
WJGO https://www.wjgnet.com 1115 June 15, 2022 Volume 14 Issue 6

World Journal of 

Gastrointestinal 
OncologyW J G O

Submit a Manuscript: https://www.f6publishing.com World J Gastrointest Oncol 2022 June 15; 14(6): 1115-1123

DOI: 10.4251/wjgo.v14.i6.1115 ISSN 1948-5204 (online)

MINIREVIEWS

Can dietary flavonoids be useful in the personalized treatment of 
colorectal cancer?

Cristina Pereira-Wilson

Specialty type: Oncology

Provenance and peer review: 
Invited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): 0 
Grade C (Good): C 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Zheng YW, Japan

Received: February 23, 2021 
Peer-review started: February 23, 
2021 
First decision: May 3, 2021 
Revised: May 23, 2021 
Accepted: May 7, 2022 
Article in press: May 7, 2022 
Published online: June 15, 2022

Cristina Pereira-Wilson, Department of Biology, Centre of Biological Engineering, LABBELS 
Associate Laboratory, University of Minho, Braga 4710-057, Portugal

Corresponding author: Cristina Pereira-Wilson, PhD, Assistant Professor, Department of 
Biology, Centre of Biological Engineering, LABBELS Associate Laboratory, University of 
Minho, Campus de Gualtar, Braga 4710-057, Portugal. cpereira@bio.uminho.pt

Abstract
Activating mutations in the oncogenes KRAS, BRAF and PI3K define molecular 
colorectal cancer (CRC) subtypes because they play key roles in promoting CRC 
development and in determining the efficacy of chemotherapeutic agents such as 
5-fluorouracil and anti-epidermal growth factor receptor monoclonal antibodies. 
Survival of patients with cancers displaying these molecular profiles is low. Given 
the limited efficacy of therapeutic strategies for CRC presenting mutational 
activations in mitogen-activated protein kinase and/or PI3K pathways, develop-
ing combination therapies with natural flavonoids or other phytochemicals with 
demonstrated effects on these pathways (and little or no toxic effects) may 
constitute a valuable path forward. Much has been published on the anticancer 
effects of dietary phytochemicals. However, even an exhaustive characterization 
of potential beneficial effects produced by in vitro studies cannot be extrapolated 
to effects in humans. So far, the available data constitute a good starting point. 
Published results show quercetin and curcumin as possibly the best candidates to 
be further explored in the context of adjuvant CRC therapy either as part of 
dietary prescriptions or as purified compounds in combination regimens with the 
drugs currently used in CRC treatment. Clinical trial data is still largely missing 
and is urgently needed to verify relevant effects and for the development of more 
personalized treatment approaches.
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Core Tip: Given the limited efficacy of therapeutic strategies for colorectal cancer presenting mutational 
activations in mitogen-activated protein kinase and/or PI3K pathways, developing combination therapies 
with natural flavonoids with demonstrated effects on these pathways may constitute a valuable path 
forward. Published results show quercetin and curcumin as possibly the best candidates to be further 
explored in the context of adjuvant colorectal cancer therapy either as part of dietary prescriptions or as 
purified compounds in combination treatment. Clinical trial data is still largely missing and is urgently 
needed to verify relevant effects and for the development of more personalized treatment approaches.
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INTRODUCTION
Colorectal cancer (CRC) is the fourth most common cause of cancer related death worldwide and 
accounts for 9% and 10% of all new cancer diagnoses per year in women and men, respectively[1].

Wide variation in geographical distribution of CRC exists with incidence rates in Australia and New 
Zealand being 10-fold higher than in Western Africa[1]. The highest mortality rates are, however, 
registered in Central and Eastern Europe[1]. Both CRC incidence and mortality are associated with 
higher income countries with westernized lifestyles, and CRC rates are expected to increase by about 
60% over the next 15 years[1].

Lifestyle and dietary choices play an important role in CRC development. Smoking and excessive 
alcohol consumption also increase CRC risk[1]. There is strong evidence that being physically inactive, 
overweight or obese and consuming red or processed meat increases the risk of developing CRC. There 
is also moderate evidence that low consumption of non-starchy vegetables and fruits might increase the 
risk of CRC. On the other hand, consuming foods containing dietary fiber decreases CRC risk[1].

The relevance of lifestyle and dietary choices to CRC risk are reflected in the fact that only 5%-10% of 
CRC cases have a known hereditary cause. These hereditary types of CRC are classified as Familial 
Adenomatous Polyposis and Hereditary Non-Polyposis Colorectal Cancer (or Lynch syndrome) and are 
attributed to germline mutation in the APC gene or in DNA repair genes, respectively. A further 20% of 
cases have a family history of CRC (but no known germline mutations), and the remaining 70% of CRC 
cases are sporadic (caused by gene defects that are not germline mutations)[2,3]. In addition to dietary 
and lifestyle factors, patients with irritable bowel disease syndrome are at significantly higher risk of 
developing CRC[3].

CRC progression takes place over many years through a series of stages that go from lesions in single 
cells of the epithelium to benign tumors to malignant invasive carcinomas. The evolution from a 
precursor lesion to CRC is estimated to take 10-15 years.

Accumulation of mutations due to loss of genomic stability is an important driver of CRC 
development. Chromosomal instability or a mutator phenotype involving DNA repair defects or 
aberrant DNA methylation have been identified as major mechanisms in CRC development[2,3].

Chromosomal instability may cause the loss of a wild-type copy or inactivating mutations in tumor 
suppressor genes such as APC or TP53[2,3]. APC mutations are the most common early mutations in 
CRC, present in up to 85% of cases. APC germline mutations (cause of Familial Adenomatous Polyposis) 
or APC somatic mutations or deletions are found in most cases of CRC. TP53 mutations are the second 
most common in CRC, present in up to 55% of cases, and inactivate the p53 pathway, which 
compromises cell-cycle arrest and cell death pathways and has strong implications on decreased 
responsiveness to therapy[2,3]. Other relevant and frequently mutated genes in CRC are the oncogenes 
KRAS and BRAF, which activate proliferative and antiapoptotic pathways[2,3].

DIET AND CRC RISK
Factors that prevent DNA lesions, induce DNA repair at the cancer initiation stages or modulate the rate 
of tumor growth and invasiveness have potential in cancer preventive strategies. Many food 
constituents have been described that exert cancer preventing effects due to their role as antioxidants or 
to their effects on the activity of genotoxic metabolizing enzymes. Multiple reports have been published 
on the anticancer potential of plant foods and individual phytochemicals. Molecular targets for dietary 
constituents that may be responsible for their cancer chemopreventive effects have been identified. This 
has been the subject of intense research and major results compiled in several recent reviews[4-7]. Green 
tea, cruciferous vegetables, red grapes, turmeric, garlic, soybeans, apples and citrus fruits are examples 
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of plant foods with established anticancer properties[4].
In spite of the recognized health benefits of the intake of dietary fruits and vegetables, the World 

Cancer Research Fund/American Institute of Cancer Research report[1] does not classify the evidence 
gathered from human studies as being convincingly strong with regard to reduced CRC risk. It is 
possible that the explanation for this is that effects vary according to CRC molecular type and that this 
precludes generalized conclusions.

In a large pooled analysis by Hidaka et al[8] of associations by CRC molecular type, the authors found 
that higher fruit intake was associated with lower risk of BRAF mutated CRC and the traditional 
adenoma-CRC pathway[8]. However, most other epidemiologic studies investigating the association of 
different molecular CRC subtypes and intake of fruits, vegetables and fiber ingestion have been 
inconclusive.

With regard to the individual food chemical constituents responsible for the beneficial effects, much 
attention has been given to polyphenols, and in particular to flavonoids, due in part to their strong 
antioxidant activity, repeatedly demonstrated in in vitro and animal studies.

Fruits and vegetables are rich sources of flavonoids and other polyphenols (Table 1). These 
compounds, flavonoids in particular, are potent antioxidants, have anti-inflammatory properties and 
have been extensively studied with regard to their potential as anticancer dietary constituents[4,5,7].

The effects of human dietary intake of flavonoids on decreased risk of CRC have been the subject of 
much fewer reports. Procyanidin (oligomeric forms of catechin and epicatechin) and isoflavone 
ingestion was found by He and Sun[9] in population studies to decreased CRC risk, while total 
flavonoid intake was not found to associate with decreases in CRC risk[9].

In another report, Chang et al[6] found that high intake of flavonols, flavones and anthocyanidins 
may decrease CRC risk. However, Djuric et al[10] corroborated that total flavonoid intake did not 
associate with CRC risk nor did total flavanones or flavan-3-ols. High variability between the studies in 
this meta-analysis precluded any further conclusions[6].

Previously, Djuric et al[10] found that quercetin (Q) decreased risk of proximal CRC but lost its effect 
if tea consumption was high. Importantly, the authors found that increased intake of Q was associated 
with increased risk of distal colon cancer when total fruit intake was low[10]. On the other hand, APC 
mutations were found to be associated with alcohol and red and processed meat consumption[11].

CRC TREATMENT
Endoscopic or surgical lesion removal is the best curative strategy for CRC[3]. In order to increase 
treatment efficacy, adjuvant fluoropyrimidine based [5-fluorouracil (5-FU) or capecitabine] 
chemotherapy combined with oxaliplatin and/or irinotecan is also used[3].

Another recent group of drugs known as “biologics” are increasingly used in the treatment of CRC. 
These are monoclonal antibodies such as bevacizumab, an anti- vascular endothelial growth factor 
(VEGF) antibody that targets angiogenesis, or cetuximab and panitumumab, anti-epidermal growth 
factor receptor (EGFR) antibodies that target proliferative signals mediated by EGFR[3,12] (Figure 1).

FOLFOX (leucovorin, 5-FU and oxaliplatin) or FOLFIRI (leucovorin, 5-FU and irinotecan), frequently 
combined with EGFR or VEGF receptor inhibitors are the most commonly utilized chemotherapeutic 
regimes in CRC treatment[12].

Under normal conditions, upon ligand binding to EGFR or the VEGF receptor, both the mitogen-
activated protein kinase (MAPK) (RAS/RAF/MEK/ERK) and the PI3K/AKT/mTOR phosphorylation 
cascades will be activated, leading to cell proliferation and survival[3,13]. Although EGFR is overex-
pressed in 60%-80% of CRC tumors (which makes it a good anticancer target) favoring the proliferative 
and antiapoptotic activity of the MAPK and PI3K pathways[14], efficacy of anti-EGFR drugs (and to a 
smaller extent also anti-VEGF receptor) decreases dramatically in the presence of KRAS and particularly 
BRAF mutations[3,12,13] due to their overriding downstream effects on the signaling pathways 
(Figure 1).

Mutations in the oncogene KRAS occur in 37% of CRCs and constitutively activate proliferative and 
antiapoptotic pathways such as the MAPK and the PI3K pathway. Mutations in the oncogene BRAF 
occur in 13% of CRCs activate the MAPK pathway downstream of KRAS but not the PI3K pathway[2,
15]. KRAS mutations do not co-occur with BRAF mutations in CRC[13,16]. Activating mutations of PI3K 
are present in 15%-20% of CRC and loss of PTEN, an inhibitor of the PI3K pathway, also contribute to 
increased activity of the PI3K/AKT pathway[3,13].

Therefore, mutations in the key players KRAS, BRAF and PI3K promote CRC development, define 
molecular subtypes and are relevant for the efficacy of chemotherapeutic agents such as anti-EGFR 
monoclonal antibodies[2,3,12,14,15].

In addition, targeted anti-EGFR therapy with cetuximab or panitumumab often leads to secondary 
resistance through selection of resistant cells even in patients wildtype for EGFR, KRAS and BRAF[13,
14]. More recently, regorafinib has shown to be of use as third-line treatment for KRAS and BRAF 
mutated tumors[15,17] (Figure 1).
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Table 1 Fruits and vegetables are rich sources of flavonoids and other polyphenols

Class of polyphenol Representative compounds Food sources

Flavonol1 (+)-Catechin; (-)-Epicatechin Epigallocatechin gallate Cocoa, green tea

Flavone1 Luteolin, Apigenin, Chrysin Parsley, red peppers

Flavonol1 Quercetin, Rutin, Kaempferol Onions, broccoli, apples

Flavanone1 Naringin, Naringenin, Hesperidin Citrus fruits

Isoflavones1 Genistein, Daidzein Soybean

Anthocyanidin1 Cyanidin, Delphinidin, Pelargonidin Blueberries, raspberries

Curcuminoid Curcumin Turmeric

Stilbene Resveratrol Red grapes

1Subclasses of flavonoids.

Figure 1 Signaling pathways and molecular targets of anti-colorectal cancer chemotherapeutic drugs and of dietary phytochemical 
constituents. Generated with BioRender.com. EGFR: Epidermal growth factor receptor; EGCG: Epigallocatechin-3-gallate; VEGFR: Vascular endothelial growth 
factor receptor.

Genetic profiling to determine the presence of EGFR, KRAS or BRAF mutation is, therefore, important 
to predict treatment outcome, although other unknown factors play important roles in a patient’s 
response to therapy[14]. Targeted chemotherapy tailored to improve patient response with minimal side 
effects remains a goal, but much work remains in order to achieve it since the 5-year survival rate of 
CRC patients is still less than 15% for those diagnosed in advanced stages of the disease with metastatic 
CRC[14].

Therapeutic strategies to treat tumors with mutations in these key genes remain limited, and 
improving treatment efficacy for these patients constitutes a pressing clinical need. Despite this, dietary 
and other plant derived phytochemicals remain an untapped resource despite the large body of 
evidence of their acting on the relevant molecular targets.

CHEMOTHERAPEUTIC POTENTIAL OF DIETARY PHYTOCHEMICALS
Several compounds have been shown to target the MAPK and/or the PI3K pathways. Epigallocatechin-
3-gallate is a green tea polyphenol also present in chocolate. Epigallocatechin-3-gallate has been shown 
to inhibit EGFR signaling and ERK1 (MAPK pathway) and PI3K/AKT activation, with effects on cell 
proliferation and survival[14,18].
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Curcumin, another natural polyphenol present in turmeric, has also been shown to decrease EGFR 
gene expression thereby decreasing ERK-mediated signaling and gene expression[14]. In addition, 
curcumin suppressed the PI3K/Akt pathway in vitro with induction of apoptosis[19,20] and decreased 
NF-kB activation by traditional chemotherapeutic drugs thereby contributing to overcoming treatment 
resistance[21]. Inhibitory effects on PI3K/AKT and NF-kB seem to be involved in sensitization to 
treatments with 5-FU and capecitabine[22,23].

In other studies, curcumin was shown to produce a similar effect to that of the MEK inhibitor U0126 
and to synergistically enhance the efficacy of the multi-kinase inhibitor regorafinib in HCT116 cells[16,
24]. New delivery formulations that address curcumin’s low bioavailability look promising and will 
increase the compound’s clinical use[21].

Q, is a flavonoid particularly abundant in onions, apples and broccoli. The health benefits of Q have 
been widely reported and include antioxidant, anti-inflammatory and cancer chemopreventive activity. 
Recent reviews of Q cancer chemopreventive mechanisms have been published by Kashyap et al[25] and 
Rather and Bhagat[26]. These include scavenging of reactive oxygen species and induction of 
antioxidant defenses, modulation of signaling pathways resulting in decreased cell proliferation and 
increased apoptotic cell death, cytochrome P450 enzyme activity modulation, induction of Nrf2-
mediated phase II enzymes and inhibitory effects on inflammatory markers such as iNOS, COX2, IL-6 
and TNF-alpha among others. Q has also been shown to decrease signaling through the MAPK and 
PI3K pathways as well as improve the response to chemotherapeutic drugs[25-29].

In studies with human CRC-derived cell lines harboring either KRAS or BRAF mutations, it is 
possible to test the impact of individual compounds (or complex plant extracts) on the activity of 
pathways caused by that particular mutation thereby identifying the subset of patients that would 
benefit the most from strategies involving that particular flavonoid.

Q and luteolin (L) are two of the best studied flavonoids and two of the most abundant in plant foods. 
They have demonstrated anti-CRC activity in numerous in vitro and in vivo studies[28].

In a study using the human CRC cells lines HCT15, (harboring a KRAS mutation and wild-type 
BRAF) and CO115 (harboring a BRAF mutation and wild-type KRAS) the authors showed that both Q 
and L decreased MAPK activity in HCT15 but not in CO115 cells[27]. It seems, therefore, that the BRAF 
mutation present in CO115 overrides the inhibitory effects of Q and L on MAPK pathway activity. In 
addition, Q and L decreased KRAS total protein expression but had no effect on total BRAF expression 
levels. This is an indication that Q and L could benefit MAPK dependent therapeutic effects in KRAS-
mutated but not be as effective in BRAF-mutated tumors[27]. Q and several of its analogs are also 
known inhibitors of PI3K activity[25-29].

Crosstalk between MAPK and PI3K/AKT suggests that levels of PI3K pathway activity may also be 
affected in KRAS-mutated cells and contribute to the overall effects on cell proliferation and apoptotic 
cell death. However, PI3K activity may also be regulated independently of its upstream regulator 
KRAS.

Interesting in the Xavier et al[27] study was the fact that the specific MEK inhibitor PD-98059 (MEK a 
downstream link of both KRAS and BRAF in the MAPK pathway) significantly reduced phosphor-ERK 
levels but did not significantly decrease cell proliferation or induce apoptotic cell death[27]. Also 
wortmanin, a reference PI3K inhibitor, decreased phosphor-AKT levels, an indication of pathway 
inhibition, without producing significant effects on proliferation or apoptotic cell death. Of relevance 
here, in the comparison between the effects of the reference compounds PD-98059 and wortmanin and 
Q or L is the fact that the flavonoids had significant effects on cell proliferation and cell death, a clear 
indication that the multitarget nature of the flavonoids’ actions was beneficial and not detrimental to the 
overall effect[27].

In another study by Yang et al[30], Q induced apoptosis in KRAS-mutated cells in a c-Jun N-terminal 
kinase activation-dependent way. Both the G13D and G12V mutations of KRAS rendered CRC cells 
more sensitive to Q than KRAS wild-type cells[30].

COMBINATION OF FLAVONOIDS PLUS CHEMOTHERAPEUTIC AGENTS
Studies where flavonoids are tested in combination with chemotherapeutical drugs also demonstrate 
possible enhancement of therapeutic effects and consequent benefits of co-administration regimens. The 
majority of studies involving the role of phytochemicals in combination with chemotherapeutic drugs, 
use 5-FU and address the involvement of p53 in the response, due to the key role of p53 in apoptosis 
induction and treatment sensitivity[29,31-39]. Tumor progression and low treatment efficacy is strongly 
dependent on successful evasion of cell death due to mutations in TP53[31], present in 35%-55% of CRC 
cases.

In addition to p53 status, CRC displaying DNA mismatch repair defects and microsatellite instability 
show lower sensitivity to 5-FU and poorer treatment outcome. In this scenario of increased treatment 
resistance, Q was tested, and the dependence on p53 status for the cell’s response to 5-FU was 
determined[29]. Q significantly increased apoptotic cell death in response to 5-FU in p53 wild-type 
CO115 and HCT116 comparatively to effects on HCT15 p53-mutated cells. P53 silencing in CO115 
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completely abrogated the apoptotic effects of Q + 5-FU. This p53 dependence was further corroborated 
in the isogenic HCT116 p53-/- cells, where both the effects of the drug alone and of the combination Q + 
5-FU were lost. This constituted a clear indication that wild-type p53 was required for Q enhancement of 
5-FU apoptotic effects and suggested that tumors displaying wild-type p53 are more likely to benefit 
from combination treatment of 5-FU with Q than tumors harboring inactivating mutations of p53[29].

Resveratrol, on the other hand, increased 5-FU-induced apoptosis in a p53-independent manner in 
both HCT116 wild-type p53 and p53-deficient cells. Resveratrol also decreased MAPK and PI3K/AKT 
signaling and upregulated miR-34a expression, in a new mechanism of inhibition of HCT116 prolif-
eration induced by the combination of resveratrol + 5-FU[40]. Upregulated miR-34a expression was also 
involved in chemosensitization of HCT116 and HT-29 to oxaliplatin by resveratrol[41].

Combination exposures to FOLFOX and curcumin showed reduction of tumor explant cell survival 
due to enhanced antiproliferative effects[42,43]. Information on the anti-CRC effects of curcumin 
including clinical trials involving curcumin are the subject of a recent publication[21]. Molecular targets 
for curcumin include MAPK and PI3K pathways and decreases in chemotherapy induction of NF-kB 
and antiapoptotic gene expression.

Yue et al[44] showed that turmeric extract in combination with bevacizumab produced comparable 
effects to bevacizumab plus FOLFOX with the advantage that it increased survival of tumor-bearing 
mice. In another study[45], the combination of curcumin with the multi-kinase inhibitor regorafinib 
produced an increase in cell death in KRAS-mutated CRC cells and not in wild-type KRAS CRC cells.

With regard to clinical trials[21], most involve curcumin and address the pharmacokinetic profile and 
toxicity of curcumin formulations. Some trials test curcumin in combination with drugs such as 5-FU or 
irinotecan and will provide useful information, even if enrollment is low and patients are most likely 
not stratified by tumor molecular subtype.

Much remains to be done with regard to the effects of phytochemicals on patients, whether isolated 
or in combination with chemotherapeutical drugs.

CONCLUSION
Although a diet rich in fruits and vegetables is generally beneficial with regard to CRC, variations in 
response among individuals to similar dietary choices strongly suggest that there may be interactions of 
food constituents with particular molecular targets that will benefit patients differently according to 
their tumor’s molecular signature.

The capacity to inhibit proliferation and induce apoptosis through effects on molecular targets of the 
MAPK and/or the PI3K/AKT pathways makes flavonoids potentially strong allies if used as adjuvants 
in combination treatment improving therapeutic efficacy and patient survival. However, in order to take 
full advantage of the anticancer potential of these natural compounds, a detailed and systematic charac-
terization of the compound’s mechanisms of action is required. Although much has been published on 
the anticancer effects of dietary phytochemicals, such an exhaustive characterization of potential 
beneficial and adverse effects in the setting of cancer treatment in humans is still lacking. Results from in 
vitro studies cannot be extrapolated to effects in humans. Also, care should be taken that some 
flavonoids’ and other phytochemicals’ potential to prevent DNA damage or induce repair of the lesions 
produced by the therapeutical agent do not hinder treatment efficacy.

Clinical trials are needed to verify relevant effects and those remain insufficient in number and in 
patient enrollment. Also, patients are generally not selected on the basis of their tumor molecular 
profiles, which would be a requirement for a more personalized treatment approach.

Moreover, efforts should be concerted towards establishing nutritional guidelines that prescribe the 
ingestion of the right plant food sources or of individual flavonoids as part of nutraceutical formulations 
in the several phases of CRC progression and treatment. Much work remains to be done, not least the 
introduction of standardization and regulatory systems as well as extensive testing through clinical 
trials of possible toxicity of the new formulations.

Reduced bioavailability often mean that polyphenols have limited efficacy in in vivo studies. 
However, these issues can today be addressed by nanoencapsulation, which may increase bioavail-
ability and increase circulating concentrations or enable delivery into the colon and cause direct 
exposure of colonocytes to the active compounds limiting possible systemic side effects.
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