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ABSTRACT: Perylene-based organogels are well-known for their applications as sensors and optoelectronic materials. Among
them, core-substituted perylene diimide-based organogels are rarely explored. Herein, the hierarchical self-assembly mechanism of a
newly synthesized, amide-linked core-substituted perylene diimide derivative, which formed organogels in organic solvents like
toluene and methyl cyclohexane (MCH), is discussed. These organogels are composed of one-dimensional molecular aggregates like
nanofibers and nanotubes. Organogels composed of nanofibers are very frequent. On the contrary, for the first time, we have
encountered a perylene diimide-based organogel consisting of self-assembled nanotubes. The molecular interactions, molecular
packing, and rheological properties of this organogel are also discussed.

■ INTRODUCTION

In the past few years, low-molecular-weight supramolecular
organogels1−7 have been proven to be useful materials in the
field of biotechnology and the materials world. Because of their
extraordinary supramolecular architectures, they have the
potential to act as sensors and light-harvesting materials.8

They are also sensible materials for the fabrication of optical
devices.9 These supramolecular architectures are constructed
by hierarchical self-assembly, where non-covalent interactions
like hydrogen bonding and π−π interactions play a vital role to
drive the molecules toward aggregation.10,11

Perylene tetracarboxylic diimides (PDI) are found to be
excellent building blocks for constructing supramolecular
architectures because of their extended π-conjugation.10,12−16

PDI-based organogels are promising materials for fabricating
electronic and optical devices.17−23

Core-substituted PDI-based organogels are rarely reported
in the literature. Wurthner and his co-workers have reported a
fluorescent organogel of PDI containing a phenoxy group at its
core positions.24 Yagai and co-workers have prepared stimuli-
responsive soft materials of PDI-functionalized flexible bisurea
in several chlorinated solvents.25 It is well-known that these
organogels consist of fiber structures, which are necessary for
the gelation. However, the PDI-based organogels composed of
nanotubes have not been reported so far.
Here, we disclose organogels composed of both nanotubes

and nanofibers from a new core-substituted PDI-1 (Scheme

1). A new core-substituted PDI was synthesized, and its self-
assembly studied by spectroscopic methods. The gelation
ability of PDI-1 was tested and was found to form gels in
toluene and methyl cyclohexane (MCH). These gels were
composed of nanotubes16,26,27 and nanofibers, respectively,
and were analyzed by electron microscopy. These structures
were studied using the powder X-ray diffraction (PXRD)
technique, and infrared (IR) spectroscopy. It was found that
the involvement of hydrogen-bonding directed π−π interaction
of perylene cores in intermolecular hierarchical self-assembly
leads to gelation in different organic solvents.

■ RESULTS AND DISCUSSION

Molecular Design and Synthesis. PDI-1 containing a
long alkyl chain through an amide linkage at the core positions
was synthesized in good yields according to the methods
discussed in Scheme 1. The commercially available perylene
tetracarboxylic dianhydride (PTCDA) was used as the starting
material for the synthesis of 1,7-dibromo perylene dianhydride
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(DiBrPDA), followed by conversion to diimides using
butylamine (DiBrPDI).28−30 Nucleophilic substitution of
bromine in 1,7-dibromo perylene diimide (DiBrPDI) by the
sulfur of cysteamine at the core positions led to the formation
of the new intermediate (cys-PDI-cys). This intermediate was

then condensed with palmitic acid affording the PDI-1 in 69%

yield. The identity of cys-PDI-cys and PDI-1 was confirmed by
1H NMR, high-resolution mass spectrometry (HR-MS), and

MALDI-TOF mass spectrometry.

Scheme 1. Synthesis of PDI-1

aBr2, H2SO4, 24 h, 100 °C bn-ButNH2, DMF, 24 h, r.t cSH(CH2)2NH2, CTAB, K2CO3, THF, 24 h, r.t, N2atm
dC15H31COOH, SOCl2, DMF,

Et3N, CHCl3, 24 h

Figure 1. (a) Absorption and (b) fluorescence spectra of PDI-1 in CHCl3 and hexane (5 μM). (c) Absorption spectra of PDI-1 (5 μM) in
increasing volume ratio of CHCl3/hexane (inset: absorption intensity at λ max = 553 vs volume of hexane in chloroform solution).

Table 1. Absorption and Fluorescence Data for PDI-1 in Various Solvents

s_no. solvents concentration λmax (nm) shoulder peak λem (nm) remark

1 chloroform (CHCl3) 5 μM 553 433 640 disaggregated
2 hexane 5 μM 533 432 619 aggregated
3 methyl cyclohexane (MCH) 5 μM 536 433 613 aggregated
4 toluene 5 μM 550 436 631 aggregated
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Self-Assembly Studies. The UV−vis spectroscopic
studies of PDI-1 were performed in various polar and
nonpolar organic solvents (Figure S3). PDI-1 was found to
be readily soluble in CHCl3 and showed a pronounced
absorption peak at λmax = 553 nm, with a shoulder around 433
nm corresponding to 0−0 and 0−1 vibronic transitions,
respectively (Figure 1a).9,31,32 The corresponding fluorescence
spectrum showed a peak at λem = 640 nm (Figure 1b).31 These
significant peak positions are the indication of the
disaggregated form of PDI-1 in CHCl3 solution.32 PDI-1 is
partially soluble in nonpolar solvents like toluene, MCH, and
hexane, indicating that it may tend to aggregate in these
solvents. As summarized in Table 1, PDI-1 formed H-type
aggregates in hexane, toluene, and MCH as indicated by the
blue-shift of λmax and λem by a few nanometers from their
disaggregated form in CHCl3. The formation of these H-type
aggregates was also evidenced from the drop in the
fluorescence intensity compared with that of the CHCl3
solution (Figure S4).
In hexane, the absorption spectrum of PDI-1 showed major

changes compared with their disaggregated form in CHCl3.
Both λmax and λem showed a strong blue-shift of 20 nm with a
maximum drop in absorption intensity and quenching in
fluorescence intensity (Figure 1).31 In order to study the effect
of added hexane, we recorded the absorption spectra of 5 μM
solutions of PDI-1 in 100% CHCl3 and gradually increased the
hexane content. As shown in Figure 1c (inset), the absorbance
at 553 nm shows a decreasing trend with an increase in hexane
content and a gradual blue-shift from 553 to 533 nm. Both
these observations indicated the formation of H-type
aggregates of PDI-1 in hexane solution.33

Further information regarding the type of aggregation was
obtained from electron microscopy studies. It was found that
vesicles were formed by these H-aggregates with an average
diameter of 962 ± 644 nm (Figure 2 and Figure S5). A d-

spacing value of 3.11 Å in the PXRD analysis indicated the
distorted π−π stacking nature of perylene cores of PDI-1 in
hexane solution, leading to the formation of these vesicles
(Figure S6).34,35 The distortion in π−π stacking was caused by
the long alkyl chain substituents present at the core positions
of PDI-1.36 In addition to the distorted π−π interaction, IR
analysis proved that the hydrogen bonding type interaction was
absent during the aggregation process as vibrational bands of
N−H and amide-linked CO did not shift significantly in
hexane compared to the disaggregated form of PDI-1 in
CHCl3 solution (Figure S7).

With an increase in the concentration of PDI-1 in the
hexane solution from 5 to 100 μM, significant changes in both
absorption and fluorescence spectra were observed. A
distinguishable shoulder peak emerged in the longer wave-
length region of the absorption spectrum and fluorescence
intensity decreased gradually as shown with arrows in Figure
S8. This concentration-dependent self-assembly study of PDI-
1 in hexane, showed that the self-aggregation process of PDI-1
is intermolecular, and the extent of the H-type aggregation
increased with increasing the concentration.37

Gelation Studies. Further, the ability of gel formation by
PDI-1 in hexane was examined by increasing the concentration
of PDI-1. To our dismay, the compound did not form a gel
even when the concentration was increased to 10 mM. The
reason that this may be due to the distortion in π−π stacking
of perylene moieties of PDI-1. It restricted the molecules to
arrange along one direction to form long fiber-like
structures.35,36 However, PDI-1 formed gels in MCH and
toluene. These gels are formed with critical gelation
concentrations (CGCs) of 3.3 mM each. The formation of
these organogels was confirmed by the “vial inversion test”
(Figure S9).38,39 The gelation ability of PDI-1 in different
solvents is summarized in Table 2.

These gels were characterized in their dried form (xerogels)
using electron microscopy and PXRD. To perform these
analyses, the organogels were dried under high-vacuum to
evaporate the solvents.

Morphologies and Structures. The three-dimensional
(3-D) network-like morphology of these xerogels was observed
under a scanning electron microscope (SEM).40−43 The
xerogel of MCH appeared as a 3-D cross-linked network-like
cage structure, and toluene xerogel came out as regularly
arranged 3-D clusters (Figure S10).
However, xerogels revealed contrasting structures when

examined under the transmission electron microscope (TEM).
The hierarchical self-aggregates of toluene xerogel appeared as
nanotubes (Figure 3a). These elongated nanotubes have an
average diameter of 23 ± 6 nm (Figure S11) and several
hundred nanometers in length. To the best of our knowledge,

Figure 2. TEM image of PDI-1 aggregated vesicles in hexane (10
μM).

Table 2. Gelation Test of PDI-1 in Different Solvents

solvent gel/precipitate CGC (mM)

hexane precipitate -
MCH gel 3.3
toluene gel 3.3

Figure 3. TEM images of (a) nanotubes from toluene xerogel (inset:
enlarged image of a single nanotube, showing its side walls with
arrows) and (b) nanofibers from MCH xerogel (inset: enlarged image
of a single nanofiber).
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this is one of the very few reports of an organogel composed of
nanotubes. On the contrary, the MCH xerogel consisted of
nanofibers of an average diameter of 12 ± 3 nm extending to
several micrometers in length (Figure 3b and Figure S12). The
3-D network-like morphology and trapping of solvents in these
dense networks of nanostructures demonstrate the feature of
the organogels.
Molecular Packing. The molecular packing of these

xerogels is revealed by PXRD analysis with their difference
in the nanostructures. The PXRD analysis of toluene xerogel
showed a peak at 24° (d = 3.7 Å), indicating the interlayer
spacing between two perylene cores due to the π−π stacking of
the PDI-1 in the small molecular form (Figure 4a).35,36 The
peak at 21.6° (d = 4.1 Å) belongs to the liquid-like packing
order of long alkyl chains located at the core positions of PDI-
1.44,45 The third-order diffraction peak of 21.6° appears at 7.4°
(d = 11.87 Å) belonging to the (010) plane. The d-value ratio
1:√3 of peaks at 21.6° (d = 4.1 Å) and 12.4° (d = 7.13 Å)
indicates hexagonal packing of PDI-1 molecules in toluene
organogel.29,32,33 The fifth order peak of π−π at 4.9° (d =
17.76 Å) in the small angle region belongs to the (001) plane
of the nanotube.44,48 The higher-order peaks in PXRD analysis
proved that the gelation is caused due to hierarchical self-
aggregation. In MCH xerogel, a peak at 24° (d = 3.7 Å)
belongs to π−π stacking between two perylene cores of PDI-1
(Figure 4b).35,36 The first, second, and third-order diffraction
peaks appeared at 21.6° (d = 4.1 Å), 11.4° (d = 7.7 Å), and
7.4° (d = 11.8 Å), respectively, revealing a liquid-like packing
order of long alkyl chains.44,46,47,49 These results corroborated
the lamellar packing of PDI-1 in MCH organogel.50

Hydrogen Bonding. In addition to the strong π−π
interaction, the hydrogen bonding-based interactions are also
envisaged between the carbonyl oxygen atom and the amide
hydrogen atom to drive the aggregation process in the PDI-1
system.45,51 Considering this, the IR spectroscopic analyses of
PDI-1 organogels was performed compared with its dis-
aggregated form in CHCl3 solution. Compared with the N−H
vibration band of disaggregated PDI-1 in CHCl3 at 3291 cm

−1

(Figure S7b), the N−H vibration band of toluene organogel
disappeared in the range of 3100−3500 cm−1 (Figure
S7c).44,49,50 The overlapping of vibration bands belongs to
the amide carbonyl group with the carbonyl group vibrations
of imide positions at 1660 cm−1 in CHCl3, are shifted to 1604
cm−1 (Figure S7c). These significant observations are the
result of hydrogen-bonding-directed π−π interaction of the
PDI-1 in the toluene organogel.44,52 For the MCH organogel,
the N−H vibration band and CO vibration peaks belonging
to the amide linkage emerged at 3160 and 1634 cm−1,

respectively, in the low-frequency region, indicating hydrogen
bonding directed self-aggregation (Figure S7d).44,49,52 The
maximum shift of the amide carbonyl group stretching
frequency to the lower-frequency region in toluene organogel
as compared with the MCH organogel has proved the stronger
hydrogen bonding of PDI-1 in former than latter.

Rheological Study. The rheological properties of gels
largely influence the potential applications in many technical
areas like biotechnological, medical, and products such as
foods, fuels, and ceramics. Concerning the mechanical
behavior of an organogel comprising 3-D cross-linked
nanotubes, the rheological analysis was carried out with the
stepwise increase of oscillation frequency from 0 to 100 rad/s
while keeping a constant strain value of 0.05%. The storage
modulus (G′) and loss modulus (G′′) represent the elastic and
viscous behavior of gel, respectively. Organogels are expected
to have a G′ invariant with frequency and that it would be
higher than G′′. It has been seen that both these conditions are
met for the toluene organogel with a sol/gel transition point at
83 rad/s (Figure 5). The magnitude of G′ is also <10 times

that of G′′. The sol/gel transition point is the phase transition
point where the gel state changed its character to liquid state.
These results are indicating it as a weak organogel.49,53,54

Additionally, the organogel of MCH was not strong enough to
undergo rheological analysis. It turned into a precipitate while
performing the analysis.

Conclusions. In conclusion, we formed organogels
consisting of nanotubes and nanofibers from a newly
synthesized core substituted PDI derivative, and this is to
the best of our knowledge, the first time that perylene diimide
based organogel composed of nanotubes was obtained. The

Figure 4. XRD patterns of (a) toluene and (b) MCH xerogel.

Figure 5. Rheology study of toluene organogel with variation of
frequency.
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hydrogen bonding directed π−π stacking of PDI-1 led to
hierarchical self-assembly and formed gels in respective
solvents as evidenced by UV/vis, fluorescence, and IR
spectroscopic studies. The hierarchical self-assembly mecha-
nism was proved by PXRD analysis showing higher-order
molecular packing of these organogels. The lamellar packing of
PDI-1 molecules guided to the formation of nanofibers,
whereas hexagonal columnar packing provoked these mole-
cules to self-assemble into nanotubes (Figure 6). The extent of

hydrogen bonding and the difference in molecular packing of
these organogels made a difference in their nanostructures. On
the contrary, lack of hydrogen bonding directed and
hierarchical self-assembly, prevented PDI-1 molecules to
form a gel in hexane though maximal changes were observed
in the absorption and fluorescence spectra. The hollow
cylindrical morphology of nanotubes addresses the appropriate
necessity for molecular orientation than nanofibers and
vesicles. In these π-stacked arrays formed from a π-electronic
organic system like PDI can admit directional transports of
energy and charge carriers. We are considering these features
of this dominant material for fabricating optoelectronic devices
in the near future.

■ METHODS
Analytical grade solvents were purchased from Avra Synthesis
Pvt. Ltd. Other Chemicals and reagents were used from Merck,
Sigma-Aldrich, and Alfa Aesar. The compounds were purified
using a 63−210 μm silica gel in column chromatography.
Samples were confirmed by 1H and 13C NMR of 400 MHz-
Bruker in CDCl3 solution. Bruker UltrafleXtreme MALDI-
TOF mass spectrometer and Q-Exactive TM-BenchTop-LC-
HRMS were used to obtain the mass value of the new
compound. On LAMBDA 365 UV/vis spectrophotometer
absorption spectra were recorded in solution form. Fluo-
rescence spectrometer-HITACHI F-7000 was helped in
measuring the fluorescence spectra of samples with an
excitation wavelength of 560 nm. The molecular packing of
self-assembled aggregates and xerogels were analyzed by
Powder-X-ray Diffractometer-(Bruker, D8, advance) on a
glass substrate and powder form, respectively. The hydrogen
bonding type interaction was characterized by FT-IR spec-
troscopy (Thermo Fisher Scientific Nicolet iS10). The
aggregates and organogels were spin-coated (1000 rpm) on a

glass substrate, and the solvents were removed using a high-
vacuum to study their morphology by FE-SEM (Thermo
Fischer FEI QUANTA 250 FEG with a voltage range of 5−30
kV). The exact structure of the aggregates and xerogels was
identified by a TEM-FEI-TecnaiG220 Twin using a carbon-
coated copper grid of size 300 mesh. An Anton Paar302
rheometer equipped with a steel-coated parallel-plate geometry
(25 mm of diameter) was used for the rheological analysis of
an organogel at 0.05% strain.

Preparation of cys-PDI-cys. DiBrPDI (50 mg, 0.076
mmol), cetyltrimethylammonium bromide (166 mg, 0.456
mmol), and potassium carbonate (63 mg, 0.456 mmol) were
put together in a round-bottom flask and high vacuumed to
make it air free. THF (10 mL) was added to the above mixture
and stirred at room temperature for 30 min with continuous
purging of nitrogen gas until the mixture was dissolved. After
that, the cysteamine hydrochloride (52 mg, 0.456 mmol) was
added to the mixture, and an immediate color change was
observed from orange to dark-red purple color. The reaction
mixture was kept for stirring at room temperature for 24 h
under inert atmosphere. The completion of reaction was
monitored by TLC plate. Then THF was evaporated in a Rota
evaporator, and the mixture was washed with water and
chloroform. The organic layer (chloroform) was collected and
dried in a Rota evaporator to get the crude solids, which were
later purified by column chromatography using 3−5%
methanol/chloroform solvents to get the desired product
cys-PDI-cys as purple solid (37 mg, 74%).

1H NMR (400 MHz, CDCl3): 8.72 (s, 2H, perylene-H),
8.69 (d, J = 5.5 Hz, 2H, perylene-H), 8.57 (d, J = 8.0 Hz, 2H,
perylene-H), 4.14 (t, J = 7.4 Hz, 4H, N(CH2(CH2)2CH3)),
3.20 (t, J = 6.2 Hz, 4H, CH2−S), 2.87 (t, J = 6.2 Hz, 4H, NH2-
(CH2)2S), 1.66 (m, 8H, N(CH2(CH2)2CH3) and CH2−NH2),
1.40 (m, 4H, N(CH2(CH2)2CH3)), 0.94 (t, J = 7.3 Hz, 6H,
N(CH2(CH2)2CH3)).

13C NMR (100 MHz, CDCl3): 163.47, 137.53, 134.35,
133.23, 132.60, 131.57, 129.21, 128.47, 125.62, 122.28, 121.76,
40.76, 40.62, 40.24, 30.35, 20.54, 14.00.
MS (MALDI-TOF): m/z calculated for C36H36N4O4S2

[M+]: 652.22; found [M + H] +: 653.31.
HR-MS (ESI-TOF, positive mode): m/z calculated for

C36H36N4O4S2 [M
+]: 652.2178; found [M + H] +: 653.2255.

Preparation of PDI-1. Palmitic acid (26 mg, 0.101 mmol)
was dissolved in chloroform (10 mL) with the addition of
thionyl chloride (32 mg, 0.276 mmol) and a catalytic amount
of dimethylformamide. The mixture was stirred at room
temperature for 3 h. After that, the chloroform was evaporated
in a Rotary evaporator, and the reaction mixture was again
dissolved in chloroform (10 mL) followed by addition of cys-
PDI-cys (20 mg, 0.031 mmol) and trimethyl amine (14 mg,
0.143 mmol). The mixture was stirred at room temperature for
24 h, and the completion of the reaction was monitored by a
TLC. The reaction mixture was washed with water, and
organic phase (chloroform) was evaporated in rota evaporator
to get the crude product. Then, it was purified by column
chromatography using 0.5−1% methanol/chloroform solvents
affording the required product PDI-1 as a purple solid (14 mg,
69%).

1H NMR (400 MHz, CDCl3): 8.76 (d, J = 8 Hz, 2H,
perylene-H), 8.71 (s, 2H, perylene-H), 8.59 (d, J = 8.1 Hz, 2H,
perylene-H), 5.76 (t, J = 8.3 Hz, 2H, HN-CO), 4.15 (t, 4H, J =
8.0 Hz, N(CH2(CH2)2CH3)), 3.25 (m, 4H, S(CH2)2NHCO),
2.27 (t, J = 7.5 Hz, 4H, CH2−S), 1.87 (t, J = 7.5 Hz, 4H,

Figure 6. Schematic representation of molecular packing of
nanostructures.
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NHCOCH2), 1.68 (m, 8H, NHCO(CH2)14CH3), 1.56 (m,
8H, NHCO(CH2)14CH3), 1.42 (m, 8H, N(CH2(CH2)2CH3),
1.18 (m, 36H, NHCO(CH2)14CH3)), 0.94 (t, J = 7.3 Hz, 6H,
N(CH2(CH2)2CH3)), 0.80 (t, J = 6.7 Hz, 6H, NHCO-
(CH2)14CH3).

13C NMR (100 MHz, CDCl3): 173.78, 159.86, 134.88,
133.90, 133.10, 132.29, 131.23, 129.41, 128.63, 127.25, 122.11,
121.90, 32.07, 29.84, 29.80, 29.74, 29.59, 29.50, 29.41, 29.39,
29.23, 28.37, 25.63, 24.89, 22.83, 20.54, 14.26, 13.99.
MS (MALDI-TOF): m/z calculated for C68H96N4O6S2

[M+]: 1129.64; found [M] +: 1129.79.
HR-MS (ESI-TOF, positive mode): m/z calculated for

C68H96N4O6S2 [M
+]: 1129.6430, found [M] +: 1129.6329.

Gelation Test. In a glass vial, both solvent and compound
are heated until the mixture gets dissolved. Then the dissolved
solution is allowed to cool down to room temperature for 30
min, and the gel is confirmed by the “vial inversion test”.
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