results possess only two peal points that exhibit more than − 15 dB magnitude values, 
for instance, at 6.23 and 14.33 GHz. However, all the measurement results exhibit magnitude values more than 
the − 15 dB and reach the maximum at 15.38 GHz with a − 37.78 dB magnitude value.
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(b) VNA setup, (c) transmission coefficient.
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Element “1” metamaterial design.  The unit cell design that assigns element “1” was analysed in detail 
of its physical properties and characteristics based on the simulation and measurement data. This design was 
constructed by satisfying the main constraint variable which is the miniaturization concept.

Materials and methods.  Only two types of materials were utilised in this research investigation. Firstly, Rog-
ers RT6002 dielectric substrate material with 1.524 mm (rt) thickness was adopted. This material possesses a 
dielectric constant of 2.94 and tangent loss of 0.012. Meanwhile, a material with a thickness (ct) of 0.035 mm and 
conductivity (σ) of 5.80 × 107 S/m known as copper was adopted to construct the circular-shaped metamaterial 
structure on the substrate material.

Metamaterial construction.  Figure  6 demonstrates the graphical illustration of the unit cell circular-shaped 
metamaterial exported from computer simulation software. The proposed “1” element metamaterial as shown 
in Fig. 6a has four circular rings and one circle at the centre of the design. Various ring thickness (cn) was uti-
lised in this metamaterial design such as 0.50, 0.40, 0.30, and 0.50 mm from larger to smaller rings respectively. 
Meanwhile, the circle at the centre was designed with an outer diameter of 0.80 mm and the overall dimensions 
were selected by the method known as the trial and error approach. Although this straightforward approach 
was utilised, there were various numerical simulation analyses based on the thickness of rings, gaps between 
the rings, and optimised number of rings performed by utilising CST software. On the other hand, the circular 
rings were arranged as a split-ring resonator concept and the 0.40 mm split gaps were adopted for all the circular 
rings that were positioned either on top or bottom as illustrated in Fig. 6c. The split-ring resonator is generally 
common to metamaterial which is an artificially constructed structure. This structure can manifest desired mag-
netic response in many types of metamaterial until 200 THz. Strong magnetic coupling is created for an applied 
electromagnetic field in these media and is not found in natural material. Besides that, negative permeability 
behaviour is exhibited by adopting a periodic array of split-ring resonators. A split-ring resonator has a split at 
one end and enclosed loops on the other side. This loop is made of nonmagnetic metal like copper and can be 
circular or square-shaped structures with required gaps. The penetration of magnetic flux in the metal rings will 
induce current rotation within and manifest their flux to improve or resist the incident fields. This phenomenon 

Figure 6.   Graphical illustration exported from CST software: (a) Metamaterial design, (b) Side view, (c) Top 
view.
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depends on the resonant properties of the split-ring resonator. The rest of the dimension details were tabulated 
in Table 4 and graphically demonstrated in Fig. 6b,c.

Numerical simulation and measurement method.  All of the simulation analyses of the metamaterial transmis-
sion coefficient and RCS reduction of coding metamaterial were carried out by adopting well-known Computer 
Simulation Technology Microwave Studio (CST) software. The transmission coefficient of metamaterial numeri-
cal simulation was performed by adopting tetrahedral mesh (as illustrated in Fig. 7a) and frequency-domain 
solver while the RCS simulation utilised hexahedral mesh and time-domain solver. Meanwhile, the analysis of 
unit cell metamaterial utilised two waveguide ports positioned at the front and back of the structure. Besides 
that, these ports are paced in the z-axes direction with transverse electromagnetic mode. Therefore, the x and 
y-axis were set as perfect electric and perfect magnetic boundary conditions respectively. This research investiga-
tion focused on the frequency ranges from 2 to 18 GHz. On the other hand, the unit cell metamaterial analysis 
was performed by numerically simulating the structure to manifest the reflection (S11) and transmission (S21) 
coefficient results. These data were exploited to calculate the parameters of the metamaterial design, for instance, 
permittivity (ε), permeability (μ), and refractive index (n) values by utilising MATLAB software with the Robust 
method26–28. Equations from (2) to (5) express the formula to retrieve the z, n, ε, and μ parameters.

(2)z = ±
√ (1+ S11)

2 − S
2
21

(1− S11)
2 − S

2
21

Table 4.   Description of proposed CRM design. *cn = circular ring thickness (n = 1, 2, 3, 4, 5); g = gap between 
rings; s = subtraction length.

Descriptions Dimension (mm)

c1 0.50

c2 0.40

c3 0.30

c4 0.50

c5 0.80

g1 0.50

g2 0.30

g3 0.30

g4 0.20

s1 0.40

RT6002 Length, l 8.00

RT6002 Width, w 8.00

Metamaterial Thickness, ct 0.035

RT6002 Thickness, rt 1.524

Figure 7.   CST and experimental setup; (a) Unit cell metamaterial simulation; (b) VNA N5227A measurement 
setup.
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The unit cell metamaterial defined as element “1” was further validated through experimental measurements. 
Usually, the board from an industrial manufacturing company is built with two types of materials which are 
defined as dielectric substrate layer and metal. This work adopted copper material as a metal for the metamate-
rial design construction and Roger RT6002 as substrate material. Hence, the excessive copper metamaterial will 
be removed based on the proposed metamaterial design during the fabrication process. The fabricated design 
was then measured through the VNA instrument (Fig. 7b illustrates the experimental setup). The unit cell was 
placed in between two waveguide ports that were connected to the VNA instrument by coaxial cables. Similar 
five types of adapters as for the measurement of coding metamaterial were adopted, namely A-INFOMW WG 
to Coaxial adapter P/N: 187 WCAS, A-INFOMW WG to adapter P/N: 137WCAS, A-INFOMW WG to adapter 
P/N: 112WCAS, A-INFOMW WG to adapter P/N:75WCAS and A-INFOMW WG to adapter P/N:51WCAS, 
respectively. An Agilent N4694-60001 device was utilised beforehand in the experiment process to secure precise 
readings without possible errors.

Scattering and effective medium parameters of unit cell.  Figure 8a–d exemplify the results retrieved from CST 
for the S11, S21, ε, μ, and n values. Based on Fig. 8a, quadruple bands were produced such as 3.61 (S-band), 6.08 
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(C-band), 9.46 (X-band), 14.40, 16.07 and 17.97 GHz (Ku-band) with acceptable magnitude values of − 26.86, 
− 35.03, − 29.25, − 31.01, − 38.50, and − 17.97 dB, respectively. The S21 measured data in Fig. 8a showed almost 
similar peak points except for the last resonance, such as 3.90, 5.89, 9.40, 14.66, 16.36, and 18.78 GHz, with 
acceptable magnitude values of − 39.55, − 19.71, − 38.49, − 31.00, − 29.40 and − 23.97 dB, respectively. Mean-
while, the S21 simulated results from the CST were further validated by adopting High-Frequency Structure 
Simulator (HFSS) software. In the first three resonance frequencies, both simulation results indicate identi-
cal peak points, while the rest start to show slight differences. The S21 responses in HFSS are as follows; 3.70, 
6.20, 9.60, 14.60, 16.30 and 18.50 GHz with magnitude values of − 16.33, − 33.70, − 29.53, − 31.25, − 32.65 and 
− 11.39 dB, respectively.

The findings of permittivity values of unit cell metamaterial were demonstrated in Fig. 8b. Each resonance 
band manifests one negative behaviour on the adopted frequency range. However, the Ku-band possesses two 
negative behaviour curves with the lowest amplitude values when compared to others. The 3.63 to 3.93 GHz 
frequencies range manifest negative characteristics and acceptable amplitude values of − 9.12 to − 0.03 dB at 
the S-band. However, the negative permittivity in C-band starts at 6.14 GHz and lasted until 6.86 GHz. In this 
frequency range, the maximum negative ε value occurred at 3.65 GHz with an amplitude value of − 13.52 dB. 
Meanwhile, the frequency range between 9.54 and 10.03 GHz (X-band) showed negative ε behaviour with an 
optimised resonance frequency at 9.56 GHz with an amplitude value of − 3.15 dB. Finally, the introduced unit 
cell metamaterial depicted smaller two negative behaviour curves in Ku-band with maximum peak points at 
14.55 GHz and 16.80 GHz with amplitude values of − 0.67 dB and − 0.70 dB, respectively. Moreover, the meta-
material design has negative permeability behaviour for whole the selected frequency range which is from 2 to 
18 GHz as illustrated in Fig. 8c. The unit cell metamaterial manifests one peak value for each band except Ku-
band. At the Ku-band the unit cell metamaterial exhibits triple peak values. Meanwhile, the maximum perme-
ability value was recorded at 16.07 GHz with an amplitude value of − 0.23 dB. On the other hand, the refractive 
index (as shown in Fig. 8d) of metamaterial design also manifests a similar number of responses as permittivity 
behaviour. The maximum negative refractive index value was exhibited at 3.63 GHz with an amplitude value of 
− 1.77 dB (S-band).

Electric and magnetic field distribution of unit cell.  Figures 9 and 10 indicate the electric and magnetic field dis-
tributions of the proposed unit cell metamaterial. Generally, the physical characteristics of the electromagnetic 
field control the responses from these field distributions of the proposed design. This incident occurred in space 
due to the electric charges with time-varying behaviour. The desired resonance frequencies and outstanding 
accomplishments of the proposed design are dependent on the lossy and dispersive characteristics of a material. 
Three electric field distributions at three limits, for instance, 1000, 5000 and 10,000 V/m were adapted in this 
simulation. The examination disclosed a strong electric field detection at 1000 V/m and the responses nearly 
occurred on the whole design for every resonance frequency. Nevertheless, the intensity of the electric field was 
gradually reduced when the field strength was increased. Meanwhile, the 10,000 V/m limits had the least detec-

Figure 9.   Electric field distribution with three limits at; (a–c) 3.61 GHz, (d–f) 6.08 GHz, (g–i) 9.46 GHz, (j–l) 
14.40 GHz, (m–o) 16.07 GHz, (p–r) 17.97 GHz.
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tion of distribution for all four resonance bands compared to the other field strengths. Besides that, around 75% 
of the exposure level was reduced for the last resonance frequency and it only focused on the outside of the first 
circular ring. Furthermore, the introduced metamaterial structure produced inconsistent magnetic field distri-
butions for the chosen limits of 20, 50, and 100 A/m (as shown in Fig. 10). The magnetic field is generated due 
to the current induction when the wave passes through the split rings. The distribution fields show an irregular 
pattern as it reduced and then increased when the frequency increases. Moreover, at 9.46 GHz, the metamate-
rial exhibits almost zero magnetic field exposure when compared to others. Whereby, the field distribution was 
gradually increased after this peak point and reaches maximum exposure at 20 A/m. However, a standard query 
emerged from these discoveries which linked with the detection of these distributions on the dielectric substrate 
material. On the other hand, the copper metamaterial structure which is classified as metal-composed material 
is typically induced electric or magnetic field due to the free-electron within their physical structure. However, 
the dielectric material does not possess this type of free electron, but still, the field distribution takes place on its 
surface. This is caused by the delocalisation of the electron oscillation that is presented in the metal and substrate 
materials.

Conclusion
This paper concludes by arguing the RCS values of coding metamaterial that are computed by utilising CST 
microwave studio. The 1-bit coding metamaterial was analysed in this work by adopting two types of unit cells 
to mimic “0” and “1” elements with 0 and π phase responses. Although the single-layered coding metamaterial 
for all sequences manifests almost similar RCS reduction behaviour, multiple layered metamaterials manifest 
different outcomes. Besides that, the transmission coefficient results of the multi-layered coding metamaterial 
have also been analysed here. Moreover, several advanced coding metamaterial cuboid designs were introduced 
and the RCS and scattering pattern of each structure were examined. To validate the numerical simulation 
results, the single-layered Coding Sequence 1 and unit cell metamaterial designs were fabricated and measured 
by using the VNA instrument. Moreover, the scattering and effective medium properties of the unit cell design 
were briefly discussed in this work. Briefly, the reduction of RCS values was successful by adopting the advanced 
coding metamaterial cuboid design and it will be the novelty of this research investigation. The introduced 
coding metamaterial is unique for a wide range of applications, such as reducing scattering features of targets, 
manipulating antennas radiation beams and manifesting various extraordinary properties of metamaterial. In 
summary, the achieved results fulfil the objectives of this work where the proposed coding metamaterial reduced 
RCS values. The further extended research investigation of coding metamaterial can be a valuable asset in this 
technological era.

Received: 31 January 2022; Accepted: 14 June 2022

Figure 10.   Magnetic field distribution with three limits at; (a–c) 3.61 GHz, (d–f) 6.08 GHz, (g–i) 9.46 GHz, 
(j–l) 14.40 GHz, (m–o) 16.07 GHz, (p–r) 17.97 GHz.
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