TABLE 6.
Test results for the remaining four participants after training using data from four participants (2).
| DT | RF | ADB | LR | MLP | SVM | KNN | LDA | LR-CNN | CNN | LSTM | |
| Participant 3 | 0.743 | 0.811 | 0.810 | 0.746 | 0.814 | 0.809 | 0.771 | 0.819 | 0.913 | 0.811 | 0.798 |
| Participant 4 | 0.729 | 0.815 | 0.805 | 0.791 | 0.817 | 0.822 | 0.809 | 0.822 | 0.873 | 0.832 | 0.822 |
| Participant 7 | 0.716 | 0.824 | 0.803 | 0.814 | 0.816 | 0.821 | 0.818 | 0.827 | 0.857 | 0.841 | 0.836 |
| Participant 8 | 0.704 | 0.811 | 0.806 | 0.801 | 0.816 | 0.836 | 0.766 | 0.808 | 0.861 | 0.856 | 0.843 |
DT, decision tree; RF, random forest; ADB, adboost; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; KNN, k-nearest neighbor; LDA, linear discriminant analysis; LR-CNN, logistic regression and convolutional neural network; CNN, convolutional neural network; LSTM, long short-term memory.