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Abstract 

The genus Hebeloma is renowned as difficult when it comes to species determination. Historically, many dichoto-
mous keys have been published and used with varying success rate. Over the last 20 years the authors have built a 
database of Hebeloma collections containing not only metadata but also parametrized morphological descriptions, 
where for about a third of the cases micromorphological characters have been analysed and are included, as well as 
DNA sequences for almost every collection. The database now has about 9000 collections including nearly every type 
collection worldwide and represents over 120 different taxa. Almost every collection has been analysed and identified 
to species using a combination of the available molecular and morphological data in addition to locality and habitat 
information. Based on these data an Artificial Intelligence (AI) machine-learning species identifier has been devel-
oped that takes as input locality data and a small number of the morphological parameters. Using a random test set 
of more than 600 collections from the database, not utilized within the set of collections used to train the identifier, 
the species identifier was able to identify 77% correctly with its highest probabilistic match, 96% within its three most 
likely determinations and over 99% of collections within its five most likely determinations.
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INTRODUCTION
Delineating species within Hebeloma
Why define species and what makes a species are ques-
tions that continue to be a matter of debate among 
biologists. Many of the discussed species concepts are 
in practice difficult to test (Taylor et  al. 2000; De Quei-
roz 2007; Hey 2001, 2006; Hey et al. 2003), or are theo-
retical concepts rather than operational definitions. In 
the quest for species limits, usually a discontinuation of 
characters is sought, be it reproductive isolation, physi-
ological, ecological, geographical traits, morphological or 
genetic discordance or a combination of several of these. 

In practice, the currently most popular criterium (Matute 
and Sepúlveda 2019; Lücking et al. 2020) for the delimita-
tion of species is reciprocal monophyly, ideally observed 
in several independent genetic markers analysed inde-
pendently (genealogic concordance). Also, not so rarely, 
reciprocal monophyly only in a single genetic marker, 
currently usually the ITS1 (Schoch et  al. 2012; Lücking 
et al. 2020), is used for delimitation. Dettman et al. (2003) 
pointed out that in cases in which reproductive isolation 
precedes genetic divergence, biological species may not 
be recognizable by (reciprocal) monophyly. Although 
species are still being described morphologically, in 
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practice species identification is often done primarily 
based on DNA sequence data, even when morphology 
is available, owing to its speed and the reproducibility 
of the result. However, whenever possible morphology 
is still used as a touchstone when testing the validity of 
molecularly (or otherwise) defined taxa, both in terms of 
the similarity within the defined group as well as for dis-
tinguishing its members from the members of other taxa.

Species delimitation is often not easy in Hebeloma. 
Following He et al. (2019) and Miyauchi et al. (2020), it 
appears to be one of the younger genera of the Agari-
cales. Many species share the same general appearance, 
size range and colouring. Also, molecularly, some species 
tend to be rather variable intraspecifically and not very 
divergent interspecifically (e.g. Aanen and Kuyper 1999; 
Eberhardt et al. 2015; Grilli et al. 2016).

Hebeloma, certainly in Europe, is one of the Agaricales 
genera the taxonomy and nomenclature of which have 
been investigated in depth in the past decade. Recent 
descriptions made from molecularly tested collections 
exist for all European and a number of non-European 
species. Within our work (see Beker et al. 2016), we have 
used various techniques to investigate the taxonomy of 
Hebeloma species and their boundaries. For the molec-
ular delimitation of species, we have explored various 
regions of the genome and for morphological species 
delimitation, we have made use of a sophisticated data-
base which currently has the parametrized details of 
about 9000 Hebeloma collections. Reproductive isola-
tion cannot be tested in Hebeloma. Many species have 
never been grown in culture, and even where crosses of 
monokaryotic strains succeeded, basidiomes, i.e. basidi-
ospores, were not formed by the resulting dikaryotic 
mycelia. For the assignment to putative biological spe-
cies we have relied heavily on the work of Aanen et  al. 
(2000a, 2000b, 2001, 2004). We have followed the ideas of 
De Queiroz (2007) in considering ‘lines of evidence’ with 
regard to species delimitation and searching for evidence 
using a combination of the three hypotheses mentioned 
above as well as searching for any ecological and biogeo-
graphical evidence.

Database
Our starting point for the delineation of species is the 
Hebeloma Database. This database, hosted on Biolomics 
version 12 from Bioaware SA NV, contains information 
of about 9,000 collections of Hebeloma from around 
the world. The set of collections includes all holotypes, 
epitypes, neotypes and lectotypes, as well as many iso-
types and paratypes, that could be located and loaned 
for study. The database entries contain collection details 
and a morphological description, as a number of param-
eters describing the collection both macroscopically and 

microscopically; for about a third of the cases, micro-
morphological characters have been analysed and are 
included. This allows searches of the database collections 
based on a given set of parameters. In this way, collec-
tions with similar properties have been clustered, param-
eters of collections that fall into the same phylogenetic 
clades have been compared and single-access keys (for 
example those published in Beker et al. (2016)) have been 
built on the database in the form of queries that are con-
tinually tested against all the database collections.

The Biolomics database does not, however, form a criti-
cal part of the identifier tool developed here. The user 
may supply data about collections to the tool in the sim-
pler form of a comma-separated values (CSV) file.

Morphological characters
The characters used within the study have been refined 
from a list that various authors (for example Bruchet 
1970; Romagnesi 1965, 1983; Favre 1955, 1960; Boek-
hout 1982; Smith et al. 1983; Vesterholt 1995, 2005) had 
developed over a period of years. Throughout the process 
of developing a tool for species identification, there is a 
need to balance a number of competing factors: choos-
ing characters that actually have the power to distinguish 
between species, choosing characters for which sufficient 
data is available to train an algorithm and choosing char-
acters that will be ‘user-friendly’ when others come to use 
the identifier in the future.

For those collections collected by the authors, the 
methodology for morphological analysis followed was 
that described in Beker et  al. (2016). Collections we 
have received from herbaria or that were sent in by 
other mycologists come with varying amounts of infor-
mation. Often some parameters had to be estimated 
from photographs or the exsiccate, which imposes dan-
gers of inaccuracy. While spores are normally relatively 
well preserved even in old material, cystidia and basidia 
may be badly collapsed. For type material, macroscopic 
information was taken from the protologue, while micro-
scopic analysis was carried out on the material and sup-
plemented from the protologue where necessary. Many 
characters now known to be important in species sepa-
ration may not have been recorded by the collector, e.g. 
many mycologists in the past did not record the number 
of full-length lamellae, that is, lamellae stretching from 
the stipe to the pileus edge. Similarly, the awareness of 
the mycorrhizal relationship between Hebeloma and var-
ious trees and shrubs varied over time. While collectors 
of the more distant past may not have noted possible host 
plants at all, others may only have noted the closest pos-
sible associate. For older collections, photographs rarely 
exist.
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For each analysed collection, subject to the state of the 
material, about 50 spores were measured in Melzer’s rea-
gent, excluding the apiculus. The maximum length and 
width of each spore was measured and its Q value (ratio 
of length to width) calculated. Average length, width 
and Q value were calculated and recorded alongside the 
median, standard deviation and 5% and 95% percentiles. 
The assessment and coding of spore characters followed 
Beker et al. (2016) and Vesterholt (2005).

The average width of the widest part of the cheilo-
cystidium in the vicinity of the apex appears to be an 
important character in the separation of species within 
Hebeloma (Vesterholt 2005). As written before, it is also 
important, when determining this average width near the 
apex, not to be selective with regard to the cystidia cho-
sen for measurement. To determine the average width at 
the apex about 100 cheilocystidia (where possible) were 
measured on the lamellae edge. For other measurements, 
at least 20 cheilocystidia (again, where possible), sepa-
rated from the lamella edge, were measured from each 
collection. Because of the complex shapes of the cheilo-
cystidia, four measurements were made: length, width at 
apex (A), width at narrowest point in central region (M) 
and maximum width in lower half (B). For each cheilo-
cystidium, the ratios A/M, A/B and B/M were also cal-
culated and the average values of the four measurements 
and three ratios across all measured cheilocystidia were 
recorded. Measurements were made in 5% KOH and 
Melzer’s reagent. For all other details with regard to our 
methodology, see Beker et al. (2016).

Among the species accepted by Beker et  al. (2016) 
only two pairs of species (H. aanenii and H geminatum; 
H. album, syn. H. fragilipes and H. pseudofragilipes) that 
could not be  unambiguously identified morphologi-
cally were accepted.

Sequence data
The generation of ITS sequence data was attempted for 
almost all of the collections examined, dependent on per-
mission. The internal transcribed spacer (ITS) region of 
the nuclear ribosomal RNA genes has been established as 
‘the’ species marker for fungi (Kõljalg et al. 2005; Schoch 
et  al. 2012). This marker system has been shown to err 
more often on the ‘lumping’ than on the ‘splitting’ side, 
i.e. the species resolution of the ITS is not always suf-
ficient (Schoch et  al. 2012; see also the “ITS caveats” of 
Lücking et al. 2020). This is certainly true for Hebeloma. 
Additional genetic markers were then amplified and 
sequenced from a subset of collections, aiding the molec-
ular phylogeny and delimitation of species and helping 
with species identification.

Within our project we have embraced in various com-
binations two variable domains of the mitochondrial 

small subunit of the ribosomal RNA genes (mitSSU), 
referred to as V6 and V9, as well as part of the gene for 
the second largest subunit of RNA polymerase II (RPB2), 
a partial sequence of the translation elongation factor 1 α 
(TEF1a) and the protein coding gene MCM7 (Minichro-
mosome Maintenance Complex Component 7). Techni-
cal details can be found in Eberhardt (2012), Eberhardt 
et  al. (2016, 2021a), Vesterholt et  al. (2014) and Cripps 
et al. (2019) and references therein.

In most publications from the project, Maximum 
Likelihood analyses of single and concatenated genetic 
markers were used to explore the molecular support of 
species, ideally by reciprocal monophyly of species clades 
in several genetic markers analysed separately, thus 
meeting the prerequisites of Taylor et al. (2000) “Genea-
logical Concordance Phylogenetic Species Recognition 
(GCPSR)”. In practice, a number of species could not be 
recognized this way. In Beker et al. (2016), the term “non-
discordant” was used for cases, when all sequences of a 
species were paraphyletic in relation to (a) monophyletic 
sister taxon, but not mixed with sequences from other 
species.

At the time Beker et al. (2016) was published, 64 of the 
84 species accepted had at least five sequences for the 
majority of genetic markers used (ITS, TEF1a, RPB2, V6 
and V9 of the mitSSU). Twenty-four of these 64 species 
were monophyletic in all five genetic markers. Eight spe-
cies were recognized based on morphology, ecology and 
(if available) putative reproductive isolation, but did not 
form monophyla in any of the single marker results; five 
of these taxa not even in the phylogram of the concat-
enated dataset (one of these species, H. oreophilum, we 
no longer recognize as distinct from H. clavulipes, also in 
Beker et al. 2016, see below).

Establishment of species boundaries
Armed with these data, agreement was sought between 
the molecular and morphological analysis in order to 
help fix species boundaries, also using locality and hab-
itat data as well as biological mating group data, where 
that existed. With these boundaries fixed, a total of 123 
distinct species have to-date been described using this 
methodology: 79 of the 84 species from Beker et  al. 
(2016) are included as-is. The remaining five have been 
synonymised in later work–H. fragilipes is replaced by H. 
album, H. dunense is replaced by H. velatum, both H. ore-
ophilum and H. clavulipes are replaced by H. palustre (all 
Eberhardt et al. 2022a) and H. hygrophilum is replaced by 
H. paludicola (Eberhardt et  al. in prep). Thirty-one fur-
ther species have been published as new or confirmed 
recently from Europe and other continents (Monedero 
and Alvarado 2020; Grilli et  al. 2020; Eberhardt et  al. 
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2020a, 2020b, Eberhardt et  al., 2021a, 2021b, 2022a, 
2022b). The remaining nine species, from Mexico and 
the United States, will be discussed in two forthcoming 
papers (Eberhardt et al. in press, in prep.). The complete 
list is given in Table 1. Note that this list does not cover 
all Hebeloma names currently accepted, only those that 
are current and have been described using the methodol-
ogy discussed above.

Identification keys
In the monograph of Beker et  al. (2016), 84 European 
species of Hebeloma, within 13 sections and four sub-
sections, were described and dichotomous identification 
keys provided to sections, subsections and species within 
sections. The descriptions and the keys were built on the 
basis of the database collections for each species. Con-
sequently, for species for which the database contained 
many collections from different locations and habitats 
it should be expected that the intraspecific variation 
was well covered, while for those species with very few 

collections, possibly rarer species, the descriptions given 
would necessarily be limited.

The identification keys provided in Beker et al. (2016) 
were polytomous keys, allowing the user two or more 
options at each choice, although in most cases only two 
options were allowed (dichotomous). Such keys are usu-
ally referred to as single-access keys (e.g. Hagedorn et al. 
2010) or in computer jargon, decision trees. With such 
keys the author defines a fixed set of choices (decisions) 
which the user must follow. At every step the user must 
choose between two (or occasionally more) choices and 
decide which path to take. At any stage a wrong decision 
will lead to either a wrong answer or to a dead-end where 
none of the options presented apply. For non-interactive 
keys, such as those printed in a book, single-access keys 
are the most common.

The keys of Beker et  al. (2016) were tested as a set of 
database queries across all collections of the 84 recog-
nized European species. At the time of writing the mono-
graph, the database had about 4500 records, that is, an 
average of about 50 collections of each species. However, 

Table 1  Current names of analysed and accepted Hebeloma species, by section

Hebeloma Includes

sect. Adherentia H. adherens

‘section Australe’ H. australe

sect. Denudata, subsect. Clepsydroida H. album, H. ammophilum, H. asperosporum, H. cavipes, H. cinnamomeum, H. ingratum, H. laetitiae, H. limbatum, 
H. matritense, H. pseudofragilipes, H. sordidulum, H. vaccinum

sect. Denudata, subsect. Crustuliniformia H. aanenii, H. alpinum, H. arcticum, H. aurantioumbrinum, H. bellotianum, H. crustuliniforme, H. eburneum 
H. geminatum, H. helodes, H. louiseae, H. luteicystidiatum, H. lutense, H. magnicystidiatum, H. minus, H. pallidola-
biatum, H. perexiguum, H. pusillum, H. salicicola

sect. Denudata, subsect. Echinospora H. echinosporum, H. populinum, H. rostratum

sect. Denudata, subsect. Hiemalia H. hiemale

sect. Duracinus H. duracinoides

sect. Hebeloma, ‘subsect1’ H. fuscatum, H. grandisporum, H. monticola, H. nigellum, H. paludicola, H. palustre, H. sordescens, H. spetsbergense

sect. Hebeloma, ‘subsect2’ H. alpinicola, H. ambustiterranum, H. cistophilum, H. colvinii, H. excedens, H. harperi, H. marginatulum, H. mes-
ophaeum, H. pascuense, H. psammophilum, H. pubescens, H. subtortum, H. velatum

‘section Islandica’ H. islandicum

‘section Mediorufa’ H. lacteocoffeatum, H. mediorufum, H. nothofagetorum

sect. Myxocybe H. radicosum, H. sagarae

sect. Naviculospora H. avellaneum, H. catalaunicum, H. nanum, H. naviculosporum, H. subaustrale, H. subfastibile

sect. Porphyrospora H. aminophilum, H. angustilamellatum, H. flavidifolium, H. ifeleletorum, H. indicum, H. lactariolens, H. parvisporum, 
H. porphyrosporum, H. radicans, H. sarcophyllum, H. victoriense, H. vinosophyllum, H. youngii

sect. Pseudoamarescens H. pseudoamarescens

sect. Sacchariolentia H. fusisporum, H. ischnostylum, H. nauseosum, H. odoratissimum, H. sacchariolens

sect. Scabrispora H. anthracophilum, H. birrus, H. circinans, H. cylindrosporum, H. danicum, H. laterinum, H. lindae, H. luchuense, H. 
melleum, H. pumilum, H. radicosoides, H. viscidissimum

sect. Sinapizantia H. bulbiferum, H. sinapizans

sect. Syrjense H. syrjense

sect. Theobromina H. alboerumpens, H. cohaerens, H. erumpens, H. griseopruinatum, H. parvicystidiatum, H. plesiocistum, H. theobro-
minum, H. vesterholtii

sect. Velutipes H. aestivale, H. albidulum, H. celatum, H. citrisporum, H. erebium, H. incarnatulum, H. leucosarx, H. neurophyllum, H. 
quercetorum, H. subconcolor, H. velutipes
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in practice, while some species were represented by more 
than 200 collections others had very few collections, in 
a small number of cases only one. Some of the southern 
European species were at the time under-represented 
on the database; this has since been largely rectified in 
Grilli et  al. (2020). This book highlighted a number of 
instances where, with a larger database of collections, it 
was clear that some of the species descriptions in Beker 
et al. (2016) had been too narrow and consequently the 
dichotomous keys provided were inadequate and could 
lead to incorrect determinations. While pointing out 
these difficulties associated with descriptions based on 
a small number of collections, Grilli et al. (2020) did not 
provide updated keys.

Multi-access keys (often called ‘synoptic’ keys, although 
some authors reserve the term synoptic for keys that 
strictly follow a taxonomic path rather than focusing on 
diagnostic features that aid species separation) allow the 
user, at every step, to select from a list of characters and 
choose which to address, rather than having to follow a 
predefined and fixed path through the characters. Multi-
access keys lend themselves to computer-aided use.

Multi-access keys, particularly those that are interac-
tive, have a number of advantages over single-access 
keys. The user, trying to determine the species of their 
specimen, may select and enter information in any 
order; focusing on features (characters) and questions 
for which they believe they have the information to cor-
rectly answer the question. The computer can present 
additional information or guidance as each character is 
addressed. After every step, the user may be presented 
with possible identifications and even further guidance 
including images or supplemental text.

Generalising identification keys with machine learning
In recent years the concepts of Artificial Intelligence 
(AI) and machine-learning (ML)2 have gained trac-
tion. AI encompasses the concept of developing com-
puter systems able to perform tasks normally requiring 
human intelligence, such as visual perception, speech 
recognition, decision-making and translation between 
languages. ML algorithms are used in a wide variety of 
applications, such as in medicine, fraud recognition, 
image recognition and email filtering, where it is difficult 
to develop explicit algorithms to perform the tasks. In the 
case of identification keys, the idea is to generalize the 
concept of a multi-access key. Instead of a human expert 
devising one key, a computer is allowed to search among 
a very large number of possible keys and select one that 

accurately assigns the most sample data, known as “train-
ing data”, to the correct species. Thus, the predictions or 
decisions are made without being explicitly programmed 
to do so. Moreover, the algorithm will also include uncer-
tainty or probabilistic estimates to reduce the prospect of 
being sent down a “blind alley” as is possible particularly 
with single access keys. It is also anticipated that as the 
training data expands so the computer model automati-
cally adapts to the new information received, rather than 
requiring a human to revisit a key authored by hand.

The use of AI and ML in species determination is still 
in its infancy but evolving rapidly as advances in the 
fundamental ML algorithms are developed by computer 
scientists. Within mycology, we are aware of two broad 
approaches to the use of ML tools: image-based learning 
and sequence-based learning.

For images, an example is using macroscopic images. 
Zieliński et  al. (2020) used a deep learning approach to 
classify microscopic images of various fungus species 
found in the context of human infection. Evangelisti et al. 
(2021) used deep learning to quantify the extent and kind 
of root colonization and hyphae abundance of arbuscular 
mycorrhizal fungi via images of plant root systems.

For sequences, Vu et al. (2020) applied a deep learning 
approach to the classification of yeast and mould barcode 
sequences. Delgado-Serrano et  al. (2016) developed a 
Naïve Bayes classifier to classify to genus level based on 
ITS1 sequences. Meher et al. (2019) created a fungal clas-
sifier again using ITS sequences, but used a random for-
est approach to machine learning.

Outside of mycology, a broader overview of machine 
learning approaches to species determination is given 
in Wäldchen and Mäder (2018), however the focus is 
exclusively on image-based machine learning. The image-
based approach is commonly applied to plants (see e.g. 
Sun et al. 2017; Mahmudul Hassan and Kumar Maji 2021; 
Bambil et al. 2020).

The uniqueness in this present study is the application 
of ML algorithms not to images or sequence data but to 
macro- and microscopic character data of a single fun-
gal genus  (Fig.  1). The machine “learns” the characters 
that together are characteristic of a particular species. 
We present here the manner in which both a ‘training 
set’ of sample data and a ‘testing set’ of collections were 
selected. The testing set is not used at all during the 
training phase and is used only to assess the accuracy of 
the algorithm once it has been calibrated. The parameters 
that were used in training are discussed, together with 
results from different experiments that were carried out 
using different parameters.

Additionally, not every collection has all character data 
defined–many collections came from herbaria, citizen 
scientists or mycologists with incomplete data. While, in 

2  In this paper ML will exclusively be used to abbreviate Machine Learning, 
not Maximum Likelihood.
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most cases, the microscopic information could be gen-
erated, much of the macroscopic information or meta-
data is lost forever. It is useful however to include even 
incomplete collection data as it may aid the effectiveness 
of the algorithm–a method to include such data is pre-
sented. As well as availability, the subjectivity (and thus 
consistency) in the measurement of the character is also 
important. For instance, colour, given so much variation 
in conditions, age and perception, may be particularly 
inconsistently recorded. A discussion of which groups of 
characters were useful is included.

MATERIALS AND METHODS
A Hebeloma species was recognised for this study if 
it had been publicly described and analysed using the 
methods outlined in the introduction. The full list of 123 
recognised species is shown in Table 1, ordered by (sub)
section. The groupings used largely follow the thirteen 
sections and four subsections of Beker et  al. (2016) but 
with the following additions:

–	 H. sect. Adherentia, introduced in Monedero and 
Alvarado (2020).

–	 The placement of H. islandicum, originally included 
within H. sect. Naviculospora in Beker et  al. (2016), 
was found to be problematic, as discussed in Eber-
hardt et  al. (2021a). Here it is treated as being in a 
separate section, to which we refer as ‘section Island-
ica’.

–	 H. australe, not found in Europe and thus not treated 
in Beker et  al. (2016), was found to ‘sit’ outside the 
thirteen defined sections. Consequently, it is here 

treated as being within a separate entity, to which we 
here refer as ‘section Australe’.

–	 Similarly, the New Zealand species of H. lacteocoffea-
tum, H. mediorufum, H. nothofagetorum are referred 
to here as ‘section Mediorufa’.

–	 H. sect. Hebeloma is divided into two informal ‘sub-
sections’ based on morphology: ‘subsect1’ and ‘sub-
sect2’. Section Hebeloma ‘subsect1’ consists of those 
species with distinctly dextrinoid, mainly amygda-
loid spores and ‘subsect2’ consists of those species 
with indextrinoid or at most indistinctly dextrinoid, 
mainly ellipsoid to ovoid spores.

It is our intention to properly define the new sections 
and subsections in future publications.

A collection is included in the study if it had been 
assigned to one of these included species and if it has 
been analysed such that sufficient of its characters are 
available. Of the 8928 collections on the database, 3072 
met both of these conditions and so were  used. The 
remainder were not used in the study. Within the calibra-
tion of each identifier, 70% of collections for each species 
were assigned, at random, to the training set and 30% to 
the testing set. These sets will be defined further below.

For each tested group of characters, two identifiers 
were created–one that is trained on species and thus 
assigns (probabilistically) a collection to a species, and 
one that is trained only on the (sub)section to which a 
training set collection belongs and thus assigns to a (sub)
section too. We call these a “species identifier” and “(sub)
section identifier” respectively. Although any species 
identifier can be turned into a (sub)section identifier by 

Fig. 1  Conceptual workflow for a character-based machine learning identifier. Characters are transformed to feature vectors which are transformed 
into probabilities by the machine. Finally, these are mapped back to classes (species or sections) for presentation



Page 7 of 20Bartlett et al. IMA Fungus           (2022) 13:13 	

simply summing probabilities of species in the same (sub)
section it was decided to test the direct training on sec-
tions as the two approaches would not necessarily give 
the same result.

Machine learning from sets of characters
Viewed from the perspective of machine learning (ML), 
the problem of assigning a collection parameterized by a 
set of characters to a species, can be viewed as a multi-
class supervised learning problem. In the terminology 
of ML, the characters are the “features” and the species 
or (sub-)sections are the “classes”. By “supervised” it is 
meant that the machine is told to which class particular 
collections, those in the training set, belong.

Suppose that, given a collection c and a set of charac-
ters F, the collection can be represented by a vector of 
numbers F(c). This vector is called the feature vector. The 
mechanism for determining this representation is dis-
cussed later. Further suppose that the possible class of 
outputs is S (in this case study S will always be the set 
of Hebeloma species or the set of Hebeloma sections and 
subsections) which has M elements. Then a machine 
learning algorithm is a function NN that takes a vector 
of length N as the input and outputs a vector length M, 
where each element of the output is between 0 and 1 and 
sum up to 1. The i-th element of the output is interpreted 
as the probability that collection c under consideration 
belongs to the i-th class:

Suppose the actual class of the collection is C. The 
cross-entropy loss of this function is then defined to be:

where I is the indicator function. This loss is high if the 
probability assigned to the correct species is low and 
monotonically tends towards zero as the probability 
tends to 1. Very low probabilities are particularly highly 
penalized due to the nature of the log function. Let the 
total loss be the sum of the cross-entropy losses across 
all collections in the training set. The calibration of a 
machine learning algorithm is equivalent to finding the 
parameters in NN that minimize the total loss across all 
members of the training set: if the total loss is small, then 
all training set collections must have a high probability of 
being assigned to the correct species.

Note it is assumed there is no uncertainty to the expert 
determination that placed collection c in class C. Nor 
is there any uncertainty in the measurement of charac-
ters (i.e. in the value of F(c)). This implies, from the per-
spective of the machine learning algorithm, that these 

P(c,i) = NN(F(c), learnable parameters)[i]

i∈S

−I{i=C} log (p(c, i))

collections and their assignments are seen as the “gospel” 
truth that we are trying to learn from.

The choice of NN for the name of the function belies 
the fact this function is usually chosen to be a particular 
type of function called a neural network. Such functions 
can be minimized by iteratively updating the learnable 
parameters by a process of back propagation (Chauvin 
and Rumelhart 1995). Once the loss function is mini-
mized, the learnable parameters are frozen and the func-
tion NN is completely known.

The feature vectors of other collections, i.e. collections 
not from the training set, can then be computed and 
the function NN applied to these new vectors. A set of 
class probabilities is then obtained for the new collec-
tion. If the machine is well-chosen (i.e. if the training set 
and testing set have similar properties and the character 
group is rich enough to detect these similarities), then 
these probabilities will also match the actual class of the 
new collection. If, on the other hand, the function NN 
has good results for the training set but not other collec-
tions, then the function is said to be ‘overfitted’.

Choosing a ML framework
While the learnable parameters are varied as the itera-
tive solver searches for a solution, there are several ways 
to control the functional form of the function NN and 
how the solver iterates. Collectively these can be seen as 
hyperparameters to the system. In this study we experi-
ment with various hyper-parameterizations and report 
on the results.

The base software used was Python 3.7.8 (Van Ros-
sum and Drake 2009) primarily developed and run on a 
Windows 10 laptop with typical hardware specifications, 
but also tested on Linux. The scripts we developed were 
dependent on the following open source Python pack-
ages: PyTorch (Paszke et  al. 2019) version 1.9.1, scipy 
v1.5.2 (https://​scipy.​org/), pandas v0.25.1 (https://​pandas.​
pydata.​org/), numpy v1.19.2 (https://​numpy.​org/), dill 
v0.3.2 (https://​pypi.​org/​proje​ct/​dill/) and reverse_geoco-
der v1.5.1 (https://​pypi.​org/​proje​ct/​rever​se_​geoco​der/), 
but did not depend on these specific versions in a critical 
way; other versions may be substituted. Interaction with 
the tool for both creating and verifying identifiers is car-
ried out via a command line interface.

Each functional form NN is implemented as a PyTorch 
torch.nn.Module instance with either one or two hid-
den layers. Each hidden layer has an activation function 
of either Rectified Linear Unit (ReLU) (Agarap 2018) or 
Mish (Misra 2020). The dimensionality of each hidden 
layer was set equal to the maximum of the dimensionality 
of the feature set and the dimensionality of the class.

A total of five optimizers were used to minimize the 
loss function: Stochastic Gradient Descent (SGD) (Bottou 

https://scipy.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://numpy.org/
https://pypi.org/project/dill/
https://pypi.org/project/reverse_geocoder/
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1999), Adam (Kingma and Ba 2015) and AdamW (Losh-
chilov and Hutter 2019). For both the Adam and AdamW 
optimizers, the “AMSGrad” variation proposed in Reddi 
et al. (2018) was also evaluated.

For Adam and AdamW, an identifier was calibrated 
for each learning rate in the set {0.0001, 0.0002, 0.0005, 
0.001, 0.002, 0.005, 0.01, 0.02, 0.05} and the highest per-
forming identifier chosen. For SGD learning rates {0.05, 
0.1, 0.2} were used. In every case the optimizer search 
was allowed to run for a maximum of 1000 epochs.

For all identifiers that were created, the pool of avail-
able collections was always divided so that, within each 
class, 70% of the collections were assigned to the train-
ing set and 30% to the testing set. Within a class, the 
collections were assigned to the training or testing set 
at random using Python’s built-in random module. In 
particular there was no attempt to balance the two sets 
so that each contained collections with any particular 
property. Critically, as with all machine learning, only the 
training test was used to calibrate the learnable param-
eters of the identifier. The testing set was set aside and 
used only to test the calibrated identifier on an independ-
ent set of data.

Encoding characters to features
In the preceding discussion it was supposed for each col-
lection that there was a vector F(c) of length N, where 
N is the dimensionality of the feature set to use as input 
to the machine learning algorithm. In practice however 
the data is not initially in numeric form. E.g. the notions 
“Was associating with Pinaceae” or “Has spore orna-
mentation type O2” are not numeric. Therefore, prior to 
passing a collection to the machine learning algorithm, a 
transformation was first applied. In this case study, char-
acters were always transformed to a value between 0 and 
1. Thus a collection of N characters becomes equivalent 
to a point on or in the N-dimensional [0, 1] cube. The 
mapping of continuously-valued characters and dis-
cretely-valued characters are handled separately.

Continuously‑valued characters
Given a character, there is more than one way to map 
it to a feature value. For example, average spore lengths 
might range from 5 µm to 20 µm. A simple way to map is 
by uniform mapping–5 µm maps to 0, 20 µm maps to 1 
with linear interpolation in between. In practice charac-
ters are not distributed uniformly–it is much more likely 
for the average spore length of a Hebeloma collection 
to be around 11 µm long rather than 20 µm. A uniform 
mapping would therefore cause too much ‘bunching’ 
around typical feature values. Instead, a probability dis-
tribution is implied from collections in the training 
set and assigned a feature value F(y) = P(X < = y) in the 

implied distribution. By construction this means that fea-
ture values in the training set are ‘spread out’ between 0 
and 1. Although ML algorithms should, in principle, be 
able to handle this re-scaling themselves with a well-cho-
sen network, in practice, it appears that this extra ‘help’ 
improves the quality of the learning. The implied distri-
butions for all characters are shown in Additional file 1: 
Appendix Fig. S1.

Discretely‑valued characters
The discretely-valued characters in this study are of the 
form “Is O3-type spore ornamentation present?” or “Was 
the collection found in Europe?” and therefore have only 
two possible values. Thus, the character simply maps to 0 
if it is false or absent and to 1 if it is present or true.

Character groups
The scheme described above shows how each character 
is mapped to a feature value. Each character is mapped 
individually and does not depend on any other character 
that the collection may have. This means that it is pos-
sible to take arbitrary groups of characters and create 
an identifier from that group. In this study nine such 
‘character groups’ were chosen manually by experimen-
tation and guesswork as to which groups of characters 
might work well together. They were also guided by the 
amount of available data: it was not possible to include 
a character if very few collections had data recorded for 
that character. There was no attempt, in this study, to ask 
the machine to determine automatically a ‘good’ group of 
characters to use. Table  2 shows which characters were 
included in which group.

Table  2 also shows the number of dimensions each 
character contributed to the feature vector. For example, 
collections were characterized as having one of six pri-
mary cheilocystidia shapes. Each shape contributed one 
dimension (“has shape cylindrical”, “has shape pyriform” 
and so on) for a total of 6 dimensions. The total number 
of dimensions in the feature vector ranges from as few as 
19 for CG1 through to 33 for CG9. Character Groups A 
and B have far fewer characters included in them. These 
special character groups will be used only for “second-
pass” section-specific identifiers (see “Section-specific 
identifiers” section below).

Identifier enhancement techniques
The preceding section discussed the basic workflow for 
creating an identifier from characters. In this section, 
extensions to the basic workflow that might be expected 
to enhance the results that the identifier can achieve are 
examined.
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Data augmentation
As discussed, just over 3,000 collections have had a 
sufficient number of their characters analysed to be of 
potential use to the algorithm. Even within these col-
lections however, the complete set of data may not 
have been recorded, e.g. for historical collections, the 
number of complete lamellae may not be available. 
The underlying machine learning algorithms always 
require complete data. That is, a collection can only 
be included in a testing or training set for a particular 
Character Group if that collection has data for all char-
acters required by that Group. We are thus left with 
a dilemma–if we increase the number of characters 
used by a particular Group, with the aim of giving the 
machine more information, the available pool of collec-
tions with complete data decreases, thus reducing the 
amount of ‘training’ provided.

Because many collections were missing just one char-
acter we are able to reduce the impact of the problem 
by introducing a form of Data Augmentation (Shorten 
and Khoshgoftaar 2019) that enables the collection to be 
included in the training set. Specifically, if a collection is 
missing one character, it was augmented with the aver-
age value of that character across other collections of that 
species in the training set.

Section‑specific identifiers
Another approach to the problem of limited data is that 
of chaining different identifiers utilizing the fact that 
some characters are only important within a subset of 
species in the genus, typically a subsection. We could 
use an identifier I, using a limited set of characters, to 
establish to which section a collection is likely to belong 
and, if that section has collections with more data, apply 
another identifier, trained only on collections in that sec-
tion but using more characters, to identify the species 
within the section. This approach means that complete 
data for collections is only required for particular sec-
tions, rather than for the whole genus.

Even if more data is not available, it seems possible 
that a dedicated or focused identifier, trained only on the 
subset, may also give an improved estimate, particularly 
if the section appears “difficult”. A further possible vari-
ation is to use fewer characters in a particular section in 
order to give greater importance to those that remain. In 
this study we experiment with Hebeloma subsect. ‘sub-
sect1’ by producing specialised identifiers trained only 
on the section but keep the character group the same as 
the ‘parent’ identifier. In particular we will test CGA and 
CGB, groups consisting of only a small number of charac-
ters that our experience suggest are particularly good at 
distinguishing members of Hebeloma subsect. ‘subsect1’.

The notion of ‘chained’ identifiers is formalized as fol-
lows. Given a set of species S and a collection c, suppose 
that identifier I assigns a probability PI,s (c) that collection 
c belongs to species s in S. Further suppose there exists 
a subset of species T ⊂ S and another identifier J that 
assigns c to t ∈ T with probability PJ,t(c). Then a new iden-
tifier can be defined as I-then-J:

i.e. for species within the subset T, the probability from 
the “specialist” identifier J is assigned, weighted so that 
the total probability across all species is 1.

Post identifier filtering
An identifier will usually assign some probability (how-
ever small) to every possible class. We may decide that 
the collection cannot possibly be from that class due to 
some particular value that it has. A typical example may 
be a collection from Europe cannot possibly be a species 
that is known only in North America. We may choose to 
assign probability zero to all North America-only spe-
cies and scale up probabilities for other species appro-
priately. In this case we call the continent character a 
filtering character. The decision on whether a character 
value implies exclusion could be taken completely inde-
pendently (i.e. by external expert judgement) or could be 
implied from the training set. In the latter case we would 
say that a species is “known to North America” if there is 
a collection of that species in the training set.

The notion of a filtering character is thus potentially 
a double-edged sword. It may improve the quality of an 
identifier by filtering out false positive identifications, but 
also runs the risk of assigning zero probability to new dis-
coveries (e.g. a species found on a continent for the first 
time). This issue is discussed further in the results.

In formal terms, suppose there exists an identifier I 
which assigns probability PI,s(c) to collection c being of 
class s and a feature F which filters out class T ⊂ S if F(c)
ϵR– “the exclusion zone”, then the filtered identifier I’ is 
defined by

Metrics
We evaluated the performance of a calibrated identifier 
by calculating several commonly-used (e.g. Sammut and 
Webb 2010) metrics for collections in the testing set.

PI−then−J,s(c) =







PI ,s(c) if s /∈ T

PJ ,s(c)

�

�

t∈T

PI ,t(c) if s ∈ T

PI ′,s(c) =











0 if s ∈ T

PI ,s(c)

�

�

t∈S\T

PI ,t(c) if s /∈ T
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A collection is said to be of rank K if the identifier 
assigned the collection’s true class as its Kth highest 
probability. The metrics are then defined as follows:

Top N score The proportion of testing set collections 
that were rank N or higher. In particular, the “Top 1” 
score is the proportion of collections where the identifier 
assigned the highest probability to the correct species. 
The Top 3 score is the proportion to which the identifier 
assigned one of its highest 3 probabilities and so on. We 
give scores for Top 1, Top 3 and Top 5.

Mean Reciprocal Rank (MRR) If a collection is Rank 
N, then assign the score 1/N to this collection. The MRR 
score is then the average of these reciprocal ranks across 
the testing set. The highest possible score is 1 (if all col-
lections are Rank 1) so becomes comparable with Top N 
but does not suffer from the problem of an arbitrary cut-
off of that metric.

Macro-averaged F1 
(

Fm
1

)

 As described in Picek et  al. 
(2021a), the macro-averaged F1 score (Chinchor 1992) is 
a metric that removes the bias in favour of classes with 
large numbers of collections. The authors note that this 
imbalance of dataset sizes is prevalent in nature and 
that it is true also in the case of the Hebeloma database. 
We have some species (e.g. mesophaeum) with hun-
dreds of collections but other species (e.g. grandispo-
rum) with collections in single figures. The overall score 
Fm
1 = 1

N

∑

F1,S , where N is the number of classes and 
F1,S is the class-specific score defined by

F1,S = 2(PS ∗ RS)
/

(PS + RS) , where

Here TPS is the number of collections correctly defined 
as S (true positives, or Top 1 predictions for this class), 
FPS is the number of collections incorrectly predicted to 
be S with the highest probability (false positives) and FNS 
is the number of collections of type S that were predicted 
to be something else (false negatives). I.e. PS is the preci-
sion; RS is the sensitivity; and F1 is the harmonic mean of 
the two.

RESULTS
For each combination of Character Groups and hyper-
parameters tried, the training phase completed success-
fully and returned a set of learned parameters. Taken 
together, each set of Character Group, hyperparameters 
and learned parameters collectively becomes an identifier 
that is saved to a file and kept for future use. A user of the 

PS =
TPS

TPS + FPS

RS =
TPS

TPS + FNS

identifier supplies as inputs the values of characters in 
the Character Group and the identifier outputs predicted 
classes for both species and section, listed in order of 
probability. A typical set of inputs and outputs for Char-
acter Group 7 is shown in Fig. 2.

For each identifier, each metric was computed for the 
testing set. The most accurate identifier for species clas-
sification uses Character Group 8, a neural network with 
one hidden layer using a ReLU activation function and 
the AMSGrad variant of the AdamW optimizer. This 
identifier has a Top 1 metric of 76.7%, a top 3 metric of 
95.8% and a Top 5 metric of 99.2%. The MRR score is 86.5 
and F1 score is 72.1. The corresponding identifier tackling 
the problem of assigning to the correct section has Top 1, 
3 and 5 metrics of 94.9%, 99.3% and 99.9% respectively.

Table 3 shows the results for all character groups with 
other parameters held fixed. The weakest identifiers–
CG2, CG3 and CG1– are the characters groups that omit 
the number of lamellae and cheilocystidia shape features 
and both respectively, suggesting these characters are 
particularly important in allowing the identifier to resolve 
species. The pattern of adding in further characters to 
improve the identifier by any metric continues up until 
CG8. However, the addition of including the plant asso-
ciation character (i.e. moving from CG8 to CG9) causes a 
decrease in performance. It is important to note that the 
available training set size was smaller for this character 
group.

Additional file  2: Appendix Table  S1 shows a com-
plete breakdown, for each species and section, for the 
CG7 identifier with the hyperparameters as in Table  3. 
The table reveals that some sections are more difficult to 
classify than others, with MRR scores ranging from 95 
for Scabrispora down to 78 for Denudata-Clepsydroida 
amongst sections which had more than 50 collections in 
their testing set.

Table 4 shows the results for identifiers where the tar-
get classes were (sub)sections rather than species. In this 
case there are only 21 output classes rather than 123 in 
the case of species. As with the case of species, the CG1, 
CG2 and CG3 character groups are significantly worse 
than the others, but the CG4-9 perform broadly similarly.

Extensions
Table 5 compares identifier results in the case where data 
augmentation was allowed to interpolate missing data in 
the training set and when it was not. Results are shown 
for Character Groups 7 and 8; all other parameters were 
held constant as in Table 3.

The results indicate that adding extra, albeit incom-
plete, data was helpful for Character Group 8, but not 
Character Group 7.



Page 12 of 20Bartlett et al. IMA Fungus           (2022) 13:13 

Table  6 shows the results of applying a “second pass” 
identifier on collections that were suspected to be (with 
probability > = 90%) of being in section Hebeloma sub-
sect. ‘subsect1’ by the main or “first pass” identifier. 
Where the first pass character group 7, most choices for 
the second pass did not improve results. An exception is 

using Character Group 8 for the second pass. In this case 
an improvement was seen for the Top 1, Top 5 and MRR 
metrics. When the first pass used CG8, no second pass 
gave an improvement across the majority of metrics.

Table 7 compares identifier results in the case where 
post-identifier filtering was applied to exclude species 

Fig. 2  Representation of the identifier as presented to a user. The user enters inputs on the left-hand side. The identifier computes class 
probabilities by calculating the same Neutral Network function as during the training phase, but now with fixed ‘learnt’ parameters. The data used 
here is from collection HJB17396. Expert analysis had assessed this collection to be Hebeloma circinans from H. sect. Scabrispora. Thus, in this case, 
the top ‘guess’ of the identifier is correct and this result would be included in the “Top 1” metric

Table 3  Species identification success metrics for various choices of characters used to calibrate the classifier

In these results, neither the continent filter nor second pass is applied, and collections without recorded data for at most one character are permitted. The 
optimization method is AdamW and the network shape is one hidden layer with a ReLU activation function. In this and subsequent results tables, the final five 
columns refer to the Top 1, Top 3, Top 5, Mean Reciprocal Rank and macro F1 metrics respectively, all scaled to give a score out of 100, which would represent perfect 
prediction

Testing set Metrics (/100)

Character group size (n) Top 1 Top 3 Top 5 MRR F1m

CG1 790 57.3 84.4 92.9 72.1 48.6

CG2 779 66.5 91.8 95.5 79.2 63.2

CG3 678 63.6 91.4 96.2 77.7 57.7

CG4 685 73.3 94.9 97.7 84.2 72.3

CG5 671 74.1 94.9 99.3 84.8 68.5

CG6 671 75.4 94.8 98.5 85.4 70.2

CG7 671 75.0 95.4 98.8 85.2 72.4

CG8 528 76.7 95.8 99.2 86.5 72.1

CG9 469 73.6 94.5 98.5 84.3 69.1
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which had not been found on the continent on which 
the test set collection was found. Character Groups 7 
and 8 were used and all other parameters held constant.

The results indicate that the effect of continent filtering 
is a modest improvement in identifier performance when 
filtering was applied to the species identifier. For the sec-
tion identifier, there was no such improvement for CG8. 
Sections are less likely to be restricted to any given con-
tinent, so there are fewer results to filter out, and for sec-
tions which are restricted by continent, the identifier did 
not make any mistakes.

Whilst analysing the results of one identifier it was 
observed that significant errors could occur for individ-
ual collections when filtering was applied. Specifically, 
due to the small number of H. grandisporum collections 
and the random nature of the set selection, only collec-
tions from North America (Greenland) happened to 
be included in the training set, whereas the testing set 
included a collection from Europe. The identifier with 
continent filtering applied thus always assigned zero 
probability to this collection being H. grandisporum–
despite its characteristic large spores–as, from the 

perspective of the identifier, that species was “unknown” 
in Europe.

Table  8 shows the choice of functional optimizer 
makes a small difference to the accuracy of the identi-
fier especially in the more difficult case of species iden-
tification. Overall the AMSGrad variant of the AdamW 
optimizer achieved the best results across all metrics 
and identifier. The results presented here are consistent 
with the general machine learning literature in which 
AdamW with AMSGrad was presented as in improve-
ment over AdamW which in turn was presented as an 
improvement over Adam, suggesting that the species 
identification problem may stand to benefit from any 
further improvements that are made by the machine 
learning specialists. For classification to section, the 
differences were very small.

Table  9 shows a mixed picture when considering 
network shapes and activation functions. For spe-
cies identification, the one-layer networks (ReLU or 
Mish alone) performed marginally better than the 
two-layer variants. This result is initially a little sur-
prising as any one-layer network can be embedded in 
a two-layer network by setting the second layer to the 

Table 4  Section identification for the same set of characters groups. The hyperparameters were the same as in Table 3

Testing set Metrics (/100)

Character group size (n) Top 1 Top 3 Top 5 MRR F1m

CG1 790 75.2 96.5 99.1 85.6 56.3

CG2 779 88.4 98.5 99.7 93.5 72.4

CG3 678 79.9 97.8 99.4 88.8 67.0

CG4 685 89.8 99.1 99.9 94.5 74.9

CG5 671 94.5 99.6 99.9 97.0 81.0

CG6 671 94.6 99.0 99.9 96.9 80.0

CG7 671 94.9 99.3 99.9 97.2 82.8

CG8 528 94.5 99.4 100.0 97.0 80.0

CG9 469 94.7 99.6 99.8 97.1 82.2

Table 5  Comparison of results using augmented and non-augmented data

Metrics (/100)

Class CG Augmentation Top 1 Top 3 Top 5 MRR F1m

Species 7 Not augmented 77.1 95.6 99.0 86.5 73.3

Species 7 Augmented 75.0 95.4 98.8 85.2 72.4

Species 8 Not augmented 71.2 93.8 97.6 82.2 64.8

Species 8 Augmented 76.7 95.8 99.2 86.5 72.1

Section 7 Not augmented 94.2 99.7 99.9 96.8 80.0

Section 7 Augmented 94.9 99.3 99.9 97.2 82.8

Section 8 Not augmented 94.9 99.3 99.8 97.1 82.4

Section 8 Augmented 94.5 99.4 100.0 97.0 80.0
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identity function and so any two-layer network can find 
at least as good a solution to the optimization problem 
as a one-layer network. The result here is thus sugges-
tive that the extra free parameters in the two-layer net-
work allow for some overfitting of the training set, and 
consequently slightly worse results for the testing set. 
In other words, there is an insufficient quantity of data 

to solve effectively for all the hidden parameters in a 
multi-layer network.

DISCUSSION
The results presented here indicate that the approach 
of using character-based information as input data to a 
machine learning algorithm shows significant promise. 

Table 6  Comparison of results where the identifier works in two phases

The first phase used Character groups CG7 or CG8 and was applied to the whole genus. The second pass used another Character Group and was only applied to the 
collections that the first pass suggested had a > = 90% chance of being in Hebeloma subsect. ‘subsect1’. The second pass identifiers were trained only on data from 
Hebeloma subsect. ‘subsect1’ collections

Metrics (/100)

Class CG Second pass CG Top 1 Top 3 Top 5 MRR F1m

Species 7 No second pass 75.0 95.4 98.8 85.2 72.4

Species 7 1 74.5 94.9 98.5 84.9 71.4

Species 7 2 74.1 94.3 98.7 84.6 71.0

Species 7 3 75.3 95.4 98.8 85.4 72.2

Species 7 4 75.0 95.2 98.7 85.2 72.0

Species 7 5 74.7 95.1 98.7 85.0 71.6

Species 7 6 74.5 95.4 98.8 84.9 71.6

Species 7 7 74.7 95.2 98.7 85.0 72.0

Species 7 8 77.5 95.3 99.2 86.7 72.1

Species 7 9 72.3 94.7 98.3 83.7 66.3

Species 7 A 73.8 94.6 99.0 84.3 70.3

Species 7 B 75.6 93.9 99.1 85.2 69.7

Species 8 No second pass 76.7 95.8 99.2 86.5 72.1

Species 8 1 75.9 95.1 99.2 85.8 71.0

Species 8 2 75.8 95.3 99.2 85.8 70.8

Species 8 3 75.9 95.3 99.2 86.0 71.0

Species 8 4 76.1 95.8 99.2 86.1 70.9

Species 8 5 75.9 96.0 99.4 86.0 71.1

Species 8 6 75.9 95.5 99.1 86.0 71.2

Species 8 7 76.1 96.2 99.4 86.2 70.8

Species 8 8 75.8 95.5 99.2 85.9 70.9

Species 8 9 74.2 95.3 98.9 85.0 69.5

Species 8 A 73.5 93.9 99.1 84.2 69.2

Species 8 B 73.5 94.3 98.7 84.3 69.2

Table 7  Comparison of results where “continent filtering” was applied

Metrics (/100)

Class CG Continent filtering Top 1 Top 3 Top 5 MRR F1m

Species 7 Not filtered 75.0 95.4 98.8 85.2 72.4

Species 7 Filtered 75.6 95.7 98.8 85.8 73.3

Species 8 Not filtered 76.7 95.8 99.2 86.5 72.1

Species 8 Filtered 77.7 96.2 99.4 87.1 73.5

Section 7 Not filtered 94.2 99.7 99.9 96.8 80.0

Section 7 Filtered 94.9 99.4 99.9 97.2 82.8

Section 8 Not filtered 94.5 99.4 100.0 97.0 80.0

Section 8 Filtered 94.5 99.4 100.0 97.0 80.0
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Table 8  Comparison of results with different functional optimizers

Metrics (/100)

Class CG Optimiser Top 1 Top 3 Top 5 MRR F1m

Species 7 AdamW (AMSGrad) 75.6 95.7 98.8 85.8 73.3

Species 7 AdamW (original) 75.9 95.7 98.4 85.7 73.0

Species 7 Adam 75.0 95.5 98.8 85.2 72.8

Species 7 SGD 74.7 93.9 97.0 84.3 70.8

Species 8 AdamW (AMSGrad) 77.7 96.2 99.4 87.1 73.5

Species 8 AdamW (original) 75.0 94.7 98.9 85.2 69.5

Species 8 Adam 76.7 95.8 99.2 86.5 72.2

Species 8 SGD 75.2 93.4 97.7 84.9 70.6

Section 7 AdamW (AMSGrad) 94.9 99.4 99.9 97.2 82.8

Section 7 AdamW (original) 95.4 99.3 99.7 97.4 83.5

Section 7 Adam 94.9 99.3 99.9 97.2 83.0

Section 7 SGD 95.1 99.6 99.9 97.3 83.2

Section 8 AdamW (AMSGrad) 94.5 99.4 100.0 97.0 80.0

Section 8 AdamW (original) 95.1 99.4 99.8 97.3 81.1

Section 8 Adam 94.3 99.4 100.0 97.0 79.8

Section 8 SGD 94.7 99.4 100.0 97.1 81.6

Table 9  Summary of results for identifiers with different neural network shapes and activation functions

Metrics (/100)

Class CG Activation Top 1 Top 3 Top 5 MRR F1m

Species 7 ReLU 75.0 95.4 98.8 85.2 72.4

Species 7 Mish 75.7 95.1 98.8 85.7 72.9

Species 7 ReLU/ReLU 72.7 94.9 97.9 84.1 72.2

Species 7 ReLU/Mish 75.1 95.8 98.1 85.4 72.9

Species 7 Mish/ReLU 74.4 95.8 98.2 84.8 71.6

Species 7 Mish/Mish 75.3 95.8 98.4 85.5 72.3

Species 8 ReLU 76.7 95.8 99.2 86.5 72.1

Species 8 Mish 76.5 95.3 99.1 86.2 72.7

Species 8 ReLU/ReLU 75.8 94.9 97.9 85.5 69.5

Species 8 ReLU/Mish 75.9 95.3 98.5 85.7 71.2

Species 8 Mish/ReLU 75.9 94.7 97.7 85.6 71.2

Species 8 Mish/Mish 75.2 95.3 98.1 85.4 70.0

Section 7 ReLU 94.9 99.3 99.9 97.2 82.8

Section 7 Mish 95.2 99.3 99.9 97.3 83.5

Section 7 ReLU/ReLU 95.1 99.1 99.7 97.2 81.2

Section 7 ReLU/Mish 94.9 99.4 99.7 97.2 83.1

Section 7 Mish/ReLU 94.9 99.0 100.0 97.1 80.8

Section 7 Mish/Mish 94.6 99.1 99.9 97.0 80.7

Section 8 ReLU 94.5 99.4 100.0 97.0 80.0

Section 8 Mish 94.1 99.6 100.0 96.9 78.3

Section 8 ReLU/ReLU 93.8 99.4 99.8 96.6 79.0

Section 8 ReLU/Mish 94.5 99.6 99.8 97.0 78.7

Section 8 Mish/ReLU 94.1 99.4 99.8 96.8 78.8

Section 8 Mish/Mish 94.5 99.6 99.8 97.0 78.3
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The character group that yields best results (Character 
Group 8) only requires 17 pieces of information, lead-
ing to a feature vector dimension of 32 from a training 
set of just over 2,000 collections to produce an identi-
fier that identifies the correct species 76% of the time, 
and over 99% of the time the correct species is within 
the top 5 ‘guesses’ produced by the identifier (from a list 
of 123). Somewhat remarkably, armed with locality data 
and microscopic data relating to spore size and the size 
and shape of cheilocystidia, CG8 only requires one piece 
of macroscopic data, that of the number of full-length 
lamellae, in order to make its determination.

The problem of identifying the correct (sub)section is 
inherently easier: there are a total of 21 output classes 
for the identifier to select from in this case, rather than 
123, but the training set is the same size. The size of the 
training set per output class is thus higher, the identifier 
effectively has more information and consequently it per-
forms better: the correct section is chosen in 95% of the 
cases. Over 99% of the time, the identifier puts the cor-
rect section in its top 3 “guesses”.

In practical terms, we believe the identifier is relatively 
user-friendly. Although the identifier does demand a 
number of microscopic measurements and determina-
tions, these are characters that a competent mycologist 
should be able to determine. A user interface to the iden-
tifier will be available on the website, https://​hebel​oma.​
org (Bartlett et al. 2021). Given the very small improve-
ment in accuracy of CG8 to CG7, we have chosen to pre-
sent CG7 on the website; this absolves the user from the 
extra task of calculating basidia Q.

The interface will be familiar to users of multi-access 
keys. Unlike a decision tree, where the user inputs one 
piece of information at a time, all characters are provided 
at once. The answer is returned more-or-less immedi-
ately (whilst the calibration of an identifier takes a minute 
or two on a standard computer, once calibrated, the iden-
tification function is very quick to compute). Whereas 
multi-access keys tend to return one result, or at best a 
list of equiprobable results, the identifier approach allows 
the possibilities to be ranked in probabilistic order. We 
show the Top 5 results and the user can then study the 
species descriptions of the five presented options and 
build confidence (or otherwise!) in the determination that 
the machine has made. Across all the identifiers tried, 
the performance was generally insensitive to the metric 
used–i.e. if a species identifier performs well according 
to one metric, it also tended to perform well according 
to the other metrics, relative to other identifiers, so using 
“Top 5” in the user interface seems reasonable.

While we think the results are already good enough 
to provide value to mycologists attempting a Hebeloma 
identification, there are two reasons to hope that the 

results will continue to get better over time as more col-
lections are added to our dataset. Firstly, this is what 
tends to happen in general for supervised learning prob-
lems–e.g. problems of email spam detection or image 
recognition benefit from additional data, and we would 
hope for the same in the Hebeloma case. Secondly, and 
more specifically, we conducted an experiment where 
we ignored the existence of the 23 species with the 
fewest available collections and concentrated only on 
the remaining 100. In this case, the number of “Top 1” 
guesses rose from 76 to 80%. This is a proxy (albeit not 
a perfect one) for what we might expect to happen as we 
gather more collections.

Thus, there are two structural advantages of this type 
of identifier over a classic multi-access key–the abil-
ity to rank and weight suggestions (and so have “Top 3” 
and “Top 5” metrics) rather than just having the “Top 1” 
implied by a key and also the ability to adapt automati-
cally over time as extra information is obtained–classical 
keys tend to have to be refined manually. Nevertheless, 
it is intriguing to set aside the structural differences and 
simply compare our identifier’s Top 1 score of 76% with a 
similar result for a classical key. To do this, we looked at 
all collections in our database dated after 2016; 2016 was 
chosen as only after this date were the keys of Beker et al. 
(2016) generally available. This was a total of 2500 collec-
tions. Of these just 339 collections had been identified to 
species, i.e. 14%, and of these 339, 179 (7% of the total 
and 53% of those assigned a species) were in accordance 
with our determinations based on morphological and 
molecular results as well as habitat and locality. Although 
this method for estimating the accuracy of a key is imper-
fect (we do not know exactly how determiners made their 
determination), it does give some confidence that the 
approach presented here is valuable.

It is encouraging that best results were achieved with a 
relatively “out-of-the-box” neural network. Only one hid-
den layer was applied and the common ReLU activation 
function and AdamW solver were used. The computation 
effort was relatively modest: On a typical laptop and for a 
given choice of Character Group, activation function and 
optimizer, the software takes approximately two minutes 
to find the optimal network for each learning rate, and 
then to choose the learning rate which gives most per-
formant results. The script has a peak memory usage of 
approximately 300 MB when processing a training set of 
2,000 collections.

Data augmentation in the form of interpolating miss-
ing data was helpful in most of the cases we tested–the 
result shown in Table  5 where CG7 results were worse 
with augmented was actually relatively unusual. The 
case of CG8, when augmentation improved the identi-
fier, was more typical in our experience. However, our 

https://hebeloma.org
https://hebeloma.org
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results showed that the extension idea of posthoc filter-
ing was not, overall, beneficial. The idea of adding spe-
cific identifiers for specific subsections did not appear 
to give improvements. The most likely cause of this is 
the relatively small number of collections available for 
the second pass dedicated to the Hebeloma ‘subsect 1’ 
section was too small to train the identifier properly. It 
is, however, our opinion that the idea of section-specific 
identifiers is worth pursuing as more collections become 
available to us. Whilst here we applied the idea to only 
one sub-section with an adequate number of collections, 
it seems possible that each section could have its own 
identifier. Setting a loftier goal, it may even be possible to 
use multiple chained character-based identifiers to clas-
sify a collection from a range of possible genera.

Our approach uses characters to guide the machine 
learning algorithm. It is more common in the literature 
to use images. Image-based algorithms however usually 
discretize images to 224 × 224 or 256 × 256 pixels (Ima-
geNet, Deng et al. 2009) and each pixel is effectively an 
input dimension. Therefore, the overall dimensionality 
and thus computational cost to provide an identification 
of an image-based identifier is likely to be significantly 
higher than the character-based one presented here. 
Given the broad macroscopic similarity among Hebeloma 
species, this extra computation may not pay dividends, at 
least for macroscopic images.

A natural question is whether the supervised learn-
ing approach followed here could be extended to other 
genera and families. In principle there appears to be 
no reason why not, at least in the cases where species 
boundaries have (also) been determined by morphology. 
For Hebeloma, we have possibly relied more on morphol-
ogy than colleagues working on other groups of fungi 
(e.g. Quaedvlieg et al. 2014; Bazzicalupo et al. 2017; Sato 
et al. 2020).

Traditional binomial, multinomial and synoptic keys 
are special cases of the mappings from characters to spe-
cies that a machine learning algorithm can ‘discover’ and 
so we anticipate that the approach could work for genera 
other than Hebeloma, given sufficient data. We should 
emphasize however that the learning was supervised in 
two senses: Firstly, the species boundaries were already 
delineated prior to commencing this work. Secondly, 
the character groups that the machine operated on were 
defined in advance, utilizing considerable experience in 
knowing which characters would be useful to help the 
machine “find” the species boundaries, and then applying 
a degree of manual trial-and-error to find the nine char-
acter groups presented here. An intriguing topic of future 
research would be to extend the ideas here to pass all 
available character information to the machine and allow 
it to ‘self-discover’ an appropriate group of characters. A 

simpler approach might be to take an existing key for a 
given genus or family and simply take all characters used 
in the key as the character group to the machine.

In experimenting with machine learning tools applied 
to characters, our experience has been that the tools per-
formed best when provided with objective information: 
most of the features (GPS coordinates, average spore and 
cystidia measurements, lamellae count) are unambigu-
ous. Spore features and cheilocystidia main shape are 
more subjective but appear crucial to species determina-
tion in Hebeloma and so appear in our best-performing 
identifiers.

With this subjectivity in mind, it seems wise to ask 
whether the very good results observed are too good. We 
find that the identifier can be very sensitive to its inputs, 
particularly the discretely-valued inputs spore ornamen-
tation and cheilocystidia shape. Table  10 shows a typi-
cal example of such sensitivity. Ordinarily in machine 
learning, this high sensitivity would suggest a degree of 
overfitting. However, the pattern persists even when 
cross-validating training sets. Because many of the col-
lections in the database were analysed and assigned char-
acters by us, the phenomenon is perhaps arising because 
of the very high degree of consistency in assigning dis-
crete characters. There is also an appreciable possibility 
of unconscious bias on behalf of the assigning expert if 
the species and characters are assigned at the same time. 
In practice there will be a degree of subjectivity in assign-
ing these properties that may vary from one mycologist 
to the next, that our identifier currently has no ability 
to take into account. I.e., there is a risk that our classi-
fier is currently calibrated to ‘characters as assessed and 
assigned by us’, and will not work as effectively when clas-
sifying the collections assessed by others.

Table 10  The outputs of the identifier for the collection 
with parameters shown in Fig.  2 but now with the spore 
ornamentation (only) varied. As the ornamentation is identified 
as O3 instead of O2, the identification swings significantly from 
Hebeloma circinans to H. pumilum 

Spore ornamentation

Species O2 (%) O2; O3 (%) O3 (%)

H. circinans 50.6 67.4 21.0

H. nanum 12.4 3.1 3.8

H. lindae 5.9  < 1  < 1

H. cylindrosporum 5.4  < 1  < 1

H. naviculosporum 5.0 2.1 4.5

H. pseudoamarescens 3.3  < 1 2.20

H. pumilum 2.8 12.5 31.5

H. danicum 1.1 2.7 12.6

H. laterinum < 1 1.2 9.1
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As stated earlier, however, the general principle of a 
character-based identifier does show significant promise 
especially for a genus like Hebeloma where a macroscopic 
image-based identifier would struggle to distinguish 
between species. Therefore, if the identifier is over-sen-
sitive to this ‘assessor’ problem, it should be possible to 
ameliorate it by training it on more data assessed by a 
wider range of experts.

Another limitation of the machine learning-based 
approach is that whilst it answers the ‘what’ question, it 
does not answer the’why’ question. That is, the algorithm 
says which species it thinks a collection is likely to be, but 
it does not say why it is that species as opposed to any 
other and does not say which characters were particularly 
significant. This contrasts, for example, with a traditional 
multi-access key or decision tree where the ‘line of rea-
soning’ can be completely followed.

This study is an attempt to classify species based solely 
on applying machine learning to quantified characters. 
As noted in the introduction, however, it is more com-
mon in the literature to attempt classification using 
images and computer vision, whether this be microscopic 
images (Zieliński et al. 2020) or macroscopic (Šulc et al. 
2020). Picek et al. (2021) showed that starting from image 
data and then adding what they call metadata, similar to 
our quantified characters, could realize improvements 
in recognition. It would make sense therefore for us to 
act in the other direction–start with characters and see 
if improvement can be made by adding images. We pro-
pose investigating this in future work.

This study also made no attempt to utilize the ITS 
sequences available for most of the collections on our 
database. An intriguing possibility would be to combine 
the ideas of Delgado-Serrano et  al. (2016) and those of 
this paper to create an identifier that uses sequence and 
morphological data simultaneously. We intend to make 
the website https://​hebel​oma.​org (Bartlett et al. 2021, in 
prep.) available that allows the user to test the indentifier 
against Hebeloma data provided by us or by the user. We 
hope that others will take the identifier as proposed here 
up and apply it to other groups of organisms.

CONCLUSIONS
This paper introduces a novel way to attempt identify-
ing collections to species or section. The results presented 
here indicate that the approach of using character-based 
information as input data to a machine learning algorithm 
shows significant promise. This novel approach to species 
identification could theoretically be used for any genus 
where sufficient data exists to train the machine and allow 
it to select the ‘best’ algorithm. As demonstrated, this tech-
nique not only achieves good accuracy in identifying the 
species of a given collection but also has huge advantages 

over traditional single-access key and multi-access keys. 
In addition to being able to seek out an optimal mapping 
between characters and species, it is also able to automati-
cally learn and adapt to changes, such as the introduction 
of new species or even to changes in species boundaries 
as more collections of a species become available and the 
definition widens. Here, Hebeloma has been used as a case 
study, but the genus is not exceptional, other than through 
the presence of a large amount of data that can be applied 
to the machine-learning. The technique should be replica-
ble to other genera. A user-friendly interface to the Hebe-
loma identifier will be made available shortly on https://​
hebel​oma.​org.
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Additional file 1: Appendix Fig. S1. The probability distribution of each 
of the continuously-valued characters used in one or more of the identifi-
ers. The probability distribution also acts as a mapping from the character 
to a feature value between 0 and 1. The characters are a latitude, b longi-
tude, c altitude, d number of complete lamellae, e average spore length, f 
average spore width, g average spore Q, h average cheilocystidia length, i 
average cheilocystidia width, j average cheilocystidia A/M (width at apex/
width at narrowest point in central region), k average cheilocystidia A/B 
(width at apex/maximum width at lower third), l average cheilocystidia 
B/M (maximum width at lower third/ width at narrowest point in central 
region), m basidia Q, and n stipe width.

Additional file 2: Appendix Table S1. Results of the identifier using 
characters from Character Group 7 and standard parameters as in Table 3. 
For each species, the number of collections that were identified correctly 
in the identifiers top 5 ‘guesses’ are shown. If a species had any incorrect 
guesses (i.e. any guess that was not Top 1, then the top guess of the iden-
tifier is shown in the ‘Confused as’ column. Species shown in bold in the 
‘Confused as’ column are from the same (sub)-section. Species not shown 
in bold are from different (sub)-sections.
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