Skip to main content
. 2022 Jun 16;16:909553. doi: 10.3389/fncom.2022.909553

TABLE 6.

Test results for the remaining four participants after training using data from four participants (2).

DT RF ADB LR MLP SVM KNN LDA LR-CNN CNN LSTM
Participant 3 0.743 0.811 0.810 0.746 0.814 0.809 0.771 0.819 0.913 0.811 0.798
Participant 4 0.729 0.815 0.805 0.791 0.817 0.822 0.809 0.822 0.873 0.832 0.822
Participant 7 0.716 0.824 0.803 0.814 0.816 0.821 0.818 0.827 0.857 0.841 0.836
Participant 8 0.704 0.811 0.806 0.801 0.816 0.836 0.766 0.808 0.861 0.856 0.843

DT, decision tree; RF, random forest; ADB, adboost; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; KNN, k-nearest neighbor; LDA, linear discriminant analysis; LR-CNN, logistic regression and convolutional neural network; CNN, convolutional neural network; LSTM, long short-term memory.