Skip to main content
. 2022 Jun 16;16:909553. doi: 10.3389/fncom.2022.909553

TABLE 5.

Test results for the remaining four participants after training using data from four participants (1).

DT RF ADB LR MLP SVM KNN LDA LR-CNN CNN LSTM
Participant 1 0.656 0.811 0.808 0.763 0.816 0.817 0.785 0.824 0.913 0.839 0.822
Participant 5 0.707 0.806 0.798 0.773 0.823 0.815 0.801 0.815 0.926 0.828 0.802
Participant 6 0.773 0.831 0.793 0.787 0.808 0.820 0.800 0.818 0.915 0.779 0.798
Participant 8 0.703 0.802 0.806 0.801 0.824 0.833 0.796 0.820 0.909 0.818 0.802

DT, decision tree; RF, random forest; ADB, adboost; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; KNN, k-nearest neighbor; LDA, linear discriminant analysis; LR-CNN, logistic regression and convolutional neural network; CNN, convolutional neural network; LSTM, long short-term memory.