Skip to main content
. 2022 Jun 16;16:909553. doi: 10.3389/fncom.2022.909553

TABLE 3.

Test accuracy when training individual participants separately.

DT RF ADB LR MLP SVM KNN LDA LR-CNN CNN LSTM
Participant 1 0.819 0.931 0.932 0.825 0.936 0.931 0.906 0.931 0.951 0.989 0.959
Participant 2 0.826 0.933 0.933 0.933 0.934 0.936 0.919 0.933 0.942 0.978 0.968
Participant 3 0.838 0.932 0.932 0.932 0.933 0.934 0.931 0.932 0.929 0.992 0.962
Participant 4 0.828 0.935 0.935 0.935 0.935 0.935 0.928 0.935 0.946 0.992 0.972
Participant 5 0.816 0.933 0.933 0.933 0.933 0.936 0.915 0.933 0.919 0.984 0.954
Participant 6 0.767 0.934 0.934 0.934 0.934 0.935 0.917 0.933 0.956 0.977 0.961
Participant 7 0.820 0.935 0.936 0.935 0.935 0.936 0.915 0.835 0.927 0.969 0.959
Participant 8 0.788 0.932 0.932 0.932 0.932 0.932 0.920 0.932 0.933 0.996 0.967

DT, decision tree; RF, random forest; ADB, adboost; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; KNN, k-nearest neighbor; LDA, linear discriminant analysis; LR-CNN, logistic regression and convolutional neural network; CNN, convolutional neural network; LSTM, long short-term memory.