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ABSTRACT: Hybrid organic−inorganic perovskites (HOIPs) have shown the
encouraging development in solar cells that have achieved excellent device
performance. One of the most important issues has been focused on finding Pb-free
candidates with suitable bandgaps, which could accelerate the commercialization of
environmentally friendly HOIP-based cells. Herein, we propose a new inverse design
method, proactive searching progress (PSP), to efficiently discover potential HOIPs
from universal chemical space by combining machine learning (ML) techniques.
Compared to the pioneering work on this topic, we carried out our ML study based on
1201 collected HOIP samples with experimental bandgaps rather than theoretical
properties. On the basis of 25 selected features, a weighted voting regressor ML model
was constructed to predict bandgaps of HOIPs. The model comprehensively
embedded four submodels and performed the coefficient determinations of 0.95 for
leaving-one-out cross-validation and 0.91 for testing set. The feature analysis revealed
that the tolerance factor (tf) below 0.971 and the new tolerance factor (τf) in 3.75−4.09 contributed to lower bandgaps and vice
versa. By applying the PSP method, the Pb-free HOIPs with optimal bandgaps were successfully designed from a generated chemical
s p a c e comp r i s i n g o v e r 8 . 2 0 × 10 1 8 c omb in a t i o n s , wh i c h i n c l u d ed 733848 c and i d a t e s ( e . g . ,
Cs0.334FA0.266MA0.400Sn0.769Ge0.003Pd0.228Br0.164I2.836) with an optimal bandgap of 1.34 eV for single junction solar cells, 1511073
large-bandgap candidates (e.g., Cs0.392FA0.016MA0.592Cr0.383Sr0.347Sn0.270Br1.171I1.829) for top parts in tandem solar cells (TSCs), and
20242 low-bandgap ones (e.g., MA0.815FA0.185Sn0.927Ge0.073I3) for bottom cells in TSCs. Finally, three new HOIPs were synthesized
with an average bandgap error 0.07 eV between predictions and experiments. We are convinced that the proposed PSP method and
ML progress could facilitate the discovery of new promising HOIPs for photovoltaic devices with the desired properties.

1. INTRODUCTION
Development of hyybrid organic−inorganic perovskites
(HOIPs) has flourished in photovoltaic (PV) technology
over the past decade, attributed to their exceptional merits
including tunable bandgap, long carrier diffusion length, high
light-absorption coefficient, low nonradiative loss, carrier
mobility, simple solution processability, and low-cost exper-
imental synthesis.1−4 HOIP materials have a universal formula,
ABX3, in which the A site usually contains organic cations
(such as MA+ → methylammonium, FA+ → formamidinium)
or Cs+, the B site involves divalent metal cations (such as Pb2+,
Sn2+, Ge2+, Ga2+), and the X site includes halogen anions (Cl−,
Br−, I−). The typical HOIPs, e.g., MAPbI3, FAPbI3, and their
derivatives, have been widely applied in single-junction devices,
namely perovskite solar cells (PSCs), with the bandgap range
of 1.40−1.70 eV whose power conversion efficiencies (PCEs)
have elevated to 25.5%5 from the original 3.8%.6 In the
meantime, ascribed to the fascinating property of their tunable
bandgaps, HOIPs with low-bandgap (1.10−1.40 eV) are
competent in serving as bottom cells for all-perovskite tandem
solar cells, while the materials with a wide bandgap (1.70−2.30
eV) are suitable as top cells for all kinds of tandem solar cells7

in which their PCEs have reached 47.1%.5

However, HOIP photovoltaic materials still have unavoid-
able imperfections and more potential for further progress.
One of the topic issues is the contaminant brought by the toxic
element Pb that contributes to most solar cells with
outstanding PCEs. In this context, more Pb-free HOIP
materials are urgently needed to facilitate the commercial
application in solar cells.3 Meanwhile, the bandgaps of HOIPs
in efficient single junction cells are mostly lying at 1.45−1.55
eV, whose theoretical maximum PCEs are 31.02−32.07%
according to the Shockley-Queisser (SQ) limit model.8−10

However, the optimum bandgap located in 1.20−1.40 eV
renders the maximum PCEs of 32.7−33.7%, while the highest
value 33.7% could be achieved at a bandgap of 1.34 eV. By
adjusting the bandgap to the optimal value, the HOIP-based
device may have a higher PCE. As for the case of tandem solar
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cells (TSCs), manipulating bandgaps of HOIPs is also essential
to gain satisfactory PCEs. The ideal bandgap of the perovskite
bottom cell is usually 1.20−1.30 eV, while the suitable bandgap
for the perovskite top cell is close to 1.70 eV for Si or copper
indium gallium selenide (CIGS) bottom cells (bandgap 1.10
eV) and 1.75−1.80 eV for perovskite bottom cells.11

Considering the demands of nontoxicity and suitable bandgap
adjustment, it is still of paramount importance to discover Pb-
free HOIPs with suitable bandgaps for both of PSCs and
TSCs.
As experimental and quantum-based research has been

suffering due to the large cost in human endeavor, time
consumption, and trial-and-error attempts, machine learning
(ML) has provided a more efficient strategy to assist materials
design at lower expense, which has been continuously exerted
in various fields such as electrocatalysis, batteries, polymers,
alloys, and others.12−15 The ML technique has also been
successfully applied in finding out promising HOIPs with
desired properties. As a proof of concept, Lu et al.16 prepared
212 ABX3 HOIPs samples from high-throughput calculations
along with their bandgaps calculated via the density functional
theory (DFT) method in which 11 organic cations were
considered in the A site, 32 divalent metal cations, and four
halogen anions in the B and X sites. Fourteen features were
selected by using last-place elimination for the gradient
boosting regression (GBR) model, resulting the high model
performance with a determination coefficient (R2) of 0.985 and
mean squared error (MSE) of 0.085 eV. The sorted features
indicated the importance of the tolerance factor (tf), octahedral
factor (Of), and ionic charge in B site (ICB) that took the
major contributions to the model performance. Then the
bandgaps of 5158 virtually generated samples were predicted
via the GBR model. By inspecting their proper predictions
(0.9−1.6 eV), tf (0.8−1.2), Of (0.4−0.7), experimental
accessibility, and nontoxicity, six HOIPs were finally selected
with DFT-calculated bandgaps of 0.91−1.14 eV, namely
C2H5OInBr3, C2H6NInBr3, NH3NH2InBr3, C2H5OSnBr3,
NH4InBr3, and C2H6NSnBr3. Saidi et al.17 arranged 862
ABX3 HOIP structures along with their DFT-calculated
bandgaps, in which 18 organic ions, Pb2+/Sn2+ cations, and
Cl−/Br−/I− anions were included for A/B/X sites. A
hierarchical convolutional neural network (HCNN) was
trained based on atomic descriptors to predict the DFT
bandgaps of HOIPs, exhibiting a low root mean squared error
(RMSE) value of 0.02 eV. In our recent work,18 a robust
extremely gradient boosting (XGBoost) model was fitted based
on 102 DFT-optimized samples and atomic descriptors to
identify the formability of DFT-optimized HOIP structures,
which led the leaving-one-out cross-validation (LOOCV)
accuracy of 95% and testing accuracy of 88%. By using the
SHapley Additive exPlanations (SHAP) tool, we found that the
radius and lattice constant of B site had the positive
contribution to formability while the A site radius, tolerant
factor, and first ionization of B site were the reverse case.
Handy with the well-established XGBoost model, 198 nontoxic
HOIPs were screened from 18560 generated structures with
formability probabilities over 99%.
Although the bright prospect of the ML technique in

discovering potential HOIP materials has been unveiled in
these pioneering works, the majority of the relevant work paid
large attention to DFT-based properties such as bandgap and
formability instead of the experimental characteristics whose
results tend to deviate from the experiments, e.g., the

underestimated bandgaps calculated by generalized gradient
approximation (GGA).3 Second, only limited organic cations
in the A site (up to 18) have been reported in the current ML
studies, while this work has collected 88 organic cations (both
from experimental and theoretical publications) that are
expected to extend the A site choices for experimentalists.
Third, few researches have reported the virtual designs for the
doped HOIPs, e.g., the formula as A′A″B′B″X′X″, though
there already are cases of complex HOIP formulas in
experiments such as Cs0.05FA0.79MA0.16Pb0.58Sn0.42I2.48Br0.52.

19

Thus, it is meaningful to expand the chemical space to involve
the doped structures, which may cause an enormous searching
space, e.g., 4.6 × 1011 combinations in the case of
A′A″A‴B′B″X′X″ (suppose 20 organic choices in the A site,
9 in the B site, 3 in the X site, and doping ratio step 0.01). In
this situation, the traditional high-throughput ML prediction is
no longer affordable using current computing power; thus, an
innovative searching strategy is imperatively essential to avoid
this dilemma. Last but not the least is the inadequate
interpretations of the established models despite their qualified
performances, which are basically important for a deep
understanding of experimental principles. Theus, there is still
a large capacity to be elevated in discovering new potential
HOIPs with suitable bandgaps and nontoxicity.
Herein, we reviewed 9594 PSC publications from Web of

Science in 2009−2021 and collected 1201 HOIP samples
along with their experimental bandgaps. On the basis of the
experimental sample set in 2009−2020, various robust models
were built, resulting in four best models with the LOOCV R2

0.93−0.95 and testing R2 0.88−0.92. A weighted voting
regressor (WVR) model was designed to embed the four well-
fitted estimators, exhibiting a more comprehensive perform-
ance with LOOCV R2 0.95 and testing R2 0.91. The 42 samples
in 2021 were set aside as the external set to validate the WVR
model, indicating the R2 of 0.84. By combining the SHAP tool
and WVR model, the relationships between the top 10
important features and HOIP formulas were successfully
explored based on both the experimental data set and a
virtually generated data set. Thereafter, we constructed a
comprehensive chemical space for the doped HOIPs
formulated as A′A″A‴B′B″B‴X′X″X‴, in which there were
collected 88 organic fragments plus Cs/K/Rb in the A site,
eight metal elements in the B site (excluding Pb), and Cl/Br/I
in the X site, resulting in over 8.20 × 1018 combinations. In this
regard, we proposed a new inverse design method, namely
proactive searching progress (PSP), to efficiently discover Pb-
free HOIPs with the desired bandgaps from such universal
chemical space, which only took a few minutes to locate at
least one candidate. As the explored result, we finally found
733848 HOIPs with a bandgap of 1.34 ± 0.05 eV for single
junction solar cells, 20242 with 1.20 ± 0.05 eV for bottom cells
in TSCs, and 764883 with 1.70 ± 0.05 eV as well as 746190
with 1.75 ± 0.05 eV for top cells in TSCs. The three new
compositions of HOIPs were synthesized for model validation.
Their bandgaps were characterized, resulting in an average
error 0.07 eV from the predictions. We are convinced that such
an inverse design method could help accelerate the develop-
ment of HOIP materials beyond bandgaps. Since the
developed inverse design methods are flexible and independent
from the ML models, they could also be applied in discovering
other materials with their desired properties.
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2. METHODS

In this section, we illustrate the detailed processes of training
ML models and the PSP method. In the training process,
various ML packages were involved, including scikit-learn,20

XGBoost, CatBoost, LightGBM, and SHAP,21 which were
used to fit robust models and analyze the relationships between
features and HOIP structures. The self-developed reverse
design method PSP was applied after the model building to
find out the Pb-free candidate HOIPs with proper bandgaps.
Most codes were packed into our Python package in https://
pypi.org/project/fast-machine-learning/. Figure 1 illustrates
the workflowchart concerning on the integrated package to
construct ML models and search new candidate HOIPs via
PSP. The applied codes are provided in GitHub: https://
github.com/luktian/InverseDesignViaPSP. A demo of PSP
method can be tried online at http://materials-data-mining.
com/pspweb/.
Data Collection and Feature Generation. In this study,

we extracted 1201 HOIPs along with their experimental
bandgap values from 9594 PSC publications from Web of
Science (using the keyword “perovskite solar cells”) in 2009−
2021. The sample number reduced to 479 from 1201 after
cleansing the raw sample set in Code S1 of Supporting
Information. The 437 samples collected in 2009−2020 were
regarded as the history data for modeling and further divided
into training and test sets. The 42 samples from 2021 were set
aside as the external set to validate the generalization of ML
model at last.
An integrated descriptor database was assembled from the

Villars Database (https://mpds.io/) and Mendeleev Python
package (https://github.com/lmmentel/mendeleev) to depict
the structure information on the HOIP samples, which were
furtherly divided into 34 base descriptors, eight string
descriptors, and 66 other descriptors. The base descriptors
refer to the basic chemical and physical properties for elements
such as radius, volume, chemical potential, electronegativity,
and others, while string descriptors involve categorical

properties such as the block position in the periodic table,
the lattice crystal structure of the simple substance, and the
like. The string descriptors have been encoded into numeric
data ahead of generating descriptors via the encoder method
provided in scikit-learn.20 The 66 other descriptors contain
relatively more sophisticated or pointless properties and hence
would not be employed in our data set in pursuit of an as
understandable model as possible. Regarding the lack of
properties of the organic cations of the A site, e.g., MA+ in
methylammonium lead iodide, some basic chemical and
physical properties of the organic fragments were calculated
and supplemented by using Gaussian22 and Multiwfn23

software, which involves molecular volume, electronegativity,
chemical potential, molecular radius, ionic radius, vertical
electron affinity, and others. The descriptor details are listed in
Table S2, and quick instructions to generate the descriptor
features for a HOIP sample are illustrated in Code S2 of the
Supporting Information. Given an HOIP structure ABX3, the
descriptors were generated for each site (A, B, X), and there
were 42 descriptors calculated in each site and hence 126
descriptors for each sample. Three universal structural factors,
namely Of,

24 tf,
25 and tau factor (τf)

26 were added, resulting in
a total of 129 features.
Although the structural phases would have a large impact on

bandgaps as well, it would not be considered in the model due
to insufficient data. The phase information on the 479 samples
is listed at https://github.com/luktian/InverseDesignViaPSP.

Feature Engineering and Model Training. The 129
features were preprocessed by pruning the variables with
missing values or their standard deviations nearly to zero,
bringing about 102 remnant features. To perform a reasonable
division of the 437 samples, the size and distribution of
samples in training and test sets were optimized in Code S3 of
the Supporting Information, resulting the optimal parameters
of training size 81.95% and test size 18.05% and random state
1959 (representing sample distributions).

Figure 1. Workflowchart concerning on the integrated package to construct ML models and search new candidate HOIPs via PSP.
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The recursive feature addition (RFA)27 strategy was
employed to search the optimal feature set, which determined
the optimal feature set by iteratively adding one more top nth
feature under a feature importance (FI) order. In this strategy,
seven algorithms were considered in parallel, involving
CatBoost (CAT), XGBoost (XGB), LightGBM (LGB),
gradient boosting machine (GBM),28 support vector machine
(SVM),29 decision tree regressor (DTR), and multiple linear
regressor (MLR).20 The FI for tree-based algorithms was
ranked by the feature contributions extracted from SHAP
package,21 while FI for the other algorithms was calculated
based on maximum relevance minimum redundancy (mRMR)
method.30,31 The RMSE and R2 of LOOCV were regarded as
indicators to determine the outstanding models. It was found
that the CAT, XGB, LGB, and GBT models were the top 4
outstanding models based on 13, 13, 12, and 10 features
screened in Code S4 of the Supporting Information. The
contributions of selected features were calculated using SHAP
package for each established model in Code S5 of Supporting
Information.

The hyper-parameter optimizations for CAT, XGB, LGB,
and LGB models were performed using the grid search (GS)
approach in Code S6 of the Supporting Information. The tree
number, learning rate, and tree depth were considered as the
hyper-parameters for the models, and the LOOCV RMSE of
the training set was used to indicate the model performance.

Weighted Voting Regressor and Model Analysis.
Inspired from voting regressor (VR) implemented from
scikit-learn20 that combines multiple regressors as submodels
and returns the average predicted values, we developed a
weighted voting regressor (WVR). Different from VR model,
the submodel in WVR was trained based on individual feature
sets, and the optimized weight coefficient was used to control
the model contribution to the final prediction.
The SHAP values of the WVR model were then calculated in

Code S8 of the Supporting Information that had overcome the
incompatibility between the self-developed WVR model and
SHAP package. In pursuit of a more comprehensive analysis of
feature contributions to the model, in addition to the
experimental data set, an extra virtual data set composed of

Figure 2. General principle of the proactive searching progress (PSP) method. (a) Workflow details of PSP method. (b) First and second generated
virtual samples. (c) Simulated GP distribution based on the first and second generated virtual samples. (d) Third virtual samples searched by GP
distribution. (e) Updated GP distribution adjusted by the third virtual samples.
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mixed HOIPs formulated as A′A″B′B″X′X″ was generated as
the input data for SHAP calculation. The organic fragments
MA, FA, GA (diaminomethaniminium), EA (ethanaminium),
and ED (ethane-1,2-diaminium) plus Cs were considered as
the candidates for the A site with the elements Pb, Sn, Ge, Cd,
and Pd for the B site and Cl, Br, and I for the X site. For the
balance between calculating cost and precision, we set the
doping range 0−1 for A/B site and 0−3 for X site along with
the range step 0.25 for A/B site and 1.0 for X site, in which
doping numbers for each site were all fixed at 2. As a result, the
virtually generated data set comprised 45000 virtual HOIPs.
Proactive Searching Progress (PSP). Given a set of

material compositions {γi|γi = (γi1,γi2,...,γid)
T, i ∈ R}, we could

easily get their predicted outputs {oi|i ∈ R} from a well-fitted
ML model and obtain a set of samples {(γi,oi)|i ∈ R}. The ML
model plays the role of a function o = f(γ) that describes the
distribution of the samples in the whole chemical space. In the
case of searching the materials with desired property value o*
from a universal chemical space, there would be large wastes of
time and cost if all of the possibilities via the ML model o =
f(γ) were traversed. Inspired from the sequential model-based
optimization (SMBO) in the field of parameter optimization,
we herein proposed PSP method, and introduced Gaussian
process (GP) method to describe the local distribution g(γ) to
approximate the ML model o′ = g(γ) ∼ o = f(γ) in partial
chemical space. According to the simulated GP distribution, it
could be easy to determine the compositions of next designed
point by identifying the composition with the o′ closest to o*
and predict the property value by using the ML model. By
iteratively adding the newly explored points, the GP
distribution would be updated by steps and behave more
accurate for property estimation.

The core objective of PSP is to discover potential chemical
compositions whose properties are close to the expected value
o* predefined by the user. As the general workflow is concluded
in Figure 2a, the initial virtual samples {γi|i ≥ 2} will be
randomly generated from the whole chemical space at the
initial step. The properties {oi|i ≥ 2} of the initial samples are
predicted by using the established ML model to obtain the
sample points {(γi,oi)|i ≥ 2}. Instead of the predicted property
value oi, the expected error {EEi|EEi = |oi − o*|, i ∈ R,EEi → 0}
between the prediction oi and expected property value o* is
practically defined as the response of GP distribution to
indicate the quality of each sample. The GP function
approximates the distribution as

γ

γ

{ = | ′ − *| = | − *|}

∼ { = | − *| = | − *|}

o o g o

o o f o

EE ( )

EE ( )
GP

(1)

For illustrative purposes, Figure 2b−d considers the searching
progress of a one-compositional material as a simple example
in which the first and second samples with EE values of 1.4 and
3.4 are plotted in Figure 2b. The first generated samples are
taken to describe the local distribution by GP method (or
other likely methods), as shown in Figure 2(c). The plot data
could be practically obtained from the GP distribution. Then
the next designed point with the minimal EE estimated by GP
method (EEGP) is determined in the fitted GP distribution, and
the predicted property as well as EE are given via the ML
model in Figure 2d. In the next step, a new designed point will
be iteratively determined by the updated GP distribution in
Figure 2e until the iteration reaches the maximum step
predefined by the user. During the searching progress, once the
EE is lower than the predefined criterion, the corresponding
samples would be outputted. By only exploiting the local space

Figure 3. (a) Distribution of bandgaps for 437 HOIP samples. (b) Changing trends of LOOCV RMSEs for CAT, XGB, LGB, and GBM models
extracted from RFA results. (c) Feature importance of top 10 features. (d) Distributions of SHAP values with feature values.
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directionally, PSP could accelerate the searching period and
avoid the huge undesired compositions. Additionally, we
established a demo of PSP method online to discover HOIP
candidates for the illustrative purpose at http://materials-data-
mining.com/pspweb/.

■ RESULTS AND DISCUSSION
Model Construction. The 1159 samples from the

publications in 2009−2020 were gathered, and 437 samples
were retained after cleansing the duplicates in Code S1. As
exhibited in Figure 3a, the bandgap ranges in 1.17−3.31 eV,
and the most values were in the 1.20−2.00 eV range
accounting for 86.96% of the whole set. Then 129 descriptors
were generated for each sample, and 102 remained after
preprocessing in Code S2. A reasonable training and test set
were drawn in Code S3, rendering 358 training and 79 test
samples.
Given the preprocessed training set with 358 samples and

102 remnant features, an RFA strategy was employed to filter
optimal features in Code S4. Figure 3b shows the decreasing
trends of LOOCV RMSE values for CAT, XGB, LGB, and
GBT models as the selected feature number increased in which
RMSEs were fixed in 0.08−0.12 when the feature number was
over 13. Figure S5b plots the same trend for SVM, DTR, and
MLR but with higher RMSEs in 0.13−0.24, which signaled the
much poorer model performance than the tree-based models.
Figure S6 displayed the uprising trend of LOOCV R2 for the
four tree-based models with R2 values over 0.89 based on the
top 13 features and the other three models along with those

lower than 0.85. The test metrics expressed in Figure S7−S8
indicated the same conclusions, and hence, the four tree-based
models were retained for the further step.
By considering the balance between model performance and

complexity, the inflection points circled in Figure 3b were
selected for model construction in which the addition of the
features triggered large promotions for the LOOCV RMSEs.
As a result, the CAT, XGB, LGB, and GBT models were built
up based on the top 13, 13, 12, and 10 features, respectively
(Figure S10), whose LOOCV R2 were 0.94, 0.92, 0.90, and
0.93, respectively (Figure S6). The corresponding test R2 of
the four models were 0.88, 0.89, 0.87, and 0.91, respectively
(see in Figure S8), signifying the powerful predictivities and
generalization abilities. After hyper-parameter optimization
using the GS approach in Code S6, the LOOCV R2 of CAT,
XGB, LGB, and GBT models increased to 0.95, 0.93, 0.93, and
0.93, respectively, while the corresponding test R2 were 0.91,
0.89, 0.88, and 0.92 respectively (Table S5). The relevant
LOOCV and test RMSEs were 0.08−0.09 and 0.11−0.12. The
5-fold cross-validation (CV5) and 10-fold cross-validation
(CV10) were additionally calculated in Table S5. The CV5
and CV10 R2 of the tree-based models were 0.90−0.95, and
the RMSEs were 0.08−0.11, which might also indicate the
good model performance.
To explicitly implement four well-fitted models, a meta-

model could be introduced to integrate the fitted submodels
and balance their individual weaknesses. For example, the
voting regressor (VR) model from scikit-learn20 combines
multiple different machine learning regressors (trained on the

Figure 4. Scatter plots of the features NX (a), TIB (b), tf (c), and τf (d) versus their SHAP values.
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same feature set) and returns the average prediction. Inspired
by the VR model, the weighted voting regressor (WVR) model
was designed whose submodels were trained based on
individual feature sets (e.g., XGB on 13 features while GBT
on 10 features). The optimized weight coefficients were used
to control the contributions of each submodel to the predicted
values, and hence the weighted predictions were returned. In
this context, a WVR model was fitted by combining CAT,
XGB, LGB, and GBT models in Code S7. As shown in Table
S7, the R2 and RMSE in LOOCV of WVR were 0.95 and 0.079
better than the values of XGB, LGB, and GBT, while the R2

and RMSE in WVR were 0.91 and 0.106 more favorable than
the values of CAT, XGB, and LGB. Meanwhile, the CV5 and
CV10 R2 were 0.94, and the corresponding RMSEs were 0.08.
Hence, the WVR model complimented the weakness of each
submodel and achieved a comprehensively superior perform-
ance than the submodels.
To further evaluate the generalization ability of the WVR

model for the unknown samples, a separate validating set
composed of 42 HOIP samples in 2021 was prepared. Listed in
Table S7, the R2 of external validating set between
experimental and predicted bandgaps was 0.84, higher than
the external R2 in the submodels (0.74−0.80 in Table S5) and
slightly lower than the testing R2 of 0.91 in the WVR model.
The RMSE, MAE, and MSE of the external validating set in
WVR model were 0.060, 0.041, and 0.004, respectively,
exhibiting even better than the values of test set (0.106,
0.056, and 0.011), which indicated the powerful predicting
power and low predicting errors (0.041−0.056 eV) of the
WVR model.

Model Analysis. The SHAP values were calculated by
utilizing the self-developed WVR model and SHAP method to
analyze the feature contributions to model predictions in Code
S8. Besides the experimental data set, a set of virtual data set
composed of 45000 doped HOIP samples was employed for
model interpretation via high-throughput computation.
Figure 3c exhibits the top 10 features ranked by their

contributions extracted from SHAP values, whose vertical axis
comprised feature ranking, and the horizontal axis shows the
SHAP values for the features. Among the 10 features, five X-
site descriptors accounted for 50%, and NX (representing
element name in X site) took the most important position. In
the remnants, structural and B-site descriptors counted 2,
respectively, while the rest 1 was the one in A site. Figure 3d
displays the distributions of SHAP values of features, where the
horizontal axis comprises the sorted sample indexes according
to model predictions. The red/blue color expresses the
positive/negative SHAP values for each sample and feature,
which further indicate the positive/negative contributions to
predictions. The positive SHAP values for each feature (in red
color) were mainly localized in the left part that corresponds to
the higher bandgaps, while the negative values (in blue color)
were located at the right part related to the lower predictions,
thence indicating a well-separately isolated distribution of
positive/negative SHAP values and the large contributions to
the predictions of bandgaps. Similar plots for the virtual data
set are drawn in Figure S18b,d.
The scatter plots between the feature and SHAP values are

drawn in Figures 4 and S19 with the color indicating the
prediction value to acquire a further understanding of each
feature. The partial dependence (PD)28 plots are drawn in

Figure 5. Partial dependence (PD) plots of the features NX (a), TIB (b), tf (c), and τf (d) versus their predictions.
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Figures 5 and S21, which could signify the overall marginal
effect that the feature had on the prediction.
As shown in Figure 4a, NX was the element name in X site.

The SHAP values for NX showed a decreasing trend as the NX
values were increasing. The samples with lower NX values and
hence corresponding higher SHAP values tended to express
the larger bandgaps (in darker red color) and vice versa. By
marking an inflection point (determining the SHAP values
positive or negative) for NX of 34.72, the NX values over 34.72
would result in the negative SHAP values, and the ones lower
than 34.72 led to the positive. The original values of NX have
been converted to numbers in the procedure for generating
descriptors in which Cl, Br, and I were signaled by 20, 13, and
46 respectively. Hence, in pursuit of a higher/lower bandgap,
the ratio of I in the X site should be decreased/increased for a
low/high NX value that would trigger a high/low SHAP value,
which was consistent to the current domain knowledges.32−36

As indicated by the PD plot for NX in Figure 5, the same
conclusion was extracted that the bandgap decreased as the NX
value increased. The steep points that triggered sharp deceases
in predictions were labeled on the plot. Specifically, the steep
point 25.00 for NX might refer to the doped couple Br1.915I1.091
or Cl2.423I0.577, and 27.80 to Br1.655I1.345 or Cl2.100I0.900, 30.20 to
Br1.455I1.545 or Cl1.846I1.154, 41.50 to Br0.409I2.591 or Cl0.519I2.481,
respectively.
TIB signaled the third ionization energy of the element in the

B site, in which the energies of Sn, Pb, Ge, Cd, and Pd were
2943, 3081, 3302, 3616, and 3177 kJ/mol, respectively.
Indicated by the scatter plot in Figure 4b, the TIB value was
proportional to its SHAP value and bandgap prediction.
Hence, the higher bandgaps might require the B site elements
with the higher third ionization energy, which would influence
on the charge effect. Combining the relevant PD plots of TIB in
Figure 5b, it could be noted that the steep points at 2943 and
3081 kJ/mol were the third ionizations of Sn and Pb, which
revealed the overall increasing trending of the bandgap as the
proportion of lead arose in the doped B site couple SnPb.
When the TIB value was over 3081, the prediction was nearly
unchanged and even slightly declined, indicating that the
higher ratios of Ge/Cd/Pd might have little influence on
bandgap.
As shown in Figure 4c, the SHAP values of tf had an overall

increasing trend with the ascendent tf values, whose inflection
point was around 0.971. The PD plot in Figure 5c displayed a
sigmoid-like function trend in the experimental and virtual data

sets, in which the tf range below/above 0.930/1.086 indicated
steady prediction changes and the data in the range of 0.930−
1.086 resulted in a steep increment for bandgap values. As for
another structural factor τf, the inflection point of 3.50 could
be noticed from the scatter plot in Figure 4d. The SHAP values
were mostly positive as the τf value was lower than 3.50, while
the values tended to be more negative as the τf value was over
3.50. The PD plot in Figure 5d showed that the τf ranges lower
than 3.46, 4.13−4.78 and higher than 4.78 would render steady
prediction trends, while the range 3.46−4.13 signaled an
overall decreasing tendency. Since these two factors were both
relevant to structural and geometric effects of HOIP samples, it
might be comprehensive to take them into consideration
together. If we seek HOIPs with lower bandgaps, the value of tf
should not be over 0.971 and the value of τf is recommended
to be 3.46−4.13, while HOIPs with tf > 1.014, τf < 3.46, and
4.13 < τf < 4.18 (4.18 determines the structure formability as
indicated in reference26) tend to own the larger bandgaps.
The full discussion of six other important descriptors in the

top 10 can be found in Code S8, which includes discussions on
the virtual data set and the individual conditional expectation
(ICE)37 plots.

Proactive Searching Progress. To exploit as much
material space as possible, we collected 88 organic fragments
(Table S4) and three inorganic elements Cs/K/Rb from
experimental and theoretical publications for the A site, while
eight metal elements Sn/Ge/Pd/Bi/Sr/Ca/Cr/La and three
halogen elements Cl/Br/I were employed for the B and X sites.
The doping range was set as 0−1 for A/B site and 0−3 for X
site with the ratio step of 0.001 and the doping number 1−3.
Thence the chemical space comprised over 8.20 × 1018

combinations for the formula A′A″A‴B′B″B‴X′X″X‴.
To efficiently search the material compositions with

expected bandgap values from the universal chemical space,
the PSP method was applied in this study. The material
compositions were set as the combinations of the elements/
fragments in each site and the relevant ratios. The material
property was set as the bandgap of HOIPs, and the EE
criterion was restrained less than 0.05 eV. The expected values
were predefined as 1.34 eV for PSCs, 1.20 eV for bottom cells
in TSCs, and 1.70 and 1.75 eV for top cells in TSCs. For
illustrative purposes, the high-dimensional features for each
HOIP samples were compressed into the first component via
component analysis (PCA), and Figure 6a presents the
distribution of bandgaps versus the first PCA component

Figure 6. Bandgap distribution in the initial step (a) and after a few iterations (b) versus the first component in principal component analysis.
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(PCA-1). After a few iterations in the progress of searching the
samples with 1.34 eV bandgap, 20 virtual samples were drawn
from the searched result in Figure 6b and linked by the dotted
lines. The distribution of bandgaps was obviously changed
from the original one, and the predictions had a decreasing
trend as the searching progress proceeded, which exhibited an
efficient way to design the samples with expected property
values from a universal chemical space. An additional demo
web could be accessed at http://materials-data-mining.com/
pspweb/.
Top Candidates. As a result of the PSP design, we

obtained 820782 samples for the Pb-free HOIPs with bandgap
1.34 ± 0.05 eV, 22808 samples with 1.20 ± 0.05 eV, 984938
samples with 1.70 ± 0.05 eV, and 902401 samples with 1.75 ±
0.05 eV, respectively, in which the feature distributions for the
four candidate sets are shown in Figure 7. As displayed in
Figure 7a, the tf of low-bandgap HOIPs (1.20 and 1.34 eV)
revealed a narrower range than the wide-bandgap ones (1.70
and 1.75 eV). The tf ranges of HOIPs with 1.20 and 1.34 eV
were 0.88−0.97 and 0.83−0.99, while the cases of 1.70 and
1.75 eV were 0.80−1.02 and 0.81−1.20. Hence, the lower tf
values (<0.97) could render a larger probability of low-
bandgap samples and the higher tf values (>0.99) would lead
to large-bandgap samples, which is consistent with the
conclusion in model analysis. Simultaneously signaled by
Figure 7b, the τf revealed an inverse trend that the peak of
feature distribution was decreasing as the bandgap increased.
The τf value of low-bandgap samples was concentrated at
3.75−4.09 and could be extended to 3.67−4.18 (considering
the formability criterion), while the peaks of τf distribution of

large-bandgap samples were around 3.60−3.90. Hence, the τf
value fixed in 3.75−4.09 was essentially needed for seeking the
low-bandgap samples, and the feature value should be
controlled in 3.51−3.90 (or even lower) for the large-bandgap
samples, which conducted the similar conclusion to the model
analysis. In summary, the criterions tf < 0.97 and 3.75 < τf <
4.09 were recommanded for searching low-bandgap samples,
while the criterions tf > 0.97, τf < 3.90 and 4.09 < τf < 4.18
were for the wide-bandgap ones. In the experimental sample
set, we found that the most samples obeyed such criteria. For
instance, the FAGeI3, MAGeI3, and FASnBr3 (bandgap 2.30,
2.00, 1.90 eV) had the tf of 1.12, 1.10, 1.00 and τf of 4.79, 4.77,
3.52. And Cs0.3FA0.7SnI3, MASnI3, FA0.25MA0.75SnI3 (bandgap
1.29, 1.30, 1.28 eV) owned the tf of 0.95, 0.96, 0.96 and τf of
3.81, 3.78, 3.76. After filtering by using the criterion τf < 4.18,
0.8 < tf < 1.2 and the existence of p-block elements in B site,
there were 20242, 733848, 764883, and 746190 non-Pb
samples left for the HOIPs with the bandgap of 1.20, 1.34,
1.70, and 1.75 eV, respectively.
Also exhibited in Figure 7c, NX of low-bandgap samples was

centered at a value of 46, indicating the X site of most low-
bandgap samples was composed of iodine. Meanwhile, the X
site compositions of most large-bandgap samples was the
mixture of bromine and iodine. As shown in Figure 7d, the TIB
value of low-bandgap samples was concentrated in 1849−3080
kJ/mol, while the opposite value was spreading over 1800−
5000 kJ/mol. The remnant feature distributions are accessible
in Figure S23. The four candidate sets are accessible in our
GitHub: https://github.com/luktian/InverseDesignViaPSP/
tree/main/code9.

Figure 7. Statistical distributions of tf (a), τf (b), NX (c), and TIB (d) in explored candidate set.
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We also expanded our studies to several specific HOIP
chemical systems to provide potential candidates for
experimental researchers. For example, from our searching
results, we found that the candidates Cs0.334FA0.266MA0.400-
Sn0.769Ge0.003Pd0.228Br0.164I2.836, Cs0.366FA0.338MA0.296-
Sn0.800Cr0.104‑Pd0.096Br0.056I2.944, and Cs0.509FA0.412MA0.079-
Sn0.634Ge0.095Cr0.271Br0.109I2.891 had the optimal bandgap 1.34
eV, representing the Cs-FA-MA-Sn-Ge-Pd, Cs-FA-MA-Sn-Cr-
Pd, and Cs-FA-MA-Sn-Ge-Cr mixed HOIPs, respectively,
which might be potential non-Pb alternatives to the
Cs0.05FA0.79MA0.16PbxSn1−xBr0.52I2.48 (x = 0, 0.084, 0.168,
0.252, 0.336, 0.420, with bandgap 1.35−1.61 eV) studied by
Ji et al.19 In addition, the candidates Cs0.494MA0.217FA0.289-
Sn 0 . 8 6 6Ge 0 . 1 3 4B r 0 . 3 7 7 I 2 . 6 2 3 , Cs 0 . 3 0 5FA0 . 2 7 3MA0 . 4 2 2 -
Sn0.975Cr0 .025Br0 .264I2 .736, and Cs0.300MA0.675FA0.025-
Sn0.817Pd0.183Br0.051I2.949 also had a bandgap of 1.34 eV and
represented Cs-FA-MA-Sn-Ge, Cs-FA-MA-Sn-Cr, and Cs-FA-
MA-Sn-Pd mixed HOIPs, respectively. One hundred thirty-five
Cs-FA-MA-based candidates are provided in Table S9. The
bandgaps of Cs-FA-MA based HOIPs could be adjusted to the
ideal range 1.60−1.76 eV for the top part in tandem cells as
well. For instance, the candidates Cs0.392FA0.016MA0.592Cr0.383-
Sr0 .347Sn0 .270Br1 .171I1 .829 , and Cs0.445FA0.161MA0.394-
Pd0.508Cr0.228Sn0.263‑Br1.094I1.906, were found with 1.67 eV
b a ndg ap , wh i c h we r e non -Pb s ub s t i t u t e s o f
Cs0.15FA0.17MA0.68PbBr0.6I2.4 investigated by Sala et al.38 And
136 Cs-FA-MA based candidates are listed in Table S10. As for
the HOIPs with bandgap 1.20 eV,39−41 the non-Pb candidates
MA 0 . 8 1 5 FA 0 . 1 8 5 S n 0 . 9 2 7G e 0 . 0 7 3 I 3 ( 1 . 2 2 eV ) a nd
MA0.861FA0.139Sn0.914Ge0.086I3 (1.22 eV) were found, as
compa r ed to the e xpe r imen t a l s amp l e s , e . g . ,
FA0.55MA0.45Sn0.55Pb0.45I3 (1.24 eV),42 FA0.5MA0.5Sn0.5Pb0.5I3
(1.20 eV),43 and FA0.83Cs0.17Pb0.3Sn0.7I3 (1.23 eV).44 Twenty-
seven MA-FA-Sn based candidates are supplied in Table S11.
Moreover, from the explored samples, ASnI3 (A+ →
ammonium), AGSnI3 (AG+ → hydrazinium), and XQSnI3
(XQ+ → sulfonium) were also found with low bandgaps of
1.29, 1.29, and 1.30 eV, whose formability probability were
predicted over 99% in our recent study.45

Experimental Validation. A few studies on Sn−Ge mixed
HOIPs have been reported in recent years due to their
environmentally friendliness, high stability, and excellent
optoelectronic properties.46−48 However, there is a lack of
studies on the system MASnxGe1−xI3 according to our
collected data, except for the end points MASnI3 and
MAGeI3. To explore the bandgaps of Sn−Ge systems and
validate the WVR model, a series of samples formulated as
MASnxGe1−xI3 (x = 1, 0.85, 0.74, 0.66, 0) were synthesized,
whose predicted bandgaps via the WVR model were 1.28, 1.41,
1.51, 1.59, 2.01 eV, respectively. The experimental details were
provided in Section S3 of the Supporting Information. The
optical absorbance spectrum of the material is shown in Figure
S25. The optical bandgap was obtained by using the Tauc
formula,49 which resulted in 1.23 and 2.02 eV for MASnI3 and
MAGeI3 films, respectively. These two values are in good
agreement with other reports.50,51 The initial incorporation of
Ge (corresponding to x = 0.85) caused a sudden increase in
the optical bandgap edge as compared to MASnI3. With
increasing the Ge concentration (i.e., x changes from 0.85 to
0.66), the optical bandgap edge has a small shift to lower
wavelength, resulting in bandgaps of 1.53, 1.55, 1.54 eV
(corresponding to x = 0.85, 0.74, 0.66). The predictions of

these three new compositions were consistent to the
experimental bandgaps with the average error of 0.07 eV.

■ CONCLUSION
In summary, four tree-based ML models were built up, namely
CAT, XGB, LGB, and GBM models, based on the filtered 13,
13, 12, and 10 features, respectively. After tuning the model
parameters, the R2 values of LOOCV and testing set for four
models were 0.90−0.94 and 0.88−0.91, respectively. By
applying the self-developed WVR meta-model, the four
submodels were embedded together, exhibiting the compre-
hensive performance of LOOCV R2 0.95 and testing R2 0.91.
Then the top 10 features were analyzed by calculating the
SHAP contributions based the experimental data set and a
virtually generated data set, which revealed the mapping
relationships between the formulas and bandgaps in detail. In
particular, tf below 0.971 and τf in 3.75−4.09 were beneficial
for a low bandgap (e.g., 1.20 and 1.34 eV), while tf over 0.971
and τf in 4.09−4.18 (or lower 3.90) contributed to a large
bandgap (e.g., over 1.70 eV). To discover the new Pb-free
HOIPs with suitable bandgaps, we generated a universal
chemical space for the HOIP formula A′A″A‴B′B″B‴X′X″X‴,
in which 91, 8, and 3 choices were considered for the A, B, and
X sites, respectively, resulting in 8.20 × 1018 combinations. The
inverse design method PSP was proposed to find out the
candidate HOIPs with desired bandgaps, in which 733848,
764883, 746190, and 20242 candidates were found for the
HOIPs whose bandgaps were 1.34 eV for PSCs, 1.70/1.75 eV
for top cells in TSCs, and 1.20 eV for bottom cells in TSCs.
From the searched results , Cs0 .334FA0 .266MA0.400-
Sn0.769Ge0.003Pd0.228Br0.164I2.836, Cs0.366FA0.338MA0.296-
Sn0 .800Cr0 .104Pd0.096 ‑Br0.056I2 .944 , and Cs0.509FA0.412-
MA0.079‑Sn0.634Ge0.095Cr0.271Br0.109I2.891 were found for Cs-FA-
MA mixed HOIPs with optimal bandgap 1.34 eV for PSCs.
Cs0.392FA0.016MA0.592Cr0.383Sr0.347‑Sn0.27Br1.171I1.829 and
Cs0.445FA0.161MA0.394Pd0.508Cr0.228Sn0.263Br1.094I1.906 were found
for Cs-FA-MA mixed HOIPs with large bandgap for the top
cells in TSCs, while MA0.815FA0.185Sn0.927Ge0.073I3 and
MA0.86FA0.139Sn0.914Ge0.086I3 were found for the bottom cells
in TSCs. We believed that the inverse design methods as well
as the ML training processes could facilitate the development
of both photovoltaic fields and other advanced materials.
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