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Abstract

Background: Birthweight is an indicator of fetal growth and environmental-related alterations of 

birthweight have been linked with multiple disorders and conditions progressing into adulthood. 

Although a few studies have assessed the association between birthweight and the totality of 

exogenous exposures and their downstream molecular responses in maternal urine and cord blood; 

no prior research has considered a) the maternal serum prenatal metabolome, which is enriched for 

hormones, and b) non-linear and synergistic associations among exposures.

Methods: We measured the maternal serum metabolome during pregnancy using an untargeted 

metabolomics approach and birthweight for gestational age (BWGA) z-score in 410 mother-

child dyads enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) 

cohort. We leveraged a Bayesian factor analysis for interaction to select the most important 

metabolites associated with BWGA z-score and to evaluate their linear, non-linear and non-

additive associations. We also assessed the primary biological functions of the identified proteins 

using the MetaboAnalyst, a centralized repository of curated functional information. We compared 

our findings with those of a traditional metabolite-wide association study (MWAS) in which 

metabolites are individually associated with BWGA z-score.
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Results: Among 1110 metabolites, 46 showed evidence of U-shape associations with BWGA 

z-score. Most of the identified metabolites (85%) were lipids primarily enriched for pathways 

central to energy production, immune function, and androgen and estrogen metabolism, which are 

essential for pregnancy and parturition processes. Metabolites within the same class, i.e. steroids 

and phospholipids, showed synergistic relationships with each other.

Conclusions: Our results support that the aspects of the maternal metabolome during pregnancy 

contribute linearly, non-linearly and synergistically to variation in newborn birthweight.

Keywords

Exposome; Birthweight; Prenatal metabolomics; Factor analysis for interaction; Nonlinear 
associations; Non-additive associations

1. Introduction

The human exposome summarizes the totality of endogenous and exogenous exposures 

encountered throughout life and reflects the contribution of these exposures to human health 

(Niedzwiecki et al., 2019; Vermeulen et al., 2020). Untargeted metabolomics assays enable 

the concurrent detection of thousands of small molecules, hereafter metabolites, in human 

biofluids and have become a powerful tool for characterizing exogenous exposures and their 

downstream molecular responses (Niedzwiecki et al., 2020; Niedzwiecki et al., 2019). A 

notable advantage of the metabolomics approach is the ability to not only study associations 

with manifest disease, but to also interrogate underlying pathways linking circulating small 

molecules with cellular health. Given the relevance of environmental and molecular links 

with fetal growth and newborn conditions, maternal metabolomic profiles during pregnancy 

have attracted much interest (Rager et al., 2020).

Birthweight is considered an indicator of cumulative fetal growth and is linked to health 

risk later in life (Barker and Thornburg, 2013; Howe et al., 2020). Indeed, low and/or high 

birthweight for gestational age has been associated with subsequent childhood morbidity 

(Wu et al., 2011), including childhood asthma (Brooks et al., 2001), and multiple disorders 

progressing into adulthood, such as cognitive deficits (Oudgenoeg-Paz et al., 2017), cardio-

metabolic diseases (Fagerberg et al., 2004; Johansson et al., 2008; Leeson et al., 2001), 

respiratory conditions (Walter et al., 2009) and osteoporosis (Harvey et al., 2014; Metrustry 

et al., 2018). Abnormal fetal growth results from a combination of genetic factors and, more 

importantly, in utero conditions arising from the endogenous and exogenous environments, 

such as maternal diet and toxic chemical exposures. Notably, inter-individual variability 

of birthweight can be explained by only a small proportion by genetic variants (Lunde 

et al., 2007), while maternal exposures and their biological responses have been shown 

to be key determinants of newborn characteristics (Howe et al., 2020). Yet, despite the 

putative importance of the prenatal environment and the availability of metabolomics for 

investigating a breadth of molecular responses to environmental and endogenous stressors, 

few studies have examined untargeted metabolomics signature in relation to birthweight. 

Moreover, the majority of analyses have been cross-sectional at birth, using cord blood or 

newborn dry blood metabolites, with only two studies prospectively examining maternal 

urine metabolites during pregnancy in relation to birthweight (Maitre et al., 2014; Maitre 
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et al., 2016; Team et al., 2020). Although the urinary metabolome can capture lipids and 

hormone levels (Coburn et al., 2019; Marcos et al., 2014; Marcos et al., 2015; McLeod et 

al., 2017; Pozo et al., 2018 Raro et al., 2016), which both play critical roles in gestation 

and parturition, the metabolome measured in blood or blood-derived tissues is particularly 

enriched by those compounds and its use can unveil novel associations (Coburn et al., 2019). 

In addition, existing studies that have investigated metabolomics in relation to birthweight 

have considered metabolites separately and linearly through a more traditional metabolomic-

wide association study (MWAS) analysis. This approach is limited as it precludes evaluating 

potential non-linear and synergistic associations between metabolites, thus restricting the set 

of final findings.

Herein we leveraged a longitudinal pregnancy cohort study to analyze associations between 

the metabolomics profile assessed in maternal prenatal serum and birthweight. Specifically, 

we adapted the recently developed Bayesian factor analysis for interactions framework 

(Ferrari and Dunson, 2020) for use with metabolomics data and implemented this novel 

method to examine non-linear and non-additive associations between maternal serum 

metabolites measured during pregnancy and sex-specific birthweight for gestational age 

(BWGA) z-score. This approach accounts for the complex correlation among all metabolites 

and considers all metabolites jointly, thereby minimizing multiple comparison issues. We 

additionally compared the results with those from the traditional MWAS analysis, in which 

metabolites are individually associated with BWGA z-score and findings are corrected for 

multiple testing.

2. Methods

2.1. Study sample

The PRogramming of Intergenerational Stress Mechanisms (PRISM) study is an urban, 

ethnically diverse pregnancy cohort that was designed to study a range of chemical and 

non-chemical stressors in relation to maternal health, pregnancy outcomes, and child 

development. Pregnant women were enrolled from Boston and New York City hospitals 

and affiliated prenatal clinics beginning in 2011. Eligibility criteria included English or 

Spanish-speaking, over 18 years of age at enrollment, and singleton pregnancy. Exclusion 

criteria included HIV + status or self-reported drinking ≥7 alcoholic drinks per week before 

pregnancy or any alcohol after pregnancy recognition. At the time of metabolomics profiling 

(March 2018), 843 women had delivered a live born infant. The analytic sample includes 

a random subset of 410 mother-child pairs with maternal metabolomics measured during 

pregnancy (week of collection: 25th, 50th, 75th percentiles: 26, 29, 33 weeks, and overall 

range: 11–10 weeks) and birthweight data.

2.2. Ethics

All study protocols were approved by the human studies’ committees at the Icahn School 

of Medicine at Mount Sinai (ISMMS) in New York City or the Brigham and Women’s 

Hospital (BWH) in Boston; Beth Israel Deaconess Medical Center in Boston relied on BWH 

for review and oversight of the study protocol. All participants provided written informed 

consent in their primary language of preference.
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2.3. Sex-specific birthweight for gestational age z-score

We extracted data on birthweight, gestational age at birth, and sex from newborn electronic 

medical records. Gestational age was calculated based on: (1) date of delivery and 

self-reported last menstrual period and (2) ultrasound estimates from the first-trimester 

examination. If the discrepancy between the two sources was greater than 2 weeks, 

data from obstetrical estimates were used. We calculated sex-specific birthweight for 

gestational age (BWGA) z-scores according to the validated international infant growth 

charts developed by Fenton (Chou et al., 2020; Fenton and Kim, 2013).

2.4. Untargeted metabolomics phenotyping during pregnancy

Maternal blood was collected by venipuncture (mean ± standard deviation (SD): 29.6 

± 4.90 weeks) and serum aliquots were stored at −80 °C until assayed. Untargeted 

metabolomics analysis was conducted on 100 μl of serum at Metabolon, Inc (Durham, 

NC, USA) with ultrahigh performance liquid chromatography-tandem mass spectroscopy 

(UPLC-MS/MS). The method utilized an ultra-performance liquid chromatography (UPLC) 

and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced 

with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated 

at 35,000 mass resolution. One aliquot was analyzed using acidic positive ion conditions, 

chromatographically optimized for more hydrophilic compounds; the extract compound 

was gradient eluted from a C18 column using water and methanol, containing 0.05% 

perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another aliquot was analyzed 

with the prior approach but it was chromatographically optimized for more hydrophobic 

compounds and operated at an overall higher organic content. A third aliquot was analyzed 

using basic negative ion optimized conditions using a separate dedicated C18 column. The 

basic extracts were gradient eluted from the column using methanol and water, however with 

6.5 mM Ammonium Bicarbonate at pH 8. The fourth aliquot was analyzed via negative 

ionization following elution from a HILIC column using a gradient consisting of water and 

acetonitrile with 10 mM Ammonium Formate, pH 10.8. The MS analysis alternated between 

MS and data-dependent MSn scans using dynamic exclusion. The scan range between 

methods covered 70–1000 m/z. Raw data was extracted, peak-identified and QC processed 

using Metabolon’s hardware and software.

Peaks were quantified using area-under-the-curve. Batch adjustment to correct variation 

resulting from instrument inter-day tuning differences was performed for each compound 

in run-day blocks by dividing by the median of the values for the experimental samples 

for each instrument run day, then multiplying these values by the original median. In one 

serum sample with a lower volume (65 μl instead of 80 μl), metabolite intensities were 

scaled accounting for the volume of serum available, under the assumption that metabolite 

signal intensities scale linearly with the sample volume. We normalized all metabolomic 

data using first the natural base for log-scaling, thus removing skewness of the data. We then 

used a Pareto scaling approach, which incorporates a scaling factor equal to the square root 

of the standard deviation of individual metabolites so that larger fold changes were scaled 

more than smaller fold changes (Grace and Hudson, 2016). A total of 1110 biochemicals 

were detected across all four assays. Potential sample outliers were examined using principal 

component analysis (PCA), though none were identified. Final data were presented as 
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normalized levels to facilitate both linear and non-linear analyses and to harmonize all 

variables on a common scale.

2.5. Covariates

Maternal age (continuous in years), self-reported race/ethnicity (White/Black/Hispanic/

other), and education level (<high school/high school or more) were determined by 

questionnaires administered during a structured in-person interview during pregnancy; pre-

pregnancy body mass index (BMI, kg/m2) was derived from height and weight reported via 

questionnaire at the first prenatal visit. Gestational week of serum collection was recorded 

during the in-person visit. Missing information for race/ethnicity (n = 4), education level (n 

= 7), and week of serum collection (n = 14) were imputed using the mice R-package (van 

Buuren and Groothuis-Oudshoorn, 2017).

2.6. Statistical methods

2.6.1. Metabolite-wide association study (MWAS)—We performed a MWAS 

metabolite-by-metabolite analysis by fitting linear regression models between each 

metabolite and BWGA z-score. In all MWAS models, we adjusted for a core set of 

covariates (maternal age, ethnicity, and education levels and week of serum collection) 

selected a priori based on previous literature. There is a consensus that increased maternal 

age and minority ethnicity are linked to low birthweight (Nardozza et al., 2017; Shmueli and 

Cullen, 1999), while education is considered a proxy of social-economic status, which has 

been linked to a variety of toxic exposures and economic disparities influencing birth-weight 

(Shmueli and Cullen, 1999; Silvestrin et al., 2013). Week of serum collection was included 

as a measure of precision for the metabolomics data, after evaluating the linear association 

between individual metabolites and the timing of serum collection. We inspected results 

and identified potential p-value inflation using 1) volcano plots of the estimated coefficients 

and p-values, and 2) quantile–quantile plots of observed and expected p-values. We also 

estimated the inflation lambda factor and its 95% confidence interval (95% CI) calculated 

using a permutation approach. We corrected all results for multiple testing using the False 

Discovery Rate (FDR); we evaluated statistical significance using a 5% FDR-adjusted 

p-value. Finally, we assessed Pearson correlations between all metabolites. This analysis 

precludes assessing non-linear and non-additive relationships, and metabolites functional for 

BWGA z-score may be not uncovered using this approach solely. Therefore, we compared 

MWAS results with those from the Bayesian factor analysis for interactions, which evaluates 

simultaneously not only linear, but also quadratic and synergistic relationships.

2.6.2. Bayesian factor analysis for metabolite interactions—We assessed linear, 

non-linear and non-additive associations between metabolites and BWGA z-score using a 

Bayesian latent factor joint model, also known as factor analysis for interactions, which is 

particularly suitable when predictors are highly correlated due to their cooccurrence in the 

environment. A major advantage of this approach is that shrinkage and interaction can be 

performed simultaneously, while also quantifying uncertainty by leveraging the Bayesian 

framework (Ferrari and Dunson, 2020). Briefly, the model provides dimensionality reduction 

by identifying groups (i.e. latent factors) of continuous and normalized predictors while 

also characterizing the associations between those factors and a continuous outcome (Ferrari 
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and Dunson, 2020). We considered interactions by including pairwise cross-product terms 

between the latent factors, which can be decomposed to the initial predictors. We ran models 

with 10,000 iterations of the MCMC chain and 9000 iterations of burn-in. To facilitate 

the interpretation of the latent factors, we resolved rotational ambiguity by applying the 

MatchAlign algorithm, which re-assigns the contribution of each metabolite to the factors 

(Ferrari and Dunson, 2020). We report the individual and multiplicative association of 

metabolites with BWGA z-score at a 5% significance threshold, controlling for the core set 

of covariates. A detailed description of all analytical results of the Bayesian factor analysis 

for interaction are in the Supplemental Material (A).

2.6.3. Annotation, evaluation of metabolite similarity, and enrichment 
analysis

Annotation.: Metabolites were identified by comparison to the Metabolon library of 3300 

commercially-available purified standards. Biochemical identification was based on three 

criteria: retention index (RI) within a narrow RI window of the proposed identification, 

accurate mass match to the library +/−10 ppm, and the MS/MS forward and reverse 

scores between the experimental data and authentic standards. Proprietary Metabolon quality 

control and curation processes that have been designed to ensure accurate and consistent 

identification of true chemical entities and to remove those representing system artifacts, 

misassignments, and background noise were applied. Known metabolites were assigned to 

super pathways (e.g., lipids, amino acids) and sub pathways (e.g., medium-chain fatty acids, 

lysine metabolism), as defined by Metabolon, and were also assigned KEGG, HMDB, CAS, 

and PubChem identifiers when available.

Evaluation of metabolite similarity.: We employed a dissimilarity matrix to evaluate the 

similarity between metabolites significantly associated with BWGA z-score. This approach 

allowed us to identify potential pairwise dissimilarities between metabolites with and 

without annotation, thus enabling classification of potential super-pathways without the need 

for annotation.

Enrichment analysis.: A functional and integrative enrichment analysis was conducted 

using MetaboAnalyst software (Chong et al., 2019; Pang et al., 2020). Briefly, we compared 

the metabolites significantly associated with BWGA z-score to 99 metabolite sets based on 

normal human metabolic pathways contained in a curated library. The enrichment ratio was 

computed as the number of significant metabolites to the expected number of metabolites 

under the null hypothesis of no association (Chong et al., 2019; Pang et al., 2020). The 

software also provided p-values and multiple testing corrections for all results (Chong et 

al., 2019; Pang et al., 2020). Finally, we evaluated the over-representation of each annotated 

subclass using a hypergeometric test (Subramanian et al. 2005).

3. Results

3.1. Study sample

The analyzed sample was racially/ethnically diverse (Black 30%, Hispanic, 14%, White 

45%, Other 11%). Mothers had an average age (SD) of 31 (5.2) years at the time of delivery 
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and 80% had a high school education or more. The average gestational length was 38.99 

(SD: 1.66) weeks. BWGA z-scores were normally distributed (Kolmogorov-Smirnov test 

statistic D = 0.04; p-value = 0.44) and centered (SD) in −0.13 (0.91) (Table 1). The linear 

analysis between individual metabolites and week of serum collection showed that only a 

small proportion (15%, n = 166) of metabolites were significantly linked to the timing of 

collection after correcting for multiple comparisons using the Bonferroni approach (Table 

B1); to limit the impact of the timing of collection we included week of serum collection as 

a precision variable in all analyses.

3.2. MWAS: Linear individual associations

We identified 91 metabolites that were individually and linearly associated with BWGA 

z-scores at a 5% nominal p-value threshold (Fig. 1.A, Table B2); however, only 

three (C32413: 2-hydroxymyristate; C52464: 1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4)*; 

C38125: 4-cholesten-3-one) survived multiple testing correction at the 5% FDR threshold 

(Fig. 1.A, Table B2). While a SD increase in levels of C52464 (Estimate (Est.): 0.20; 95 

%CI: 0.10; 0.30) and C38125 (Est.: 0.20; 95 % CI: 0.11; 0.30) was associated with an 

increase in BWGA z-scores, a SD increase in C32413 levels was linked to a decrease of 

0.18 in BWGA z-score (95 %CI: −027; 0.09) (Fig. 1.A, Table B2). The quantile-quantile 

plot showed no large discrepancies of the observed p-value from the distribution of expected 

p-values under the null hypothesis of no association between individual metabolites and 

BWGA z-score (Fig. 1.B), confirming that most of the metabolites have no significant linear 

association with BWGA z-scores. The lambda factor λ = 1.31 (95% CI = 0.48; 2.13) did not 

show inflation of the results at the median p-value, thus indicating no systematic bias (Fig. 

1.B). Pearson correlations between metabolites identified clusters with strong positive and 

negative correlations between them, suggesting the presence of latent factors (Figure B1).

3.3. Bayesian factor analysis for interactions of metabolites

3.3.1. Linear associations and annotation—We performed factor analysis for 

interaction using 25 factors identified via unsupervised principal component analysis (see 

supplemental material A). Using these factors, we identified 46 metabolites that showed 

strong evidence of individual linear associations with BWGA z-scores (Fig. 2, Table B3), 

with 26 showing a positive direction. For a SD increase in individual metabolite levels, 

BWGA z-score changes ranged between −0.068 (C57463: linoleoylcholine) and 0.036 

(C62695: un-annotated). Among the 46 metabolites that showed a significant association 

with BWGA z-score, 41 (89%) were previously annotated, of which 35 (85%) belonged 

to the lipid super-pathway; however those metabolites showed differences in sub-pathways 

(Table B3, Fig. 2). We identified 10 Androgenic Steroids, 2 Pregnenolone Steroids, 4 

Diacylglycerols, 3 Fatty Acid Metabolism metabolites, 1 Monohydroxy Fatty Acid, 2 

Lysophospholipids, 2 Phosphatidylcholines (PC), 9 Phosphatidylethanolamines (PE), 1 

Phospholipids , and 1 Sphingolipid Synthesis metabolite (Table B3). Metabolites within the 

same sub-pathway showed strong correlation patterns (Figure B2).

The steroids, majority (75%) of fatty acids, and four unannotated metabolites showed a 

negative linear term with BWGA z-scores; while PE, PC, diacylglycerol, sphingolipids, 

and phospholipids had a positive relationship with BWGA. Metabolites related to energy 
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production and carbohydrate production were also positively associated to BWGA z-score 

(Table B3, Fig. 2).

Two (C32413, C52464) out of three metabolites identified as significant with MWAS were 

included in the set of results from the Bayesian factor analysis. The direction of linear terms 

from the Bayesian factor analysis was consistent with most (89%) of the individual linear 

associations derived from MWAS analyses (Fig. 3).

3.3.2. Non-linear and synergistic associations—All 46 metabolites that showed 

strong evidence of a linear term also had a non-linear, quadratic (i.e. U-shaped) association 

with the BWGA z-score, which is represented by the diagonal of the heat map presented 

in (Fig. 4; Table B3). The quadratic associations were always larger than the absolute 

value of the linear terms (Table B3), thus implying that both low and high metabolite 

levels were associated higher BWGA z-score, while moderate levels reflected the negative 

or positive relationships indicated by the linear terms (Table B3, Fig. 2). Assuming a 

strong heredity constraint, such that the interaction term between two metabolites was 

included in the model only if both main associations were significant, we identified some 

evidence of interactions between metabolites within the same super-pathway (i.e. lipids) 

with similar functionalities (i.e. steroids, PE), with strongest interactions between two 

metabolites (C37425 and C62921) that had linear negative associations with BWGA z-score. 

(Fig. 4).

3.4. Metabolite similarity, and enrichment

Metabolite similarity.—We identified sets of metabolites, which had strong similarity 

(dissimilarity score <0.3) within the group while poor similarity (dissimilarity score >0.6) 

between groups. Most of the metabolites with no annotation were similar to metabolites 

belonging to the lipid super-pathway and more specifically, C46294, C46409, C46515 and 

C52867 were similar to C32827, C38168 and C37203, which were annotated as androgenic 

steroids (Fig. 5). While C62695 were similar to the amino acid C62863, annotated as a 

xenobiotic (Fig. 5).

Enrichment analysis.—With regard to BWGA z-score, we identified enrichment for the 

Warburg effect (p-value = 0.15), the citric acid cycle (p-value = 0.17) and androgen and 

estrogen metabolism (p-value 0.18) pathways. Although those results were significant at a 

20% nominal p-value, they were not significant after multiple testing correction (Fig. 6; 

Table B4).

The hypergeometric tests showed an over-representation of androgens (p < 0.001), 

pregnenolone steroids (p = 0.07), diacylglycerol (p = 0.06) and TCA cycle subclasses (p 

= 0.10) (Table B5), thus supporting the central role of steroids and cellular energy support in 

fetal growth.

4. Discussion

This is the first prospective study to assess the relationship between maternal serum 

metabolites measured during pregnancy and BWGA z-score considering all metabolites 
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jointly and allowing for non-linear and non-additive associations. We identified 46 

metabolites that were significantly associated with BWGA z-score and all metabolites 

showed a U-shape relationship with the outcome, such that both low and high metabolite 

levels were associated with higher BWGA z-score. Moderate levels of steroids, a few fatty 

acids and four unannotated metabolites showed a negative association with BWGA z-scores; 

while moderate levels of phospholipids—phosphatidylethanolamines, phosphatidylcholines, 

phospholipids— diacylglycerols, and sphingolipids, showed an overall strong positive 

association with BWGA. Metabolites linked to energy production and carbohydrates 

were also positively associated with BWGA z-scores. Most (85%) of the identified 

metabolites were lipids mainly enriched in the pathways for the Warburg effect, the citric 

(tricarboxylic) acid (TCA) cycle and hormonal androgen and estrogen metabolism. Most 

of the lipophilic metabolites within the same subclassification (i.e. steroids, phospholipids) 

showed synergistic relationships, thus suggesting that metabolites act jointly and potentiate 

their effects on birthweight. A few (five) of the remaining metabolites were not mapped to 

any annotations. Four of the unmapped novel metabolites were similar to some metabolites 

mapped to the androgenic steroids, implying similar functions. Results from the traditional 

MWAS analysis identified only three metabolites significantly associated with the BWGA 

z-score, two of which were also significant in our novel Bayesian factor analysis for 

interaction.

Most of the significant metabolites were annotated as various lipids, supporting a role of 

lipids in fetal growth and their relation to other characteristics of newborn health. Indeed, 

during pregnancy, mothers are the sole provider of lipids to the fetus, and those lipids 

are selectively transported across the placenta at an increasing rate across gestation (Innis, 

2007; LaBarre et al., 2020). Long-chain fatty acids have been shown to have critical roles 

in lipid accumulation, growth, and brain development during the third trimester (Fang et 

al., 2005; Robinson and Martin, 2017; Tam et al., 2016). Metabolites derived from fatty 

acids and/or long chain fatty acids, such as phospholipids and their derivative products 

(diacylglycerols), and sphingolipids showed a positive association with BWGA z-score 

in our findings, supporting previous research that identified higher levels of PC, PE and 

sphingolipids during gestation are critical for typical fetal growth (LaBarre et al., 2020). 

The majority of lipids enriched for long-chain fatty acid residues are confirmed to cross 

placenta and be transported to the fetal circulation (Innis, 2007; LaBarre et al., 2020). It 

has been speculated that placental endothelial lipases cleave fatty acids, thus facilitating 

the transport of phospholipids, which contain long-chain fatty acids, to the fetal circulation, 

and enhancing delivery to the fetus and the developing brain. In addition, phospholipids 

and their derivatives constitute a vast store of potential energy that can fuel energetically 

intensive processes, such as cellular replication (LaBarre et al., 2020). Sphingolipids also 

participate in a wide variety of metabolic, neurological, and intracellular signaling processes, 

including trophoblast cell turnover, thus supporting the positive link between sphingolipids 

and fetal growth (Breslow and Weissman, 2010). We also identified four other fatty acids 

that associated with BWGA z-scores. Specifically, moderate levels of acyl-choline and 

monohydroxy fatty acids (linoleoylcholine, stearoylcholine and 2-hydroxymyristate) were 

negatively linked to BWGA z-score, which is consistent with previous findings showing 
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that linoleoylcholine and stearoylcholine are associated with birth outcomes (Petrick et al., 

2017).

Our findings showed that most of the metabolites linked positively to birthweight are 

potentially involved in the Warburg effect and the TCA cycle, which are pathways 

for producing cellular energy and are associated with immune functions. Specifically, 

the Warburg effect, also referred to as glycolysis shift, is a metabolic mechanism that 

naturally occurs during blastulation and in other periods of rapid cellular proliferation 

(Krisher and Prather, 2012). The Warburg effect is a shift in energy production from 

mitochondrial oxidative phosphorylation (i.e. ATP generation) to aerobic glycolysis, despite 

the availability of oxygen. However, this process is inefficient compared to conventional 

glucose metabolism and TCA cycle pathways, which can generate up to 36 molecules 

of ATP per molecule of glucose in adult tissues (Metrustry et al., 2018). It is thought 

that this counter-intuitive process reflects the need of proliferating cells to attain critical 

biomass requirements, including proteins and lipids, beyond only ATP production from 

glucose. Indeed, macromolecular synthesis is the most pressing cellular need of proliferative 

cells (Krisher and Prather, 2012). The resulting metabolic intermediates are also key 

factors for the biosynthesis of immune proteins and downstream effectors, which are 

critical for orchestrating intrauterine processes, including fetal growth and development 

(Fu et al., 2017; Yockey and Iwasaki, 2018). Notably, it has also been hypothesized that 

the Warburg effect may also occur due to the malfunction of mitochondria (Kim et al., 

2009). Mitochondria, which produce cellular energy in the form of ATP via oxidative 

phosphorylation, are essential for fueling rapid placental and fetal growth (Sferruzzi-Perri 

et al., 2019). It is thus plausible that Warburg-related enrichment of metabolites associated 

with abnormal fetal growth reflects mitochondrial dysfunction in these pregnancies. This 

possibility is further supported by several studies that have linked reduced mitochondria 

copy number and/or increased mitochondrial DNA mutational load with abnormal (small 

and large) birth size for gestational age (Gemma et al., 2006).

Mitochondria are also relevant to the TCA cycle, which takes place in their matrix. Levels 

of TCA intermediates increase as pregnancy progresses, due to an increased need for 

energy production through TCA cycle activity (Lindsay et al., 2015). Fumarate, one of 

our identified metabolites, and other TCA intermediates can act as a signal for processes 

involved in inflammation (Patil et al., 2019). Indeed, succinate, a clinically-relevant 

precursor of fumarate, accumulates in immune cells and has been shown to produce anti-

inflammatory effects via inhibition of aerobic glycolysis (Kornberg, 2020). Additionally, 

limited research has shown that fumarate is cardio-protective (Patil et al., 2019) and that 

dimethyl fumarate, a cell-permeable analog, has immunomodulatory and anti-inflammatory 

properties (Moharregh-Khiabani et al., 2009; Mrowietz et al., 1999). However, the specific 

roles of fumarate and other TCA cycle intermediates during pregnancy requires further 

investigation.

A growing body of literature supports the idea that maternal pro- and anti-inflammatory 

processes during gestation are a potential pathway linking maternal environmental exposures 

with pregnancy progression and fetal development. Healthy pregnancies indeed show 

immunological shifts across the course of gestation, culminating in a proinflammatory 
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period prior to parturition (Kuzawa et al., 2013; McDade et al., 2016). Other research 

supports that reduced maternal immune functions can lead to impaired placental invasion 

and restricted fetal growth resulting in small birth size (Denney et al., 2011; Moffett et 

al., 2015). Notably, maternal anti-inflammatory and immune modulatory properties improve 

metabolism of lipids and glucose during pregnancy, leading to embryo growth (Li et al., 

2015).

Steroids, especially estrogen and progesterone, also contribute to both maternal health and 

fetal development throughout pregnancy (Solano and Arck, 2019). Among the identified 

lipid metabolites, 12 (26%) were steroids and their moderate levels were negatively linked to 

fetal growth, confirming previous findings showing that 16a-hydroxyD-HEAS, androsterone 

sulfate and 17-hydroxyprogesterone measured in newborn dry blood spots are negatively 

associated with birthweight (Petrick et al., 2017), while high and low levels of the identified 

steroids were positively associated with fetal growth supporting prior evidence on urinary 

metabolites measured in the late stages of pregnancy (Maitre et al., 2016; Maitre et al., 

2014). Levels of pregnanediol, a steoroid congiugate, measured in maternal urine during 

pregnancy have also been linked to adverse birth outcomes, such as spontaneous preterm 

birth and restricted fetal growth (Maitre et al., 2014).

Steroids identified in our analysis were enriched for androgen and estrogen metabolism 

pathways. Androgen and estrogen concentrations increase in maternal circulation across 

the course of pregnancy (Licciardi et al., 2013). Hormones are secreted not only from 

the maternal adrenal gland, ovaries and myometrium but also from the placenta, which 

is an additional site for de novo synthesis of androstenedione and testosterone (Makieva 

et al., 2014). The advantage of increasing hormone levels is relevant for the maintenance 

of pregnancy; however an excess of hormones can be detrimental for fetal growth. For 

example, maternal testosterone levels cross the placenta have an effect on both placenta 

and the fetus. Indeed, maternal testosterone levels can affect fetal growth by increasing 

fetal testosterone levels and changing both maternal and placenta metabolism (Svensson 

et al., 2019). Also maternal estrogens and the estrogen (aromatase) complex within the 

placenta facilitate the increase of blood flow to the gravid uterus and placenta (Evans, 2007; 

Makieva et al., 2014), thus contributing to a normal fetal growth (Escobar-Morreale et al., 

2012). However, impaired placental aromatase activity leads to an increase of circulation of 

maternal testosterone levels which can results in abnormal fetal growth (Chen et al., 2017).

There are several notable strengths of this study, including the implementation of novel 

statistical methodology to assess and annotate an untargeted panel of metabolites in relation 

to birthweight. This approach improves traditional MWAS methodology as it can be used to 

jointly identify linear, non-linear and interactive relationships between metabolites and their 

relationship with an outcome. This is an improvement as individual linear analyses captured 

few metabolite-birthweight relationships compared to the approach using Bayesian factor 

analysis for interactions framework. Further, the results from linear MWAS analyses may be 

affected by spurious correlations among metabolites belonging to the same class. We also 

leveraged an ethnically diverse population, thus making our results more generalizable. In 

addition, our study is unique in that we measured metabolomic profiles in maternal serum, 

which is enriched for several metabolites relevant to pregnancy and fetal development, such 
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as certain hormones and lipids. Collectively, these findings support the overall hypothesis 

that metabolites belonging to lipid super-pathways play important roles for fetal growth and 

that long-chain fatty acid and steroids, which can cross the placenta and can influence infant 

outcomes.

We also note some limitations. First, we cannot rule out the effect of unmeasured 

confounders. However, we accounted for the diversity of the population with race/ethnicity, 

socioeconomic status, body mass index, and maternal age. While we have also considered 

week of serum collection as a precision variable to account for the timing of collection, 

a residual effect could remain and we acknowledge the variability in timing of serum 

collection across the course of pregnancy as a limitation of this design. In addition, our 

novel Bayesian approach captured only pairwise interactions between metabolites and more 

complex feature combinations, such as three-way interactions, cannot be ruled out by this 

approach. Further larger studies should explore the sex-specific and ethic-specific influence 

of the maternal metabolomics on the developing fetus. In addition, future targeted research 

investigating how these metabolites change across the pregnancy and life course, relate 

to external environmental exposures, and correlate to child growth is needed to more 

comprehensively understand the underlying biological mechanisms at play.

5. Conclusions

Our findings provide evidence that the maternal metabolome during pregnancy are 

associated linearly, non-linearly and synergistically to inter-individual variation of newborn 

fetal growth. Most of the identified metabolites were lipids enriched for pathways related 

to energy production, immune function, or androgen and estrogen metabolism, which are 

notably central to key processes involved in pregnancy and parturition.
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Fig. 1. Linear association between individual metabolites and birthweight-for-gestational age 
Fenton z-score.
A) Volcano plot showing the estimated coefficient of the metabolite-z-score association 

(x-axis) and its significance (y-axis). Multiple testing correction was performed using a 

5% False Discovery Rate (FDR) threshold. All analyses were adjusted for maternal age, 

ethnicity, education level, pre-pregnancy body mass index, and week of serum collection. 

B) Quantile-Quantile (QQ) plot of the expected p-value under the null hypothesis of no 

metabolite-z-score association (x-axis) and observed p-value (y-axis). The lambda factor 

identified the departure from the diagonal line at the median level of the expected p-value.
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Fig. 2. 
Linear association between individual maternal serum metabolites and birthweight-for-

gestational age Fenton z-score. Super-pathways and sub-pathways were identified using 

the annotation mapping file. Significant associations between metabolites and z-scores 

were identified at a 5% significance threshold, while accounting for all metabolites and 

their correlation. All analyses were adjusted for maternal age, ethnicity, education level, 

pre-pregnancy body mass index, and week of serum collection.
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Fig. 3. Comparison between the metabolite-wide association study (A) and Bayesian factor 
analysis for interaction (B).
Each plot shows the association between individual prenatal maternal serum metabolites 

and sex-specific birthweight for gestational age z-score at a 5% significance threshold. 

All analyses were adjusted for maternal age, ethnicity, education level and week of serum 

collection.
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Fig. 4. 
Nonlinear and synergistic relationships between individual metabolites and the birthweight 

Fenton z-score. Squares on left-to-right diagonal identify the coefficients of the quadratic 

term; squares outside the left-to-right diagonal identify the coefficients of the interaction 

between the corresponding metabolites. Individual and multiplicative associations between 

metabolites and birthweight Fenton z-score were at 5% significance threshold. All analyses 

were adjusted for maternal age, ethnicity, education levels, pre-pregnancy body mass index, 

and week of serum collection.
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Fig. 5. 
A) Dissimilarity matrix, identifying the pairwise dissimilarity between metabolites identified 

by the Bayesian factor analysis for interaction. The darker is the color of the dissimilarity 

score, the more similar are the metabolites. This matrix allows to cluster metabolites based 

on their similarities. B) Super-pathways and lipid sub-pathways of the identified metabolites, 

ordered as in A). Similar metabolites belong to the same sub-pathway.
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Fig. 6. 
Enrichment analysis via MetabolAnalyst. A) Metabolite Sets Enrichment B) Metabolite Set 

Enrichment Network.
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