TABLE 4.
Test results for the remaining participant after training using data for the other seven participants.
| DT | RF | ADB | LR | MLP | SVM | KNN | LDA | LR-CNN | CNN | LSTM | |
| Participant 1 | 0.759 | 0.825 | 0.828 | 0.793 | 0.856 | 0.829 | 0.806 | 0.841 | 0.923 | 0.898 | 0.886 |
| Participant 2 | 0.737 | 0.836 | 0.828 | 0.813 | 0.863 | 0.837 | 0.819 | 0.824 | 0.932 | 0.883 | 0.877 |
| Participant 3 | 0.742 | 0.831 | 0.829 | 0.798 | 0.856 | 0.835 | 0.816 | 0.823 | 0.919 | 0.869 | 0.855 |
| Participant 4 | 0.716 | 0.822 | 0.826 | 0.816 | 0.853 | 0.840 | 0.814 | 0.854 | 0.932 | 0.889 | 0.883 |
| Participant 5 | 0.732 | 0.836 | 0.833 | 0.822 | 0.833 | 0.833 | 0.811 | 0.821 | 0.917 | 0.796 | 0.811 |
| Participant 6 | 0.721 | 0.820 | 0.827 | 0.821 | 0.843 | 0.836 | 0.810 | 0.826 | 0.926 | 0.913 | 0.878 |
| Participant 7 | 0.727 | 0.843 | 0.826 | 0.816 | 0.852 | 0.842 | 0.812 | 0.822 | 0.862 | 0.877 | 0.858 |
| Participant 8 | 0.712 | 0.832 | 0.829 | 0.794 | 0.829 | 0.828 | 0.821 | 0.829 | 0.921 | 0.881 | 0.862 |
DT, decision tree; RF, random forest; ADB, adboost; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; KNN, k-nearest neighbor; LDA, linear discriminant analysis; LR-CNN, logistic regression and convolutional neural network; CNN, convolutional neural network; LSTM, long short-term memory.