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Abstract

Scope: The plasma metabolomics profiles of protein intake has been rarely investigated. We 

aimed to identify the distinct plasma metabolomics profiles associated with overall intakes of 

protein as well as with intakes from animal and plant protein sources.

Methods and Results: Cross-sectional analysis using data from 1,833 participants at high 

risk of cardiovascular disease. Plasma metabolomics analysis was performed using LC-MS. 

Associations between 385 identified metabolites and the intake of total, animal protein (AP) and 

plant protein (PP), and plant-to-animal ratio (PR) were assessed using elastic net continuous 

regression analyses. A double 10-cross-validation (CV) procedure was used and Pearson 

correlations coefficients between multi-metabolite weighted models and reported protein intake 

in each pair of training-validation datasets were calculated. A wide set of metabolites was 

consistently associated with each protein source evaluated. These metabolites mainly consisted 

of amino acids and their derivatives, acylcarnitines, different organic acids and lipid species. 

Few metabolites overlapped among protein sources (i.e. C14:0 SM, C20:4 carnitine, GABA 

and allantoin) but none of them towards the same direction. Regarding AP and PP approaches, 

C20:4 carnitine and dimethylglycine were positively associated with PP but negatively associated 

with AP. However, allantoin, C14:0 SM, C38:7 PE plasmalogen, GABA, metronidazole and 

trigonelline (N-methylnicotinate) behaved contrary. Ten-CV Pearson correlations coefficients 

between self-reported protein intake and plasma metabolomics profiles ranged from 0.21 for PR to 

0.32 for total protein.

Conclusions: Different sets of metabolites were associated with total, animal and plant protein 

intake. Further studies are needed to assess the contribution of these metabolites in protein 

biomarkers’ discovery and prediction of cardiometabolic alterations.
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Graphical Abstract

The plasma metabolomics profiles of protein intake has been rarely investigated. The aim of this 

study was to identify the circulating metabolomics profiles in relation to the consumption of total 

protein, animal protein, plant protein, and plant-to-animal protein ratio. We identified different 

plasma metabolomics profiles, which exhibited moderate correlations with the self-reported 

protein intake. Further studies are needed to assess the contribution of these metabolites in protein 

biomarkers’ discovery and prediction of metabolic alterations.
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1. INTRODUCTION

Diets with a relatively high content in total dietary protein have been recommended for 

body weight (BW) control in the overall population [1] and glycemic control in subjects 

with type 2 diabetes (T2D) [2, 3]. However, the potential long-term health benefits and 

risks of these diets have been partially explored [4]. Current evidence supports the idea 

that cardiovascular disease (CVD) risk can be reduced by adhering to a dietary pattern 

rich in plant sources of protein compared with the typical western diet which includes 

a high intake of animal-based protein foods that are processed and high in saturated fat 

[5]. In the context of the PREDIMED study, we have previously assessed the effect of 

long-term high-protein consumption (including its sources and the animal-to-plant ratio) on 

BW changes and different causes of death [6]. We showed an U-shape relationship between 

total protein (TP) consumption and both total mortality and BW changes, together with 

specific associations depending on protein source towards beneficial effects associated with 

plant protein consumption. However, the overall differential impact of protein sources (i.e. 

animal or plant) and/or their relative proportion on health is still inconclusive and difficult to 

isolate [7].
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Once ingested, both sources of protein share metabolic pathways. However, plant and animal 

sources have a distinct amino acid composition. In general, plant-based proteins are lower 

in essential amino acids (particularly methionine, lysine, and tryptophan) but provide higher 

amounts of arginine, glycine, alanine, and serine (non-essential amino acids) [8].

Nowadays, urinary excretion of urea nitrogen is widely used as an adequate biomarker of 

total protein (TP) intake, although it suffers from imprecision, collection error and can only 

provide information for TP intake, without any consideration from the food source (e.g. 

animal or plant protein) [9]. In fact, to obtain the most accurate measurements, individuals 

should maintain a constant daily intake and be in nitrogen balance. Therefore, further 

research is needed to identify novel reliable biomarkers of dietary intake of TP – and its 

different sources – that may be measurable in plasma/serum. Although it is more invasive 

for the patient, it is relatively easier to obtain compared to urine (less burdensome for study 

participants) and not prone to error due to incomplete urine collection [10].

Metabolomics is an emerging field aiming to comprehensively measure metabolites and 

low-molecular-weight molecules in a biological specimen [11]. To date, few studies have 

focused in the identification of metabolites associated with TP intake [12–15] compared to 

those specifically focused on meat intake (reviewed in [16]). In fact, current evidence for 

these associations comes indirectly from studies evaluating diet quality indexes [12] or diets 

varying in glycemic index (GI)/carbohydrate content [13]. Only two RCTs have explored the 

metabolomics differences in subjects consuming a diet with different amount of protein [14, 

15]. However, no previous study has explored the systemic plasma metabolomics profiles 

associated with the level of protein intake as well as intakes from animal and plant-sources 

of protein in a large sample of subjects.

Taking advantage of a comprehensive plasma metabolomics analysis, we hypothesized that 

distinct plasma metabolites profiles are associated with the level of protein intake as well 

as the source of proteins, mainly animal and plant food sources. Therefore, the main aim 

of the present study was to describe the set of metabolites associated with the intake of TP, 

animal protein (AP), plant protein (PP), and plant-to-animal protein ratio (PR), which could 

help us to understand in the future the relationship between diet and cardiometabolic health. 

Moreover, we aimed to define a set of metabolites overlapping and unique to each protein 

approach.

2. MATERIAL AND METHODS

This study is a cross-sectional analysis of baseline data from two nested case-cohort 

studies on cardiovascular disease (CVD) and T2D (NIH-NHLBI-5R01HL118264 and NIH-

NIDDK-1R01DK102896) [17, 18] within the PREDIMED study (ISRCTN35739639). The 

PREDIMED study is a large clinical trial carried out in Spain, aiming to assess the effects 

of the traditional Mediterranean diet (MedDiet) on the primary prevention of CVD in a 

population at high risk of CVD [19]. Participants were men (55–80 years) and women 

(60–80 years) without CVD at baseline and fulfilling at least one of the two following 

criteria: presence of T2D or three or more major cardiovascular risk factors: current 

smoking, hypertension, high low-density lipoprotein (LDL)-cholesterol, low high-density 
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lipoprotein (HDL)-cholesterol, overweight or obesity, and family history of premature CVD. 

The trial protocol was in accordance with the Helsinki Declaration and was approved by 

the institutional review boards of all the centers involved. All participants provided written 

informed consent.

2.1 Assessment of population characteristics and dietary habits

Body mass index (BMI) was calculated as weight divided by height squared (kg/m2). Waist 

circumference (WC) was measured midway between the lowest rib and the iliac crest using 

an anthropometric tape. Dietary habits at baseline were evaluated using a validated, 137-

item, semi-quantitative food frequency questionnaire (FFQ) [20]. Daily food and nutrient 

intakes were estimated from the FFQ by multiplying the frequency of consumption by the 

average portion size. Participants also filled out a general questionnaire on lifestyle habits, 

medication use and concurrent diseases, and a validated Spanish version of the Minnesota 

Leisure Time Physical Activity Questionnaire [21].

2.2 Protein intake assessment

The validity and reproducibility of the FFQ for the measurements of the different 

macronutrients have been previously reported [20, 22]. Pearson correlation coefficients for 

total protein were 0.55 (unadjusted) and 0.50 (energy-adjusted) between intakes reported in 

the FFQ and intakes reported in repeated food records. The intraclass correlation coefficient 

(ICC) between total protein intake was 0.71 (unadjusted) and 0.67 (energy-adjusted) [20]. 

In our study, the level of protein intake was assessed as the percentage of energy (E%) 

derived from protein. AP was mainly derived from meat, poultry, fish and dairy products, 

whereas PP was derived from legumes, cereals and nuts. Percentages of energy from AP 

and PP were also calculated. Finally, we also derived the plant-to-animal protein ratio. Due 

to the semi-quantitative basis of the FFQ, we additionally created categories of protein 

consumption based on extreme tertiles (T): T3 versus T1.

2.3 Plasma metabolomics

Fasting (for ≥8 hours) plasma EDTA samples were collected from subjects and stored at 

−80°C. Samples for each participant were randomly ordered and analyzed using two liquid 

chromatography tandem mass spectrometry (LC-MS) methods to measure polar metabolites 

and lipids as described previously [23–25]. Briefly, amino acids (AA) and other polar 

metabolites were profiled a Shimadzu Nexera X2 U-HPLC (Shimadzu Corp.) coupled to a 

Q-Exactive mass spectrometer (ThermoFisher Scientific). Metabolites were extracted from 

plasma (10 μL) using 90 μL of 74.9:24.9:0.2 (vol/vol/vol) of acetonitrile/methanol/formic 

acid containing stable isotope-labeled internal standards [valine-d8 (Sigma-Aldrich) and 

phenylalanine-d8 (Cambridge Isotope Laboratories)]. The samples were centrifuged (10 

min; 9000 × g; 4°C), and the supernatants were injected directly on to a 150 × 2-mm, 

3-μm Atlantis HILIC column (Waters). The column was eluted isocratically at a flow 

rate of 250 μL/min with 5% mobile phase A (10 mmol ammonium formate/L and 0.1% 

formic acid in water) for 0.5 min followed by a linear gradient to 40% mobile phase B 

(acetonitrile with 0.1% formic acid) over 10 min. MS analyses were carried out using 

electrospray ionization in the positive-ion and full-scan spectra were acquired over 70–

800 m/z. Lipids were profiled using a Shimadzu Nexera X2 U-HPLC (Shimadzu Corp.; 
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Marlborough, MA) coupled to an Exactive Plus orbitrap mass spectrometer (Thermo Fisher 

Scientific; Waltham, MA). Lipids were extracted from plasma (10 μL) using 190 μL of 

isopropanol containing 1,2-didodecanoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids; 

Alabaster, AL) as an internal standard. Lipid extracts (2 μL) were injected onto a 100 × 

2.1 mm, 1.7 μm ACQUITY BEH C8 column (Waters; Milford, MA). The column was 

eluted isocratically with 80% mobile phase A (95:5:0.1 vol/vol/vol 10mM ammonium 

acetate/methanol/formic acid) for 1 minute followed by a linear gradient to 80% mobile-

phase B (99.9:0.1 vol/vol methanol/formic acid) over 2 minutes, a linear gradient to 100% 

mobile phase B over 7 minutes, then 3 minutes at 100% mobile-phase B. MS analyses 

were carried out using electrospray ionization in the positive ion mode using full scan 

analysis over 200–1100 m/z. Raw data were processed using Trace Finder version 3.1 

and 3.3 (Thermo Fisher Scientific) and Progenesis QI (Nonlinear Dynamics; Newcastle 

upon Tyne, UK). All polar metabolite identities were determined using reference standards 

in keeping with the Metabolomics Standard Initiative “Level 1” designation [26]. Since 

reference standards are not available for all lipids, representative lipids from each lipid 

class were used to characterize retention time and mass to charge ratio patterns. Since the 

chromatographic method does not discretely resolve all isomeric lipids from one another and 

the mass spectrometry data do not provide specific information on acyl group composition 

or position in complex lipids, lipid identities are reported at the level of lipid class, total 

acyl carbon content, and total double bond content. To enable assessment of data quality 

and to facilitate data standardization across the analytical queue and sample batches, pairs 

of pooled plasma reference samples were analyzed at intervals of 20 study samples. One 

sample from each pair of pooled references served as a passive QC sample to evaluate the 

analytical reproducibility for measurement of each metabolite while the other pooled sample 

was used to standardized at using a “nearest neighbour” approach as previously described 

[27]. Standardized values were calculated using the ratio of the value in each sample over 

the nearest pooled plasma reference multiplied by the median value measured across the 

pooled references. Each method generated a table of results, consisting of metabolites in 

rows and study samples in columns. These tables were merged into a single table prior to 

analyses.

2.4 Statistical analysis

Baseline characteristics of study participants were described as means and standard 

deviations (SD) for quantitative variables, and percentages for categorical variables. Missing 

values of individual metabolites correspond to those determinations that were below the 

limit of detection. In individual metabolites with less than 20% of missing values we 

imputed them using the random forest imputation approach (“missForest” function from 

the “randomForest” R package) as it has been previously recommended in metabolomics 

studies [28, 29]. Importantly, different alternatives (e.g., zero value or half of the lower 

limit of detection) to this approach were found to generate consistent results as was 

previously reported by our research consortium [30]. Next, to conduct the multivariate 

analysis, metabolomics data was first centered and scaled using the standard deviation as the 

scaling factor (i.e. autoscaling) [31]. Due to the high dimensionality and collinear nature of 

the data, Gaussian (i.e. continuous) regression with elastic net penalty (implemented in the 

“glmnet” R package) was used to build a model for TP, AP, PP and PR intake. The elastic 
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net regression combines the penalties from the Lasso - which drops some metabolite out 

of the model and assign a larger coefficient to one of the correlated metabolites whereas 

the rest are nearly zeroed - and Ridge - which keeps all the metabolites into the model and 

assign similar coefficients to correlated metabolites – regressions, potentially leading to a 

model which is both simple and predictive [32, 33].

We performed a 10 cross-validation (CV) approach, splitting the sample into training (90% 

of the sample) and validation set 10 independent times, and then within the training set 

we performed a further 10-fold CV to find the optimal value of the tuning parameter [λ 
(lambda)] that yielded the minimum mean-squared error (MSE). The values minMSE and 

minMSE + 1 standard error (SE) were calculated using argument s = “lambda.min” or 

s = “lambda.1se” in the cv.glmnet function (“glmnet” R package), respectively. In order 

to report the coefficients from each CV iteration, the lambda selection in the elastic net 

continuous regression was evaluated. We selected s = “lambda.min” as it gives the minimum 

mean CV error and s = “lambda.1se” - largest value of lambda such that error is within 1 SE 

of the minimum - was not deriving a model for some approaches. Apart from considering 

the lambda value, we evaluated the alpha parameter from 0 (i.e., Ridge regression) to 1 

(i.e., Lasso regression) in 0.1 increments to test the best scenario for our data. In case 

of the four approaches, alpha=0.6 was the model with best predicting accuracy in the 

validation sets. Weighted models were constructed for each training-validation dataset pair 

(90% training and 10% validation) using solely the coefficients for the metabolites obtained 

from each elastic net regression in the training set. Ten-CV Pearson correlation coefficients 

(95% confidence interval [CI]) were derived considering each protein intake variable 

and its corresponding multi-metabolite model within each training-validation dataset. For 

reproducibility purposes, regression coefficients are reported using 10 iterations of the 10-

CV elastic regression approach in the whole dataset. We ran a principal component analysis 

(PCA) using the mean elastic net continuous regression’s coefficients from the metabolites 

consistently selected (i.e., 9–10 times) in each of the approaches. A zero value was assigned 

whenever a particular metabolite was not found by a specific approach. Coefficients were 

centered and scaled prior to PCA analysis.

Sensitivity analysis were performed using an elastic net logistic regression employing 

extreme tertiles (T3 vs T1) of protein intake instead of treating the exposures using 

continuous data. Moreover, additional sensitivity analysis adding relevant covariates (e.g., 

age, sex, smoking status, case/control status) or food groups showed no alteration in the 

coefficients obtained in each model (i.e. not selected in each respective model). All the 

analyses were performed using R v.3.4.2 statistical software. These analyses were based on 

consistency among CV runs, and therefore any P-value is derived.

3. RESULTS

A total of 1,833 PREDIMED study participants (778 men and 1,055 women) were included 

in the present study. Figure 1 shows the flow chart of study participants. Characteristics of 

the participants are summarized in Table 1 for the whole number of subjects and divided by 

extreme tertiles of TP intake (T1 with n=613 and T3 with n=606). This analysis includes 

42.4% of male participants with a median age of 67 years [IQR: 62, 72], a BMI of 29.69 
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kg/m2 [27.43, 32.24] and a prevalence of 26.8% of T2D. Values from protein intake are as 

follows: 16.29 E% [14.52, 18.25] for TP, 10.84 E% [9.16, 12.87] for AP, 5.29 E% [4.7, 6.05] 

for PP and 0.49 [0.39, 0.62] for PR.

3.1 Multi-metabolite model and correlation with protein intake assessments

From the 399 metabolites originally annotated, 11 metabolites were removed due to high 

number of missing values (i.e. >20%) and 3 metabolites were removed as being internal 

standard, thus 385 metabolites were finally included in all the analysis. Figures 2 and 3 

show the mean coefficient value (and SD) for the set of metabolites consistently selected 

(9–10 times) in the 10 CV for the four different protein intake measurements. Table 2 

summarizes the number of metabolites found in each approach (positive or negative) and 

the Pearson correlation between multi-metabolite model and each protein intake assessment. 

Supplementary Table 1 shows the sensitivity analysis using the argument “lambda.1se”. 

Values for metabolites’ mean, SD and the times being selected in each iteration are shown in 

Supplementary Table 2. As may be observed, the “lambda.1se” argument generated models 

with a reduced number of metabolites except for a null model in case of PR.

In the TP approach, those metabolites with the highest negative coefficient value were 

creatinine, C24:0 ceramide d18:1 and C46:0 triglyceride (TAG), whereas those with the 

highest positive coefficient value were creatine, sorbitol and C5:1 carnitine (Figure 2.A). 

Creatine was also the metabolite with the highest positive value in the AP approach (Figure 

3.A). Uridine was the metabolite with the highest positive coefficient value in the PP 

approach, whereas C14:0 sphingomyelin (SM) was the metabolite with the highest negative 

coefficient value (Figure 3.B). In fact, C14:0 SM was also the metabolite with the highest 

negative coefficient value in the PR approach, whereas C34:3 phosphatidylcholine (PC) was 

the metabolite with the highest positive coefficient value (Figure 2.B).

Correlation between the multi-metabolomic signature and protein intake assessment differed 

according to the type of protein (Table 2). Of note, argument “lambda.1se” in the 

“cv.glmnet” function generated a reduced value of Pearson correlation and reduced 

number of metabolites selected that even derived a null model in case of PR approach 

(Supplementary Table 1). Metabolites included in the “lambda.1se” approaches were also 

consistently found in its respective “lambda.min” approaches (Supplementary Table 2). 

Pearson correlation coefficients (95% CI) sorted by increasing values were: 0.21 (0.17–0.24) 

for PP, 0.25 (0.20–0.30) for PR, 0.28 (0.23–0.34) for AP and 0.32 (0.25–0.39) for TP.

Sensitivity analysis using extreme tertiles of protein intake (including TP, PR, AP and PP) 

in the elastic net logistic regression – using “lambda-min” argument – showed comparable 

results in term of metabolites selected (data not shown).

Different Venn diagrams were created to display the number of unique or overlapping 

metabolites identified using the different protein approaches (Figure 4 and Supplementary 

Table 3). No overlapping metabolites were found among the four approaches when 

considering only positive coefficients (Figure 4.A) or negative coefficients (Figure 4.C). 

However, four metabolites (i.e., C14:0 SM, C20:4 carnitine, GABA and allantoin) were 

found in the four approaches regardless of the coefficient sign (Figure 4.B). In an attempt 
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to differentiate the AP and PP approaches, we created individual Venn diagrams (Figure 4, 

D to G). Uridine was the unique metabolite with a positive value found in both AP and PP 

approaches (Figure 4.D). Creatinine was the unique metabolite with a negative value found 

in both AP and PP approaches (Figure 4.E). Only C20:4 carnitine and dimethylglycine 

were reported with positive coefficients in PP but negative coefficients in AP (Figure 4.F). 

Allantoin, C14:0 SM, C38:7 PE plasmalogen, GABA, metronidazole and trigonelline (N-

methylnicotinate) were reported with negative coefficients in PP but positive coefficients in 

AP (Figure 4.G).

In order to identify principal components consisting of metabolites more associated with 

TP, AP, PP and/or PR, we additionally created a PCA based on the mean coefficients’ 

value from the metabolites selected by the different protein intake approaches using its 

respective elastic net continuous regression (Supplementary Figure 1). In this first PCA, 

principal component #1 accounted 53.9% of the variability, whereas the second principal 

component accounted 35.5% of the variability. Moreover, principal component #1 seemed 

useful to discriminate PP approach from TP, AP and PR approaches, whereas the second 

allowed the discrimination of the PR approach. In the PCA biplot we observed groups 

of metabolites clustered close to the four different approaches (Supplementary Figure 1). 

Moreover, we also reported an obvious close proximity between TP and AP approaches 

considering the high contribution of AP to TP intake. To solve this issue, we conducted a 

second PCA excluding PR approach from the PCA (Supplementary Figure 2). We showed 

a clear separation between TP/AP and PP approaches using the first principal component 

(82.1% of the variability), whereas the second component (17.9% of the variability) allowed 

the discrimination between the TP and AP approaches. Supplementary Table 4 shows 

information related to the most relevant metabolites (based on Venn diagrams and PCAs) 

reported in our analyses.

4. DISCUSSION

In the present analysis, we have identified a broad range of plasma metabolites associated 

with TP consumption and/or sources of protein using a combined CV procedure within the 

elastic net continuous regression. Venn diagrams and PCAs allowed the definition of clusters 

of metabolites associated with each protein source. The identified multi-metabolite models 

exhibited differing significant Pearson correlation coefficients with their intake values.

Few studies have assessed circulating plasma or serum metabolomics of diets varying in TP 

intake [12–15]. A total of 1,336 male Finnish smokers were used to identify biomarkers 

of dietary patterns (e.g. Healthy Eating Index (HEI) 2010) by using serum metabolomics 

[12]. Metabolites associated with TP were mainly related to free FAs (not analyzed in our 

study) and AA derivatives (e.g. 3-methylhistidine and creatine) [12]. Mirroring their results, 

we also found a positive association between TP intake and creatine. A recent 10-week 

RCT conducted also in elderly males consuming differing amounts of protein and using a 

non-targeted polar plasma metabolomics analysis showed comparable results in terms of TP 

intake [15]. Researchers ascribed all the modulatory effects to protein anabolism without 

sign of influence on other pathways related with metabolic health.
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In another RCT, 21 subjects with overweight/obesity were studied during a 4-week weight 

stability phase according to a crossover design of 3 diets differing in protein content 

[13]. Among the plasma metabolites positively associated with protein, they reported 

alpha-hydroxybutyrate, creatine, several TAGs species and uridine, whereas those negatively 

associated with TP were C18:2 LPE, C40:6 PC and C56:8 TAG. We also reported a positive 

association between TP and uridine (also in AP and PP approaches) and creatine (also 

positive in AP but negative in PP). However, we only reported C53:3 TAG positively 

associated with TP in our study.

A recent cross-sectional study identified serum metabolites associated with dietary protein 

intake in 674 subjects with CKD - and differing in glomerular filtration rate - with ages 

ranging from 18–70 years [14]. They found 130 metabolites when comparing low-protein 

diet versus moderate-protein diet, and 32 metabolites when compared very-low-protein 

diet versus low-protein diet. Independently of the glomerular filtration rate, a total of 

11 metabolites were significantly associated with TP intake including 3-methylhistidine, 

N-acetyl-3-methylhistidine, creatine, kynurenate and different plasmalogens. Remarkably, 

the half-lives of 1- and 3-methylhistidine together with other metabolites are reported to be 

approximately 12 hours; thus, they are solely considered short term biomarkers of red meat 

intake [34]. Our plasma metabolomics approach did not cover most of these metabolites. 

However, we found similar results in terms of positive associations of TP with creatine and 

with same carbon number PE and PC plasmalogens albeit with different unsaturation profile.

One limitation common to previous studies is that they have not distinguished sources of 

protein intake as plant/animal protein, which is important to try to understand why the 

effects on health are different depending on the type of protein consumed. By comparing the 

four different approaches we found few overlaps and many approach-specific metabolites. 

Most of the overlaps were found between TP and AP, probably because the high AP 

compared to PP intake in our population. We reported four metabolites simultaneously and 

positively or negatively associated with the four protein approaches. C14:0 SM, GABA and 

allantoin were positively associated with AP and TP, whereas negatively associated with PP 

and PR. The inverse scenario was exhibited by C20:4 carnitine.

C14:0 SM was previously found positively associated with TP [13] and positively associated 

with increasing protein consumption [14]. This SM has been recently negatively correlated 

with the scale of aging vigor in epidemiology (SAVE) score, thus reduced C14:0 SM 

values are associated with frailty [35]. Importantly, it has been negatively associated to the 

empirical dietary inflammatory pattern (EDIP) score, reflecting a putative anti-inflammatory 

role [36]. GABA was also positively associated with high TP and fat intake in a clinical 

trial, but the results were inconsistent with those measured in the Framingham Heart Study, 

where GABA was only positively correlated with carbohydrate intake [13]. It has been 

seen that GABA is released by β-cells in a glutamine dose-dependent manner whereas 

glucose induces inhibition of its release to the extracellular medium [37–39]. To increase 

TP intake, it is necessary to reduce the consumption of other macronutrients, such as 

carbohydrates, a situation that could enhance GABA production and release from beta-cells. 

GABA is a well-known inhibitory neurotransmitter in the brain, but it seems to be also 

involved in the reduction of the local immune and inflammatory responses [40]. Finally, 
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allantoin was positively correlated with TP and AP and negatively with PR and PP. This 

metabolite is produced from urate in animals (excluding humans), plants and bacteria and 

it is considered a marker of oxidative stress. Although little is known about the association 

between quantity and quality of protein intake and oxidative stress, it seems that diets 

rich in animal-based foods lead to this condition [41], which could explain the observed 

associations. Interestingly, urate was found inversely associated with both TP and PP. 

However, sorbitol and the isomer fructose-glucose-galactose were positively associated with 

TP and AP, whereas negatively associated with PR. Of note, sorbitol is converted to fructose 

when metabolized in the liver producing biochemical effects similar to those of fructose 

on hepatic adenosine phosphate levels in humans, and can therefore increase uric acid 

production [42]. This may explain the positive association between sorbitol and fructose-

glucose-galactose with TP and AP, and the negative association of urate with PP. However, 

high levels of serum sorbitol have been reported in individuals with T2D compared with 

those without the disease [43]. In our study, individuals with a higher consumption of TP 

were more likely to have T2D than those with a lower consumption.

Total carnitine, together with C4 and C5:1 carnitines were positively associated with TP 

but negatively associated with PR. Carnitine can be obtained from the diet – mainly 

from meat and dairy products – or endogenously synthesized from lysine and methionine. 

Importantly, dietary carnitine correlates with plasma concentrations and it has been reported 

that individuals consuming high AP diets have higher plasma carnitine levels than those 

consuming low amounts [44]. Carnitine participates in the transport of fatty acids (FA) for 

their β-oxidation in the mitochondria, a procedure where it is transformed to acylcarnitines. 

The accumulation of acylcarnitines could reflect alterations in the FA oxidation process, 

which could promote the development of metabolic diseases [45, 46]. Surprisingly, a 

polyunsaturated carnitine (C20:4) was found inversely associated to TP and AP, and 

positively to PR and PP. Further studies are needed to assess to which extend protein intake 

could modify carnitine-related metabolites.

Creatine was the metabolite most positively associated with TP and AP, whereas negatively 

associated with PR. Previous clinical trials also reported creatine as a marker of TP [14]. 

Animal protein foods are considered the main sources of creatine [47]. Therefore, it is not 

surprising that low levels of creatine were observed in vegetarians [48] in a cross-sectional 

study, results that are supported by a clinical trial where women switching from omnivore 

to vegetarian diet experimented a reduction in creatine levels after 3 months of intervention 

[49]. Creatinine – a breakdown product of creatine phosphate in muscle – was found 

negatively associated with TP, AP and PP. These results are in line with previous findings 

which reported a negative correlation between TP intake and serum creatinine [50]. Since 

a positive association exists between TP intake and urinary excretion of creatinine, the 

reported negative association could be due to the enhanced creatinine clearance. In fact, 

urinary, but not serum/plasma creatinine, has been suggested as a biomarker of meat 

consumption [16, 51].

Some metabolites were solely identified in the PR approach or in combination with PP 

approach (e.g., NMMA and malate). In fact, a wide set of metabolites were positively 

associated with PR and not found in any other approach. It comprised: i) essential AAs 
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such as phenylalanine and threonine; ii) AAs’ derivatives such as N-oleoyl glycine; iii) other 

molecules such as gentisate, acetylcholine, niacinamide and different lipid species such as 

C16:1 LPC, C36:4 PC-A, and saturated TAGs (C42, C48 and C51). The health implications 

of these findings should be further investigated.

This approach has some drawbacks that deserve comment. First, as it has been performed in 

older adults at high CVD risk from a Mediterranean area, the generalizability of the findings 

to other populations may be limited. Moreover, due to the cross-sectional design, causation 

cannot be inferred. Even though we included in the analysis a relatively large sample 

size that was analyzed using a validated FFQ, we cannot exclude misclassification bias. 

Moreover, we did not distinguish the different sources of animal protein, which may have 

a distinct impact on health. Additionally, a measure of total urinary nitrogen excretion was 

not available for our subjects of study, which did not allow us to assess the correlation with 

our metabolites. Even though elastic net regression derived a relatively simple and predictive 

model, we cannot completely disregard a lack of specific metabolites into the models due to 

putative multicollinearity. Moreover, as we only included annotated metabolites, we cannot 

assure that a multi-metabolite model based on untargeted metabolites will not outperform 

ours. Strengths of the present study include the use of a multi-metabolomics approach 

to analyze a wide range of metabolite compounds; we have cross-internally validated our 

results; and we have performed different sensitivity analysis to assess the role of other 

putative confounders, such as sex and dietary factors, into the selected metabolites.

In conclusion, our findings show that TP, AP, PP and PR consumption are associated with 

distinct sets of plasma metabolites mainly related to AAs and their derivatives, together with 

acylcarnitines, different organic compounds, and lipid species, which are the reflection of 

changes in metabolic pathways potentially implicated in disease prevention or development. 

Some of these metabolites have been discovered as markers of protein consumption in other 

epidemiologic studies. In the current study, we provided a deeper understanding of the 

metabolic response to protein intake providing new functional insight to its potential role 

in health. The extent to which the sets of metabolites associated with protein intake we 

identified in the study are associated with health outcomes remains to be evaluated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow-chart of study participants.

*, Unrealistic energy intake is defined as out of the range 800–4000 Kcal/day in males and 

500–3500 Kcal/day in females. ┼, subjects with a set of ≥20% of metabolites with missing 

values. Abbreviations: CVD, cardiovascular disease; FFQ, food frequency questionnaire; 

T2D, type 2 diabetes.

Hernández-Alonso et al. Page 17

Mol Nutr Food Res. Author manuscript; available in PMC 2022 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Coefficients (mean and SD) for the metabolites selected 9–10 times in the 10-cross 

validation of the continuous elastic regression for total protein and plant-to-animal protein 

ratio.

Mean and SD of the set of the metabolites selected 9–10 times in the ten times 

iterated 10-fold-cross validation of the elastic continuous regression procedure (using 

lambda.min) employing the whole dataset of subjects (n=1,833). Metabolites with 

negative coefficients are plotted in the left part, whereas those with positive coefficients 

are shown in the right part. A), Total protein (E%); B), plant-to-animal protein 

ratio. Abbreviations: 2PY, N-methyl-2-pyridone-5-carboxamide; CE, cholesteryl ester; 

CV, cross-validation; DAG, diacylglycerol; E%, energy percentage; GABA, gamma-

aminobutyric acid; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; 

MAG, monoacylglycerol; NMMA, N-methylmalonamic acid; PC, phosphatidylcholine; 
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PE, phosphatidylethanolamine; PI, phosphatidylinositol; SM, sphyngomyeline; TAG, 

triglyceride.
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Figure 3. 
Coefficients (mean and SD) for the metabolites selected 9–10 times in the 10-CV of the 

continuous elastic regression for animal protein and plant protein.

Mean and SD of the set of the metabolites selected 9–10 times in the ten times iterated 10-

fold-CV of the elastic continuous regression procedure (using lambda.min) employing the 

whole dataset of subjects (n=1,833). Metabolites with negative coefficients are plotted in the 

left part, whereas those with positive coefficients are shown in the right part. Abbreviations: 

2PY, N-methyl-2-pyridone-5-carboxamide; CE, cholesteryl ester; CV, cross-validation; 

DAG, diacylglycerol; E%, energy percentage; GABA, gamma-aminobutyric acid; LPE, 

lysophosphatidylethanolamine; MAG, monoacylglycerol; NMMA, N-methylmalonamic 

acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; SM, 

sphyngomyeline; TAG, triglyceride.
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Figure 4. 
Venn diagram displaying the number of unique or overlapping metabolites identified using 

the different protein intake approaches by means of the elastic net continuous regression.

A), considering only metabolites with negative coefficients; B), considering metabolites 

with both positive and negative coefficients; C), considering only metabolites with positive 

coefficients; D), considering only metabolites with positive coefficients; E), considering 

only metabolites with negative coefficients; F), considering only metabolites with negative 

coefficients in AP and positive coefficients in PP; G), considering only metabolites 

with positive coefficients in AP and negative coefficients in PP. Abbreviations: AP, 

animal protein; GABA, gamma-aminobutyric acid; PP, plant protein; PR, plant-to-animal 

protein ratio; SM, sphyngomyeline; TP, total protein. Supplementary Table 2 contains the 

metabolites belonging to each group. Four metabolites (i.e. C14:0 SM, C20:4 carnitine, 

GABA and allantoin) were found in the four approaches regardless of the coefficient sign 

(B). Any metabolite was found in the four approaches when considering only positive 

(A) or only negative coefficients (C). Uridine was the unique metabolite with a positive 

value found in both AP and PP approaches (D). Creatinine was the unique metabolite 

with a negative value found in both AP and PP approaches (E). C20:4 carnitine and 

dimethylglycine were reported with positive coefficients in PP but negative coefficients 

in AP (F). Allantoin, C14:0 SM, C38:7 PE plasmalogen, GABA, metronidazole and 

Trigonelline (N-methylnicotinate) were reported with negative coefficients in PP but positive 

coefficients in AP (G).
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Table 1.

Characteristics of study subjects and according to extreme tertiles (T1 and T3) of total protein intake.

Characteristics All subjects (n=1,833) T1 (n=613) T3 (n=606)

Sociodemographic and medication variables

Age (years) 67 [62, 72] 68 [62, 72] 67 [62, 71]

Male sex, N (%) 778 (42.4%) 355 (57.9%) 155 (25.6%)

Body mass index (kg/m2) 29.69 [27.43, 32.24] 29.4 [27.26, 31.92] 29.88 [27.5, 32.33]

Waist circumference (cm) 100 [93, 107] 101 [95, 107] 99 [92, 106]

Cholesterol (mg/dL) 209.44 [187.12, 235.32] 210.34 [187.99, 236.44] 210 [186.86, 236.21]

Triglycerides (mg/dL) 116.76 [89.05, 157.03] 120.97 [91.84, 163.11] 113.12 [85.97, 151.3]

HDL-C (mg/dL) 50.39 [43.97, 57.77] 49.41 [43.48, 56.98] 51.67 [44.67, 59.59]

Type 2 Diabetes, N (%) 492 (26.8%) 131 (21.4%) 197 (32.5%)

Hypercholesterolemia, N (%) 1408 (76.8%) 471 (76.8%) 469 (77.4%)

Hypertension, N (%) 1599 (87.2%) 531 (86.6%) 527 (87%)

Family history of CVD, N (%) 451 (24.6%) 132 (21.5%) 172 (28.4%)

Smoking, N (%) [yes] 287 (15.7%) 134 (21.9%) 61 (10.1%)

Cardiac medication, N (%) 164 (8.9%) 59 (9.9%) 47 (7.9%)

Hypotensive medication, N (%) 1382 (75.4%) 459 (75%) 462 (76.5%)

Cholesterol lowering medication, N (%) 852 (46.5%) 273 (44.6%) 291 (48.1%)

Nutritional variables

Total protein intake (% energy/d) 16.29 [14.52, 18.25] 13.84 [12.9, 14.53] 19.19 [18.26, 20.37]

Animal protein intake (% energy/d) 10.84 [9.16, 12.87] 8.5 [7.29, 9.38] 13.77 [12.7, 15.12]

Plant protein intake (% energy/d) 5.29 [4.7, 6.05] 5.24 [4.65, 5.89] 5.44 [4.73, 6.18]

Plant-to-animal protein ratio 0.49 [0.39, 0.62] 0.63 [0.51, 0.79] 0.39 [0.32, 0.48]

P14 questionnaire 9 [7, 10] 9 [7, 10] 9 [8, 10]

Total protein intake (g/d) 90.66 [77.75, 105.3] 84.54 [72.33, 99.96] 96.93 [82.98, 110.11]

Total carbohydrate intake (g/d) 231.34 [187.85, 279.6] 259.61 [215.91, 318.92] 203.53 [164.83, 240.9]

Fat (g/d) 97.8 [78.43, 115.32] 106.62 [91.54, 126.01] 81.74 [66.78, 101.56]

MUFA (g/d) 49.03 [36.88, 58.56] 55.18 [45.71, 63.91] 38.45 [31.5, 50.46]

SFA (g/d) 24.5 [19.47, 30.18] 26.17 [21.62, 31.99] 21.86 [17.44, 27.37]

PUFA (g/d) 14.47 [11.22, 19.04] 16.7 [12.82, 21.62] 12.36 [9.43, 15.84]

Total energy intake (Kcal/d) 2229.77 [1907.69, 2617.85] 2477.15 [2138.42, 2874.52] 1992.23 [1684.98, 2296.31]

Vegetable intake (g/d) 311 [233, 405] 288 [219.5, 368.67] 332.67 [245.96, 437.21]

Legume intake (g/d) 16.57 [12.57, 25.14] 16.57 [12.57, 25.14] 16.57 [12, 25.14]

Grain intake (g/d) 216.43 [166.14, 291.21] 236.33 [176.79, 309.79] 192.02 [148.71, 260.36]

Dairy intake (g/d) 326.31 [228.1, 550] 275.71 [207.14, 449.52] 367.74 [265.8, 599.49]

Meat intake (g/d) 130.57 [97.71, 164.86] 108.57 [75.1, 140.48] 149.05 [120, 186.61]

Fish intake (g/d) 97.14 [65.43, 129.24] 81.33 [53.33, 112.86] 110.76 [80.29, 145.38]

Nuts intake (g/d) 6.29 [0, 14.86] 6.29 [2, 17.14] 4.29 [0, 12.86]

Egg intake (g/d) 25.71 [8.57, 25.71] 25.71 [8.57, 25.71] 25.71 [8.57, 25.71]

Data shows median [IQR] or number (%). CVD, cardiovascular disease; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; 
SFA, saturated fatty acids.
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Table 2.

Pearson correlation coefficients for the different protein intake assessments.

Assessments
Pearson correlation coefficient 

(95% CI) with metabolomic 
signature

Total metabolites 
consistently found to 

be associated*

# of metabolites with 
negative coefficients

# of metabolites with 
positive coefficients

Total protein (E%) 0.32 (0.25–0.39) 44 22 22

Plant-to-animal protein 
ratio 0.25 (0.20–0.30) 52 23 29

Animal protein (E%) 0.28 (0.23–0.34) 39 22 17

Plant protein (E%) 0.21 (0.17–0.24) 48 22 26

*
obtained 9 or 10 times in the cross-validation procedure for the elastic net continuous approach using “lambda.min” option in the “cv.glmnet” 

function (“glmnet” R package).

Abbreviations: CI, confidence, interval; E%, energy percentage; NA, not available.
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