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Abstract

Variations in vocal effort can create challenges for speaker recognition systems that are optimized 

for use with neutral speech. The Lombard effect and whisper are two commonly-occurring 

forms of vocal effort variation that result in non-neutral speech, the first due to noise exposure 

and the second due to intentional adjustment on the part of the speaker. In this article, a 

comparative evaluation of speaker recognition performance in non-neutral conditions is presented 

using multiple Lombard effect and whisper corpora. The detrimental impact of these vocal effort 

variations on discrimination and calibration performance on global, per-corpus, and per-speaker 

levels is explored using conventional error metrics, along with visual representations of the model 

and score spaces. A non-neutral speech detector is subsequently introduced and used to inform 

score calibration in several ways. Two calibration approaches are proposed and shown to reduce 

error to the same level as an optimal calibration approach that relies on ground-truth vocal effort 

information. This article contributes a generalizable methodology towards detecting vocal effort 

variation and using this knowledge to inform and advance speaker recognition system behavior.
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I. INTRODUCTION

A MAJOR challenge for speaker recognition systems operating in real-world conditions is 

to effectively overcome variability in the speech signal. There are many factors affecting 

speech presented to a speaker recognition system; these can be loosely grouped into factors 

independent of the speaker (extrinsic factors), and factors dependent on the speaker (intrinsic 

factors). Extrinsic factors include environmental noise, room acoustics, and the effects of 

the microphone and transmission channel. Intrinsic factors include the speaking style and 

conversational context, the emotional state of the speaker, changes to the speaker’s health, 

and the longer-term impact of aging.
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Developments in speaker recognition technology continue to be driven by performance 

improvements in the presence of extrinsic variability (e.g., the focus on challenging audio 

From video conditions in NIST Speaker Recognition Evaluations 2018–19 [1]); this has 

resulted in speaker recognition technology reaching a level of maturity for applications 

involving general extrinsic variability. However, in the application of speaker recognition to 

unconstrained domains such as forensics (where, for example, speech may be under stress, 

highly emotional, or deliberately altered), there remains a real need to further understand 

and address the impact of intrinsic variability.

The study of intrinsic variability presents challenges in terms of data collection; for example, 

real emotional speech is difficult (or perhaps impossible) to collect in a way that is both 

controlled and ethical, and aging speech requires a long period of time to elapse if it is 

to be obtained in a controlled way. As a result, research addressing intrinsic variability 

typically leverages smaller, curated datasets, making generalization difficult. In this study, 

we consider two specific modes of speech resulting from vocal effort variation, namely 

whispered speech, and speech produced under the Lombard effect (in the presence of 

noise). These modes affect the speech signal in very different ways, but are both commonly-

occurring and relevant to real-world applications. To improve generalization of results and 

their interpretation in this study, we present analyses across multiple corpora for each speech 

mode.

The Lombard effect (LE) [2], [3] (also referred to as the Lombard reflex), refers to the 

involuntary tendency of a speaker to alter their vocal effort in the presence of environmental 

noise so that intelligible communication is preserved. Speech produced under the Lombard 

effect differs from neutral speech in several ways, including increased intensity, pitch, glottal 

spectral tilt, and F1 [3]–[5], along with a lengthening of vowel segments and a shortening 

of silence segments [3], [5]. The type and level of noise inducing the Lombard effect has 

also been shown to affect the extent of the speech production changes [3]. The Lombard 

effect occurs frequently in everyday speech, in a noisy room, or over a poor telephone 

connection, for example. For this reason, it is important to consider its effect on speaker 

recognition. The Lombard effect has previously been shown to impact the performance of 

a range of speech technology applications [3], [6]. Efforts to compensate for the Lombard 

effect have focused primarily on speech recognition applications [4], [5], [7]–[9]. Previous 

speaker recognition studies have considered detection and integration of Lombard speech 

into system training for GMM (Gaussian Mixture Model - Universal Background Model) 

[3] and i-vector PLDA (Probabilistic Linear Discriminant Analysis) [10] systems as a means 

of compensating for performance loss. In our previous work [11], the Lombard effect was 

shown to have a detrimental impact on i-vector PLDA speaker recognition, in a way that was 

reflective of the noise type and level inducing the Lombard effect. It was demonstrated that 

the reference noise level could be integrated into score calibration to improve discrimination 

and calibration performance.

Whisper is a common mode of low vocal effort speech, generally produced with the aim of 

maintaining intelligibility for an intended listener, while restricting intelligibility for others. 

It is therefore commonly utilized in scenarios where a speaker wishes to conceal or disguise 

their identity [12], or communicate information discretely [13]. Whisper differs significantly 
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from neutral speech (modal speech produced with normal vocal effort). Whisper is produced 

without vibration of the vocal folds, and therefore the signal contains no periodic excitation 

(this distinguishes whisper from soft or low vocal effort speech). Additionally, the center 

frequencies and bandwidths of formants generally increase in whisper, while overall signal 

energy decreases [14], [15]. From a forensic perspective, the nature of whisper as a means 

to conceal identity or information give it particular relevance. Aside from forensic speaker 

recognition contexts, the ability to discreetly communicate with commercial applications 

of speech or speaker recognition is of growing interest (e.g., Amazon Alexa, an in-home 

speech-controlled virtual assistant, supports a ‘whisper mode’).Previous studies[15]–[18] 

have established that whisper-neutral speech comparisons significantly degrade performance 

of conventional speaker recognition frameworks relative to neutral-neutral comparisons, and 

have proposed various front-end feature modifications to address this issue. In our previous 

work [19], whisper was shown to have a detrimental impact on i-vector PLDA speaker 

recognition. A cross-corpus i-vector-based whisper detection scheme was introduced to 

select calibration parameters for each test comparison, leading to an improvement in overall 

discrimination and calibration performance.

Whisper and Lombard speech deviate from neutral speech in very different ways, but have 

both been shown to negatively impact speaker recognition performance. The goal of this 

study is therefore to evaluate and compare the effect of these speech modes with a consistent 

speaker recognition system and testing protocol, and to propose score calibration schemes 

that can be successfully applied to comparisons involving these speech modes. The process 

of score calibration involves transforming scores output by a speaker recognition system 

to have some desirable properties: calibrated scores can be used to make reliable decisions 

with a fixed decision threshold, or can be interpreted directly as log likelihood ratios [20], 

which are suitable for forensic applications. In order to achieve effective score calibration, 

the presence of (extrinsic or intrinsic) variability must be taken into account. For example, 

Fig. 1 shows distributions of the same-speaker and different-speaker scores for comparisons 

in two different conditions, where Condition A consists of typical operating conditions, 

and Condition B contains some additional variability. The system in Fig. 1(a) applies the 

same calibration transformation to the scores in both conditions, resulting in poor overall 

calibration (reflected in the misalignment of the two sets of score distributions), whereas 

the system in Fig. 1(b) applies an appropriate calibration transformation to each of the 

conditions independently, resulting in good overall calibration (reflected in the alignment of 

the two sets of score distributions).

In the context of this study, Condition A is representative of comparisons with neutral 

speech, and Condition B is representative of comparisons between neutral speech and 

whisper or Lombard effect speech. Our goal is to automatically detect when the system is 

operating under Condition B, and to adjust the calibration transformation appropriately. An 

advantage of this approach is that it can be applied in a way that is independent of the 

speaker recognition framework (i.e. the feature extraction, speaker modeling, and speaker 

comparison algorithms), and could potentially be generalized to other sources of variability 

beyond Lombard effect and whisper.
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A recent study [21] evaluated the effect of three vocal effort levels (low, normal, high) 

on speaker recognition performance, and considered condition-specific PLDA models and 

trial-based calibration [22] to improve discrimination and calibration performance. The aim 

of our study is similar, but our approach is focused on the use of a non-neutral speech 

detector to inform calibration schemes that are system-independent and corpus-independent. 

We also note that several other recent studies [23], [24] have focused on the effect of 

extrinsic variability on calibration performance, and have considered several ways of dealing 

with the associated drop in performance.

The contributions of this study include a series of speaker recognition experiments with 

three Lombard effect speech corpora and three whispered speech corpora using an i-vector 

system [25] and a Deep Neural Network (DNN) based x-vector embeddings system [26] 

(there is variability in language, accent and speech content across the corpora; however, we 

constrain the experiments to fixed-duration comparisons of close microphone read speech). 

The application of a Support Vector Machine (SVM) to detect non-neutral speech from 

x-vectors, and the use of the detector output to inform score calibration, are shown to lead 

to improvements in calibration and discrimination performance in the presence of Lombard 

effect and whisper vocal effort. This study consolidates and extends our previous work [11], 

[19] by evaluating both Lombard effect and whisper within the same speaker recognition 

framework, and by proposing generalizable calibration schemes that are applicable to both 

speech modes, and across different corpora.

II. SPEECH DATA

The availability of suitable speech data has been a limiting factor in the study of intrinsic 

variability in speaker recognition. In this study, several independently-collected corpora are 

subjected to the same analysis, enabling some general conclusions to be drawn. All corpora 

were designed and collected to study the specific vocal effort variations of Lombard effect 

and whisper. The following sections introduce each of the datasets in detail, and a summary 

is provided in Table I.

A. UT-SCOPE: Lombard Effect Speech

UT-SCOPE (Speech under COgnitive and Physical stress and Emotion) [27] is a corpus 

containing a range of intrinsic speaker variability, including Lombard effect and neutral 

speech recordings produced in controlled conditions (UT-SCOPE additionally contains 

recordings of speech produced under cognitive and physical stress, not considered in this 

study). The Lombard speech portion of the corpus used in this study (UT-SCOPE-LE) 

contains English recordings of 30 (24 female, 6 male) native US-English speakers. The 

Lombard effect was induced by playback of several noise types at different levels using 

open-air headphones. The noise types considered were: large crowd noise, highway noise 

(recorded inside a car traveling at 65 mph on a highway with the windows half-open), and 

pink noise. Each noise type was presented at three levels: crowd and highway at 70, 80 and 

90 dB-SPL, and pink at 65, 75 and 85 dB-SPL.Neutral speech was recorded under the same 

conditions, with no noise presentation. Recordings were made in an acoustically-isolated 

booth with a Shure SM-10 A close-talk microphone, along with a desk-top microphone 
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and two distant microphones (only the close-talk mic. recordings are considered here). 

Lombard effect and neutral speech recordings were made within the same session as blocks 

of read and spontaneous speech (only the read portion is considered in this study). The 

read Lombard speech blocks consisted of 20 TIMIT sentences and five repetitions of 10 

digits in each noise condition; the read neutral speech consisted of 100 TIMIT sentences 

and five repetitions of 10 digits with no noise presentation. As the Lombard Effect was 

induced by playback of noise though headphones, the noise signal is not present in the 

speech recordings. The headphones were open-air, and so there was no occlusion effect. The 

hearing of the speakers was screened in advance using a pure-tone audiometric test.

B. Pool-2010: Lombard Effect Speech

Pool-2010 [28] is a corpus of Lombard effect and neutral speech recordings produced 

in controlled conditions. The corpus contains German recordings of 100 native German 

speakers. A subset of 100 male speakers were selected, based on recommendations in 

[28]. The Lombard effect was induced by playback of white noise over headphones 

at 80 dB-SPL. Neutral speech was recorded under the same conditions, with no noise 

presentation. Recordings were made with a head-mounted close-talk microphone in an 

acoustically-isolated booth. Lombard effect and neutral speech recordings were made within 

the same session, as blocks of read and spontaneous speech (only the read portion is 

considered in this study). Read speech consisted of a read passage (the German version of 

the ‘North Wind and the Sun’) in each condition. In addition to the microphone recordings, 

telephone recordings were simultaneously acquired for the same speech tasks. Only the 

microphone recordings are considered in this study. As the Lombard Effect was induced 

by playback of noise though headphones, the noise signal is not present in the speech 

recordings. The hearing of the speakers was not screened; however, it is noted that none of 

the speakers had ‘noticeable voice or speech disorders’ [28].

C. Lombard-Grid: Lombard Effect Speech

Lombard-Grid [29] is an audio-visual corpus of Lombard effect and neutral speech 

recordings produced in controlled conditions.1 The corpus contains English recordings of 

54 (30 female, 24 male) native British-English speakers. The Lombard effect was induced 

by playback of speech-shaped noise over headphones at 80 dB-SPL. Neutral speech was 

recorded under the same conditions, with no noise presentation. Recordings were made in 

an acoustically-isolated booth with a C414 B-XLS AKG condenser microphone at a distance 

of 30 cm. Lombard effect and neutral speech recordings were made within the same session 

as alternating blocks of 10 read sentences. Frontal and side video was recorded alongside 

the audio (only the audio portion is considered in this study). As the Lombard Effect was 

induced by playback of noise though headphones, the noise signal is not present in the 

speech recordings. The hearing of the speakers was screened in advance using a pure-tone 

audiometric test.

1The corpus is available for download at: http://spandh.dcs.shef.ac.uk/avlombard/ (last accessed 17th November 2020).
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D. UT-VocalEffort II: Whisper

UT-VocalEffort (VE) II [30] is a corpus of whispered and neutral speech recordings 

produced naturally in controlled conditions. A subset of the corpus consisting of English 

recordings of 62 (42 female, 20 male) native US-English speakers was used in this study. 

Recordings were made in an acoustically-isolated booth with a Shure Beta-53 headset 

microphone. Whisper and neutral speech recordings were made within the same session, in 

both read and spontaneous conversational contexts (only the read portion is considered in 

this study). The read speech content consists of 41 TIMIT sentences, produced in neutral 

and whisper modes in an alternating fashion. All subjects confirmed no history of hearing or 

speech impairment.

E. CHAINS: Whisper

CHAINS (CHAracterizing INdividual Speakers) [31] is a corpus of whispered and neutral 

speech recordings produced naturally in controlled conditions.2 The corpus contains English 

recordings of 36 speakers (16 females, 20 males). The majority of the speakers (28) are 

Irish-accented, and the remainder of the speakers are US or U.K.-accented. Neutral speech 

recordings were collected with a Neumann U87 condenser microphoneinan acoustically-

isolated booth. Whispered speech recordings were collected in a session about 2 months 

later, with an AKG C420 headset condenser microphone in a quiet office environment. 

Recordings of both read and spontaneous speech were made (only the read portion is 

considered in this study). The read speech content consists of 4 read passages and 33 read 

sentences (24 from TIMIT, 9 from CSLU), produced within each of the separate neutral and 

whisper recording sessions.

F. wTIMIT: Whisper

wTIMIT (whispered TIMIT) [32] is a corpus of whispered and neutral speech recordings 

produced naturally in controlled conditions. The corpus contains speech from 48 speakers 

(24 females, 24 males). The recordings are in English, with 20 Singapore-accented speakers 

and 28 US-accented speakers. Neutral speech recordings were collected with a MX-2001 

directional microphone in an acoustically-isolated booth. Whisper and neutral speech 

recordings were made within the same session, in an alternating fashion. Speech consisted 

of 450 read sentences from the TIMIT corpus [33] produced in both whisper and neutral 

modes, and spoken in batches of 50.

G. Notes on Speech Data

Although these copora were collected independently, they share many consistencies. In the 

selection of data subsets and the design of experiments, we have imposed some additional 

constraints to ensure the corpora are more comparable:

• All recordings used for experiments were made with a close-talk or directional 

microphone in an acoustically-isolated booth, with the exception of CHAINS 

whisper recordings, which were made in a quiet office.

2The corpus is available for download at: http://chains.ucd.ie (last accessed 17th November 2020).
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• All recordings used for experiments consisted of read sentences, with the 

exception of Pool2010, which consisted of a read passage. There is variation 

in the total speech duration across corpora; however, duration consistency is 

enforced in our speaker recognition experiments.

• The number of neutral and non-neutral recordings is approximately equal for 

all corpora, with the exception of UT-SCOPE-LE (due to the multiple Lombard 

conditions); this imbalance is accounted for at the analysis stage.

• The corpora are relatively gender balanced, with the exception of Pool2010 (all 

male) and UT-SCOPE-LE (80% female)

• All Lombard speech collections used noise at 80 dB-SPL as a stimulus (UT-

SCOPE-LE additionally uses noise at lower and higher levels), and all collected 

Lombard speech recordings are clean (i.e. do not contain the noise stimulus).

• All recordings were down sampled to 8 kHz prior to analysis

• All recordings used for experiments were made within the same session (i.e. 

recording event), with the exception of CHAINS whisper recordings, which 

were made in a separate session two months later. This is considered in the 

interpretation of results, as comparison of speech samples recorded within the 

same session typically produce higher speaker recognition scores than would be 

observed with comparisons across different sessions.

III. SPEAKER RECOGNITION SYSTEMS

This section details the speaker recognition systems used for experiments. Our primary 

system is an x-vector PLDA system based on DNN embeddings [26]. For comparison, and 

continuity with our previous studies [11], [19], an i-vector PLDA system [25] is additionally 

used for a subset of our experiments.

A. i-vector System

An i-vector PLDA system [25], [45] was trained on NIST SRE 2004–2010 collections. 

At the system front-end, 15 Mel-frequency cepstral coefficients (MFCCs) were extracted 

over 20 ms windows at 10 ms intervals, and were appended with first- and second-order 

derivatives (delta and delta-delta coefficients). Combo-SAD [46] speech activity detection 

(SAD) was applied to remove non-speech frames. Cepstral mean subtraction (CMS) [47] 

was applied globally (i.e. the mean of the entire sample was subtracted from each frame). 

A gender-independent UBM (Universal Background Model) of 1024 components and a 

400-dimensional total variability matrix were trained with the full training set. i-vectors 

were post-processed by mean and length normalization, and whitening [48]. The i-vector 

dimensionality was reduced to 200 using Linear Discriminant Analysis (LDA), and the 

same-speaker and different-speaker i-vector distributions were modeled with PLDA using 

the full training set.
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B. x-vector System

An x-vector PLDA system [26] with a Kaldi network architecture was trained using the 

NIST SRE 2016 recipe.3 At the front-end, 23 MFCCs were extracted over 25 ms windows 

at 10 ms intervals, and energy-based SAD was applied to remove non-speech frames. CMS 

was applied with a sliding window of 3 seconds across the speech sample. The speaker 

embeddings extractor used is a feed-forward DNN: the first five DNN layers operate on 

speech frames with an increasing temporal context (i.e. an increasing time span between first 

and last input frame). The frame-level layers are followed by a statistics pooling layer that 

aggregates information across all frames of the input speech sample. This is followed by two 

hidden layers, before a final softmax output layer. The first hidden layer, of 512 dimensions, 

is taken as the speaker embedding, or x-vector. The x-vector dimensionality was reduced 

to 150 with LDA, and the same-speaker and different-speaker x-vector distributions were 

modeled with PLDA using the full training set.

IV. SPEAKER RECOGNITION UNDER VOCAL EFFORT VARIATION

A set of baseline speaker recognition experiments were conducted for each of the corpora to 

assess the impact of Lombard effect and whisper vocal effort variation on the performance 

of i-vector and x-vector systems. The aim of these initial experiments was to establish 

the performance for matched (neutralneutral, Lombard-Lombard, and whisper-whisper) 

and mismatched (Lombard-neutral and whisper-neutral) comparisons in a comparable way 

across the various corpora.

A. Discrimination Performance

As the corpora largely consist of short sentence utterances, the content of each was 

restructured to control for duration (there is a strong relationship between duration and 

speaker recognition performance [49], [50]). Recordings were concatenated into one non-

neutral (i.e. Lombard speech or whisper) and one neutral recording of read speech per-

speaker. The concatenated recordings were then segmented into fixed-duration chunks of 10 

seconds net speech (i.e. disregarding non-speech and silence). Speech activity labels from 

Combo-SAD [46] were used to segment the recordings in this way. A minimum of one 

chunk and a maximum of five chunks were extracted from each recording; for the case 

where more than five chunks were available, they were chosen to be maximally distributed 

throughout the recording. From our previous investigation of the UT-VE II and CHAINS 

whisper corpora [19], it was observed that i-vector speaker recognition performance tended 

toward 0% Equal Error Rate (EER) at durations above 20 seconds. By limiting the duration 

of all test samples to 10 seconds, we therefore focus on a more challenging short-duration 

task.

For each corpus, all possible same-gender recording chunks were compared using both 

i-vector and x-vector systems. The discrimination performance was measured for matched 

and mismatched comparison conditions by calculating the EER on the relevant scores. Table 

II provides the EERs for all conditions within each Lombard effect and whisper corpus.

3https://david-ryan-snyder.github.io/2017/10/04/model_sre16_v2.html (last accessed 17th November 2020).
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For the ‘ALL’ condition, a weighted EER [51] was calculated in order to balance the 

contribution of matched and mismatched comparisons. In calculating a weighted EER, 

the contribution of comparisons originating from a particular condition (i.e. matched or 

mismatched) was weighted by the inverse of the total number of comparisons for that 

condition. The weighting of error metrics in this way was proposed for evaluations with 

comparisons in multiple recording conditions, and has also been applied in the case of a 

variable number of comparisons per-speaker [52].

Referring to Table II, it is clear that mismatched comparisons of neutral vs. non-neutral 

speech(N-NN) degrade discrimination performance relative to neutral-neutral comparisons 

(N-N), and that whisper has a much greater negative impact than Lombard effect speech. 

The large performance improvement offered by the x-vector system across all conditions 

is also clear. It is important to note that while the improvement from i-vector to x-vector 

for matched (N-N, NN-NN) conditions is apparent, the significant loss in performance for 

mismatched (N-NN) conditions persists for both.

In absolute terms, the x-vector EERs for mismatched Lombard effect vs. neutral 

comparisons are low (a maximum EER of 3.62% for Lombard-Grid); however, these EERs 

still represent a large increase relative to the corresponding neutral-neutral comparisons. 

Absolute discrimination performance of the x-vector system is poor for mismatched whisper 

vs. neutral comparisons, with minimum EERs of ≈20%.

It is interesting that matched comparisons of non-neutral speech (i.e. Lombard effect vs. 

Lombard effect, and whisper vs. whisper (NN-NN)), result in lower EERs than mismatched 

comparisons of neutral and non-neutral speech (N-NN) within the same corpus. We note 

that the use of clean, controlled non-neutral speech samples make these EERs optimistic 

(Lombard effect samples would typically contain background noise).

A further consideration is that all matched and mismatched comparisons in Table II, with 

the exception of CHAINS N-NN, involve chunks extracted from the same recording session. 

While the absolute value of the resulting EERs could therefore be considered optimistic, 

it is the comparison of EERs across conditions that is of most interest here. Note that 

the CHAINS N-NN EER is slightly higher than the N-NN condition in the other whisper 

corpora; this performance loss can be (at least in part) attributed to recording session 

independence.

Given the clear performance gain with the x-vector system, the remainder of the paper will 

focus on scores obtained using this system only.

B. Calibration Performance

In addition to discrimination, it is important to asses shown on neutral speech may affect 

calibration performance. A system can be said to have good calibration performance if its 

scores can be used to make good decisions (using an application-specific threshold, for 

example). Calibration performance is dependent on the numerical values of the scores, and 

not just the ordering of the same-speaker and different-speaker scores (as is the case with 

a purely-discriminative metric, like EER). The Cllr (log-likelihood ratio cost) [53] measures 
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the quality of a set of scores for making decisions, using a logarithmic cost function. The Cllr 

is a measure of both discrimination and calibration. If the Cllr for a set of scores is close to 

0, the system can be said to have good discrimination and calibration. If the Cllr for a set of 

scores is 1 or above, the system either has poor discrimination, poor calibration, or both. It 

is possible to transform the scores output by a system in order to improve their calibration 

performance and reduce Cllr; this process is referred to as score calibration. Score calibration 

is typically applied by shifting and scaling scores using predetermined parameters obtained 

from a separate set of training scores using linear logistic regression [54]. The choice of 

calibration data is important; for the transformation to be effective, the calibration training 

data must be representative of the test data being calibrated. The minimum achievable 

Cllr for a set of scores can be calculated via a monotonic transformation [53]. This Cllr
min

value represents the case of ‘perfect’ calibration. The effectiveness of score calibration can 

therefore be measured by the level of mis-calibration (or calibration loss) between Cllr and 

the Cllr
min. The Cllr

min can be viewed as a theoretical minimum for a set of scores. In our 

subsequent experiments, we define a more practical minimum Cllr for measuring calibration 

loss.

Given the distinct neutral and non-neutral speech conditions in the Lombard effect and 

whisper corpora in this study, there are several score calibration scenarios to consider:

• Neutral calibration: linear calibration parameters (i.e. one scaling and 

one shifting parameter) are trained using the scores from neutral-neutral 

comparisons, and used to calibrate scores from all test conditions. This scenario 

represents a naïve system, optimized for use with neutral speech. Neutral 

calibration would be expected to be effective for neutral-neutral comparisons 

only.

• Pooled calibration: linear calibration parameters are trained using the scores 

from all comparisons, and used to calibrate scores from all conditions. This 

scenario represents a general-purpose system, which has had access to all 

conditions in advance, but is not optimized for any particular condition. Pooled 

calibration would be expected to be more effective than neutral calibration 

overall, but less effective for neutral-neutral comparisons.

• Matched calibration: linear calibration parameters are trained for each of the 

three possible conditions (i.e. N-N, NN-NN, and N-NN from Table II), and 

used to calibrate the scores from all conditions, where each test score is 

calibrated by the parameters from the same condition. This scenario represents 

a system that has access to all conditions in advance, and applies the optimal 

calibration parameters for each test based on ground-truth knowledge of the 

comparison conditions. This scenario therefore represents a theoretical upper 

bound for calibration performance, but one that is more realistic than Cllr
min (for 

this reason, we use matched calibration performance in measuring calibration 

loss). Matched calibration would be expected to be more effective than neutral 

or matched calibration overall, and will (by definition) be equally effective as 

neutral calibration for neutral-neutral comparisons.
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In our experiments, each of these calibration scenarios was evaluated using the x-vector 

scores from Table II on a per-corpus basis. A leave-one-out cross-validation scheme was 

adopted, whereby all scores involving a particular speaker were held-out, and the remaining 

scores were used to learn calibration parameters for the held-out speaker. All scores 

involving this particular speaker were then calibrated with the trained parameters. This 

process was repeated for all speakers in the corpus, before calculating error metrics on the 

full set of calibrated scores. The cross-validation approach ensures that the training data is 

representative of the test data, without overlap between the scores (or the speakers) used 

for training and testing calibration parameters. Cross-corpus calibration would have been 

appropriate, but would have resulted in some loss of representativeness due to differences 

between the corpora (e.g., language mismatch between Pool2010 and UT-SCOPE).

Table IV provides Cllr values for these calibration variants applied to the x-vector 

comparison scores from each corpus. In addition to the performance over all test conditions 

(ALL), the performance breakdown for neutral-only and neutral vs. non-neutral test 

conditions is provided. In a similar manner to the weighted EER (Table II), the Cllr values 

for the ALL test condition are weighted to equalize the contribution of the three comparison 

conditions.

Referring first to the ALL test condition, it can be seen that matched calibration results 

in the lowest C llr for each corpus, followed by pooled and then neutral calibration. 

This is expected, due to the condition-optimized parameters applied to each score with 

matched calibration. Pooled calibration has had access to all conditions, but applies only 

one general set of parameters to each test score. Neutral calibration has not had the benefit 

of non-neutral conditions in training, and is therefore performs poorly on comparisons 

involving non-neutral speech. It is also clear that whisper degrades calibration performance 

to a greater extent than Lombard effect: with matched calibration, whisper Cllr values for 

the ALL test condition are at least three times greater than their Lombard equivalent. They 

approximately double with pooled calibration and rise above 1 with neutral calibration. 

This is consistent with discrimination performance trends observed in Table II. For UT-

SCOPE-LE and Lombard-Grid corpora, the difference between neutral, pooled, and matched 

calibration performance for the ALL test condition is relatively small, with Cllrs of ≈ 0.1 

obtained even with neutral calibration. Within the constraints of these two corpora therefore, 

the Lombard effect does not cause a large drop in discrimination or calibration performance. 

With Pool2010 however, the Cllr increases by a factor of 10 from pooled to neutral (0.0620–

0.669). This large calibration loss is an indicator that Pool2010 neutral samples are poorly 

representative of the Pool2010 non-neutral samples.

The N-N test condition breakdown in Table IV shows the Cllr for each calibration variant 

when applied to neutral-only comparisons. With neutral or matched calibration (which are 

equivalent in this case) the calibration performance is similar across all corpora - this is in 

keeping with the discrimination results in Table II. The addition of Lombard speech in the 

calibration training set does not greatly hurt performance, as Cllr increases only slightly with 

pooled calibration for the Lombard corpora. However, the inclusion of whisper in pooled 

calibration training increases the Cllr of neutral-only comparisons by an order of magnitude 

for all three corpora relative to matched calibration.
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Finally, referring to the mismatched N-NN test condition of Table IV, which shows Cllr for 

each calibration variant when applied to neutral vs. non-neutral comparisons, we see the 

lowest Cllrs again with matched calibration. For Lombard corpora, there is a progressive 

increase in Cllrs from matched to pooled, and from pooled to neutral (with the exception 

of Pool2010, for which the Cllr increases dramatically with neutral calibration). A similar 

trend is observed with whisper corpora, but with much larger Cllrs. For pooled calibration, 

the N-NN test condition results in Cllrs of ≈ 1 for all whisper corpora.

The results in Table IV again show that both Lombard effect and whisper affect 

speaker recognition performance, with whisper having a much greater detrimental impact. 

Considering a scenario where a system must handle mismatched N-NN comparisons, for 

Lombard effect there will be significant calibration loss if only using neutral scores to 

train the calibration function (an approximate doubling of Cllr for UT-SCOPE-LE and 

Lombard-Grid, and a much larger increase for Pool2010). Depending on the specifics of the 

data, the Cllr may still be low in absolute terms (i.e. UT-SCOPE-LE and Lombard-Grid with 

Cllr of ≈ 0.2). For whisper, discrimination and calibration performance of mismatched N-NN 

comparisons is poor even with matched calibration, and with pooled or neutral calibration 

the Cllr rises to ≥1. A system provides useful information (in a forensic voice comparison 

case for example) when the Cllr is below 1; this gap between matched and pooled calibration 

in the case of whisper is therefore significant.

Subsequent experiments in this study propose new calibration approaches that do not require 

ground-truth knowledge of the speech sample conditions, and can bridge this performance 

gap between matched and pooled calibration.

C. Per-Speaker Performance

The measures of discrimination and calibration detailed in Tables II and IV show the 

performance effects of non-neutral speech on a population level. It may be the case however, 

that sub-groups within the population (or individual speakers), display different performance 

characteristics. This is particularly true for intrinsic variability, which is by definition 

a product of the individual speaker. Exclusively relying on population-level metrics can 

mask such underlying performance variations. For example, the age difference between the 

speakers in a non-target (i.e. different-speaker) comparison has been shown to influence 

speaker recognition scores[55], as has an age difference between two samples in a target (i.e. 

same-speaker) comparison [52]. This underlying factor of age may not be apparent from a 

population-level analysis.

Zoo plots are a means of visually assessing the performance of biometric systems at the 

per-speaker level. The concept of zoo plots was introduced by Doddington et al. [56], who 

proposed the designation of speakers as different animals based on the statistics of their 

comparison scores, relative to the whole population (the zoo). The zoo plot concept was 

subsequently extended by increasing the number of possible animal designations [57], and 

through the visual incorporation of score standard deviation for each of the speakers [58].

A zoo plot is created by representing each speaker as a point on a plot according to their 

mean same-speaker and different-speaker comparison scores. The speakers falling within the 
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top or bottom 25% (i.e. the first and last quartiles) on each axis are designated different 

animal labels. For example, the ‘best’ performing speakers, having low different-speaker 

scores and high same-speaker scores, are ‘doves,’ and the ‘worst’ performing speakers, 

having high different-speaker scores and low same-speaker scores, are ‘worms’. This 

designation of speakers as different animals can be a useful device for summarizing behavior 

of individuals or sub-groups, but we note that it is largely dependent on the system and test 

data [59]. Here, we are not concerned with specific animal designation, but rather with using 

the zoo plots as a means of visualizing individual and population level score characteristics 

under Lombard effect and whisper vocal effort variability.

Fig. 2 contains a combined neutral and non-neutral zoo plot for each of the corpora. Each 

plot contains two points (ellipses) for each speaker, one based on neutral-only scores, and 

the other based on neutral vs. non-neutral scores. The quartile boundaries and speaker 

points for the two conditions are colored in blue and red respectively. All scores have been 

calibrated with neutral calibration. The standard deviation of a speaker’s scores on each 

axis, relative to the mean of the neutral standard deviation across all speakers, is used to 

determine their ellipse dimensions - a speaker may be ‘tall,’ ‘short,’ ‘fat,’ or ‘thin’ [58]. The 

score shift that occurs between neutral and non-neutral conditions can be observed here at 

the individual speaker level.

With Lombard effect, at the population-level, there is a decrease in same-speaker scores (a 

shift to the left for all nonneutral points), and an increase in variance between speakers on 

the same-speaker score axis (reflected in the wider interquartile range). At the per-speaker 

level, some speakers move more than others in the score space across conditions, resulting 

in more ‘outlier’ speakers (e.g., speaker 8 in Fig. 2(e)) There is also a small increase in 

same-speaker score variance (width of the ellipses). These observations are shared across the 

three Lombard corpora.

With whisper, at the population-level, there is a decrease in same-speaker scores and 
in different-speaker scores (an upward shift to the left for all non-neutral points), and 

a relatively constant variance between speakers on both axes (reflected in the similar 

interquartile ranges). At the per-speaker level, there is a noticeable decrease in score 

variance on both axes (a decrease in ellipse area), and fewer ‘outlier’ speakers. These 

observations are shared across the three whisper corpora.

Inspecting these plots at the population-level, the relative score shifts for Lombard effect 

and whisper align with expectations, given the speaker recognition performance observed in 

each case. At the speaker-level, these plots suggest that between-speaker score variability 

increases for Lombard effect and decreases in whisper. Although beyond the scope of this 

study, we note that the speakers who are very mobile (or very immobile) in the zoo plot 

between conditions could be used to inform signal-level understanding of these sources of 

variability.
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V. VOCAL EFFORT DETECTION

The speaker recognition experiments in the previous sections have established that both 

Lombard effect and whisper have a detrimental impact on discrimination and calibration 

performance. Across different Lombard effect and whisper corpora, there are consistencies 

in how non-neutral speech affects the speaker recognition score space. These observations 

motivate the detection of Lombard effect and whisper as a first step toward addressing their 

detrimental impacts, and suggest that a general, corpus-independent detection approach may 

be feasible. While we propose a shared approach for the detection of Lombard effect and 

whisper, we stress that since Lombard effect and whisper occur in different scenarios, are 

motivated by different factors (LE is a reflex, whisper is deliberate), and have very different 

effects on the signal, we do not consider a three-way LE-whisper-neutral detection approach.

A. Visualizing Speaker Representations

First, to investigate the relationship between neutral and nonneutral speech in the speaker 

model space, x-vectors for each 10 s speech chunk were projected into two dimensions using 

t-Distributed Stochastic Neighbor Embedding (t-SNE) [60]. t-SNE finds a non-parametric 

embedding of high-dimensional data in an unsupervised way (i.e. not using class labels). 

Data is embedded in the t-SNE space such that similar data points appear closer together 

and dissimilar data points appear further apart. It is consequently a useful tool for providing 

visual insight into the structure of high-dimensional data. Fig. 3 provides a two dimensional 

t-SNE embedding of Lombard, whisper, and neutral x-vectors. The number of x-vectors 

plotted per-corpus was equalized by random sampling to ensure equal contribution of each 

corpus to the embedding transformation. We note that similar visualization can be achieved 

using principal components analysis (PCA) (this was applied to visualize the whisper 

i-vector space in our previous study [19]); however, we found t-SNE to be more visually 

informative with this data.

The distribution of x-vectors within the Lombard-neutral and whisper-neutral t-SNE spaces 

presents some interesting observations. Referring first to the Lombard-neutral space in Fig. 

3(a), x-vectors are generally clustered according to corpus and speaker gender; there is 

no global separation of Lombard effect and neutral x-vectors. For both UT-SCOPE-LE 

and Lombard-Grid corpora, the small groups of points within each corpus-gender cluster 

consist of x-vectors for an individual speaker. For example, the UT-SCOPE-LE male cluster 

(red points) consists of 6 smaller groups of points, one for each of the 6 UT-SCOPE-LE 

male speakers. There is some separation of Lombard effect and neutral x-vectors on 

this per-speaker basis. For Pool2010, there is better overall separation of Lombard effect 

and neutral x-vectors. Pool 2010 contains only male speakers however. We note that the 

Pool2010 x-vectors (purple points) that fall into the same cluster as the UT-SCOPE females 

(darker blue points) originate from a male speaker with an unusually high fundamental 

frequency. Overall, this t-SNE visualization suggests that speaker gender followed by corpus 

characteristics (e.g., microphone and channel type, speech content, speaker language and 

accent) are the dominant variables within the set of Lombard-neutral x-vectors. However, the 

global separation of Lombard effect and neutral x-vectors for Pool2010, and per-speaker 
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separation for UT-SCOPE-LE and Lombard-Grid corpora suggest that a generalizable 

Lombard speech detector may be feasible.

Referring to the whisper-neutral space in Fig. 3(b), x-vectors are tightly clustered according 

to whether they correspond to neutral or whispered speech, and according to speaker gender. 

The gender separation is greater in neutral speech than in whisper; this is reasonable 

given the loss of voicing, and hence fundamental frequency, from whispered speech. This 

global separation of whisper and neutral across a corpus was shown for UT-SCOPE-LE and 

CHAINS corpora in our previous study [19]. In Fig. 3(b), points from the same corpus are 

generally close together, with no distinct corpus clusters. We note that the CHAINS neutral 

female x-vectors (yellow circles) that fall within the neutral male x-vector cluster originate 

from a female speaker with an unusually low fundamental frequency. Overall, this t-SNE 

visualization suggests that whisper, followed by speaker gender are the dominant variables 

within the set of whisper-neutral x-vectors. This is a strong indication that a generalizable 

whisper detector is feasible.

B. Non-Neutral Speech Detection Using x-vectors

The use of i-vectors as features for classification of information other than speaker identity 

is well established; for example, i-vectors have been successfully applied to speaker age 

estimation [61], spoken language recognition [62] and detection of pathological speech [63]. 

More recently, x-vectors have been used in a similar way for spoken language recognition 

[64], and to detect pathological speech [65]. In this study, we build on the proposal in 

[19] by evaluating a cross-corpus non-neutral speech detector based on x-vectors. In this 

approach, a two-class linear support vector machine (SVM) is trained using neutral and 

non-neutral 10 s x-vectors from one corpus, and used to classify x-vectors from a different 

corpus. The training x-vectors were pre-processed with mean and length normalization, and 

the test x-vectors were mean normalized with statistics from the training set, and then length 

normalized. Based on initial within-corpus cross-validation tests, a polynomial kernel was 

used for the Lombard effect SVM, and a linear kernel for whisper.

Fig. 4 shows the output of the cross-corpus SVM testing for each corpus: It is clear 

that cross-corpus detection of whisper is very effective (EER of 0%), while cross-corpus 

detection of Lombard effect is less accurate (EER ≈ 25%). Based on the x-vector 

distributions in Section V-A, this is not surprising: Lombard effect exists on a continuous 

scale (dependent on the noise level and type [3], [11], and on the individual speaker, Fig. 2), 

whereas whisper is a binary state.

In the context of speaker recognition score calibration, the detection score distributions in 

Fig. 4(a) motivate the inclusion of Lombard effect detection score as a continuous-valued 

quality measure, and whisper detection score for the selection of discrete calibration 

parameters. In Section VI, these score calibration proposals are evaluated.

VI. VOCAL EFFORT CALIBRATION

The output of the non-neutral speech detectors evaluated in Sec. V could be used to inform a 

speaker recognition system in multiple ways, for example:
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• As a gate-keeping measure to reject non-neutral samples based on a 

predetermined detection score threshold.

• As a classifier to determine the conditions of a test comparison, allowing 

condition-specific modeling, normalization, or calibration parameters to be 

selected.

• As a quality measure that can be incorporated in a score-quality calibration 

function.

The first option involves rejecting comparisons subject to a threshold; this is important 

functionality for real-word systems, and an effective means of reducing calibration error 

[66]. Here, we consider only the second two options, which do not involve rejection of 

any comparisons. We note however that based on the results in Section V-B, a gatekeeping 

measure would clearly be effective at rejecting whisper comparisons.

The second option is considered here as an extension of matched calibration (Sec. IV-B), 

for which the appropriate calibration parameters for a comparison are selected based on the 

output of the detector rather than ground-truth knowledge of the recording conditions. This 

was applied to whisper comparisons in a cross-corpus manner in our previous work [19]; 

here we extend this approach to Lombard comparisons.

The third option is assessed here by using the detector output from the two recordings in 

a comparison to train a score-quality calibration function, which can be applied to new 

comparisons without any ground-truth knowledge of the recording conditions. A constrained 

version of this approach was applied in our previous work [11], in which ground-truth 

Lombard noise exposure levels were used to train a calibration function, requiring that 

ground-truth noise levels were also available at test time. Here we extend this approach by 

removing the need for ground-truth knowledge for test comparisons, or for a corpus-specific 

calibration function, and evaluate on both whisper and Lombard effect speech.

A. Score-Quality Calibration

Incorporating ‘quality’ information in score calibration using Quality Measure Functions 

(QMFs) is well established; QMFs have been applied to incorporate duration information 

[50], [67], [68], noise estimates [67], [68], and aging (i.e. time interval) information [52]. 

Here, we consider the use of a QMF to incorporate the likelihood of non-neutral speech as 

an additional term in conventional score calibration.

As discussed in Section IV-B, score calibration can be applied using a linear transformation 

[69], in which raw scores s are transformed into calibrated scores s′ given offset and scaling 

parameters w0 and w1:

s′ = w0 + w1s, (1)

where w0 and w1 are obtained by linear logistic regression optimization [54] on a separate 

set of representative scores. In the QMF approach, conventional linear calibration is 

extended by including an additional term, w2:
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s′ = w0 + w1s + w2Q(i), (2)

where Q is a QMF depending on some (estimated or ground-truth) information i associated 

with the audio samples resulting in the scores s. The w2 parameter governs the influence 

of the additional quality term. (2) can be generalized by including multiple additional terms 

(i.e. w3…wN), each with an associated QMF.

Here, we define information ix as the detection score given a test sample x and a non-neutral 

speech detector, and iy as the detection score given a test sample y and a non-neutral speech 

detector.

We consider two approaches for incorporating ix and iy in calibration: the first includes 

ix and iy as two independent terms, allowing the relationship between the raw scores and 

the non-neutral speech levels in each sample to be learned from the calibration training 

data. The second includes the absolute difference between ix and iy as a single term. From 

previous studies, we observe that QMFs modelling the absolute difference between ix and 

iy in this way generalize well across different datasets and measurements, including time 

interval [52] and duration [67]. The two score-quality calibration variants considered are:

Q1: s′ = w0 + w1s + w2ix + w3iy, (3)

Q2: s′ = w0 + w1s + w2 ix − iy , (4)

where x and y are pairs of audio samples resulting in scores s. (3) models the non-neutral 

speech detection scores for samples x and y independently, while (4) models the absolute 

difference between detection scores for the two samples. These approaches will be referred 

to as Q1 and Q2 respectively.

B. Vocal Effort Calibration Experiments

In this Section, the two proposed score-calibration approaches are evaluated alongside 

several variants of conventional calibration. As in Sec. IV-B, a leave-one-out cross-

validation approach is used for calibration, with non-neutral speech detection scores 

obtained in across-corpus fashion, as per Sec. V-B. We focus this assessment on neutral 

vs. non-neutral comparisons, which are the most challenging in terms of discrimination 

and calibration. To compare various calibration approaches, we use a measure of relative 

calibration loss, RC:

RC = Cllr − Cllr
M /Cllr

M , (5)

where Cllr
M  is the Cllr obtained with matched calibration. RC therefore indicates how close 

calibration performance is to a realistic optimum, Cllr
M .

Table V provides RC (%) values for several calibration approaches, for each corpus. 

In addition to the proposed score quality approaches Q1 and Q2, we include predicted 
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calibration, which is equivalent to matched calibration with non-neutral speech detector 

labels in place of ground-truth labels used to select the calibration parameters for a test 

comparison. Note that the LE detector is use for LE corpora, and the whisper detector for the 

whisper corpora. Pooled calibration is included as a baseline for comparison.

For Lombard effect corpora, it is clear that Q2 calibration is the most effective approach, 

with RC values lower than the pooled calibration baseline, and both Q1 and predicted 

calibration. The negative RC value for Pool2010 indicates that the Cllr obtained with Q2 

is lower than that of matched calibration. There is no performance improvement with 

Q1 calibration or predicted calibration compared to the pooled calibration baseline. For 

whisper corpora, we see again that Q2 improves on pooled calibration (and on matched 

calibration, in the case of CHAINS), and that Q1 provides no improvement. Due to perfect 

performance of the whisper detector, predicted calibration performance is equivalent to 

matched performance, and therefore RC is 0 with this approach.

With score-quality calibration functions of the form in (2), the use of per-sample quality 

information allows for a change in discrimination performance. The effect of the proposed 

Q1, Q2, and predicted calibration approaches on discrimination performance (in terms of 

EER) over all comparison conditions is presented in Table VI.

A similar pattern is observed to that in Table V: Q2 generally outperforms Q1 and the pooled 

baseline, and is the best choice for Lombard speech (with the exception of Lombard-Grid). 

The EERs remains lightly higher than those with matched calibration however. Predicted 

calibration is again the best performing approach with whisper, and results in the same EERs 

as matched calibration.

C. Lombard Effect in Noise

The data used in this study consists of exclusively clean speech, allowing for an exploration 

of the effects of whisper and Lombard effect without confounding variability. However, 

given that Lombard effect speech is induced by noise exposure, in practical applications 

it is likely that this noise will also be present in the audio recording (depending on the 

characteristics of the capture device, the level of noise present in the signal will vary; for 

example, directional microphones, microphone arrays, or active noise cancellation can all 

reduce the noise level relative to the speech level). While a full exploration of Lombard 

effect and noise is beyond the scope of the present paper, here we demonstrate an example 

of Lombard effect detection and calibration in the case where the noise inducing Lombard 

effect is present in the signal.

For this experiment we selected a constrained set of UT-SCOPE-LE data, consisting of 

Lombard effect samples induced by large crowd noise at 80 dB-SPL, along with the neutral 

samples from the same speakers. A noisy version of this set was generated by adding large 

crowd noise to each sample. Based on the noise source level of 80 dB-SPL, and the close 

proximity of the microphone to the speaker in the UT-SCOPE-LE collection, a value of 0 

dB was chosen as a suitably representative SNR [70]. Speaker recognition performance was 

then assessed for three conditions: clean neutral vs. clean LE speech, clean neutral vs. noisy 

LE speech, and noisy neutral vs. noisy LE speech.
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For Lombard effect detection in this experiment, we considered the inclusion of noisy 

samples into the model training set. A noisy version of the LombardGrid data (which, like 

UT-SCOPE-LE, contains LE data induced by 80 dB-SPL noise) was created by adding 

random selections of background noise from the MUSAN dataset [71], at SNRs of between 

0 and 10 dB SNR, to all samples. Along with the Lombard effect detector introduced 

in Section V-B (trained with clean speech only), we trained two further Lombard effect 

detectors, the first with clean neutral and noisy LE speech, and the second with noisy neutral 

and noisy LE speech.

Table VII presents the calibration performance of the calibration approaches proposed in 

Section VI-B for each of the three new Lombard effect conditions. In addition to Q1 and Q2 

calibration, which use the output of an Lombard effect detector trained with clean speech, 

we evaluate Q1
M and Q2

M, which use the output of an Lombard effect detector matched (‘M’) 

to the noise condition of the comparison (e.g. for the noisy neutral vs. noisy LE condition, 

‘No-No,’ the Lombard effect detector is trained with noisy neutral and noisy LE samples). 

We omit predicted calibration performance, as it is outperformed by all of the quality-based 

calibration approaches.

Referring to Table VII, the drastic effect of additive noise at 0 dB SNR is evident from the 

increase in Cllr
min and Cllr

M  from the ‘Cln-Cln’ condition to both of the noisy conditions. With 

pooled calibration, the calibration loss in terms of RC% is particularly high in the ‘Cln-No’ 

condition (54.43%), where there is the largest mismatch in terms of noise. Q2 calibration 

is very effective in the ‘Cln-Cln’ condition, with 0% calibration loss relative to matched 

calibration. Q1 and Q2 are ineffective in the noisy conditions, which is not unexpected, given 

their exclusively clean training data. If noise is introduced into the detector training however, 

the Q1
M and Q2

M calibration performance greatly improves, outperforming pooled calibration 

and approaching that of matched calibration.

Finally, in Table VIII we present discrimination performance for all comparison conditions 

within the clean/noisy Lombard effect data; we again see here the large performance drop 

due to additive noise, and that with Q1
M and Q2

M calibration, performance approaches that 

achieved with matched calibration. The improvement offered by Q2
M calibration relative ot 

pooled calibration is particularly noticeable in the ‘Cln-No’ condition, where the EER drops 

from 20.41% to 11.66%.

VII. CONCLUSIONS

This study has presented a series of controlled speaker recognition experiments involving 

Lombard effect (LE) and whisper, two commonly-occurring modes of non-neutral speech. 

In line with expectations, both speech modes had a detrimental impact on speaker 

recognition discrimination and calibration performance relative to neutral-only comparisons, 

with greater impact in the presence of whisper. Through the use of zoo plot and t-SNE 

visualizations, there were consistencies observed in population-level and speaker-level 

behavior in the presence of LE and whisper. These observations motivated the use of 

non-neutral speech detection to inform score calibration, which led to an improvement in 
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performance across all corpora. A constrained experiment involving LE with additive noise 

demonstrated that with a suitably trained LE detector, this approach is also effective in noisy 

conditions.

The relatively low EERs and Cllrs obtained for neutral vs. LE comparisons suggest that 

Lombard effect need not be an obstacle in the application of speaker recognition, if the 

scores are calibrated appropriately. Lombard effect ‘in the wild’ presents a greater challenge, 

due to the likely presence of the noise stimulus in the comparison samples. Our constrained 

experiments with Lombard effect in noise suggest that discrimination will suffer, but some 

calibration loss is recoverable using the proposed approaches.

Despite the performance drop with neutral vs. whisper comparisons, Cllrs of less than 1 were 

obtained with the proposed calibration approaches, demonstrating that neutral vs. whisper 

speaker recognition has potential for use in certain contexts: for example, to add evidential 

value in a forensic voice comparison case. Depending on the application, it may be more 

practical to reject comparisons involving whisper, or switch to a whisper-specific system 

(with modifications at the front-end, for example). The accuracy observed with the whisper 

detector here indicate that such a gate-keeping mechanism would be a viable option.

The framework proposed in this study - SVM-based nonneutral speech detection with simple 

quality measure functions for score calibration - has the potential to be applied to other 

forms of intrinsic speaker variability beyond Lombard effect and whisper. Specifically, the 

approach most successful with Lombard effect, which used the absolute difference between 

Lombard effect detection scores in calibration (i.e. Q2 calibration), could be extended to 

other vocal effort variations existing on a continuous scale. For example, speech produced 

under different levels of ‘situational’ stress, either cognitive or physical [5], [72] [34]. In 

our previous study [52], aging information was integrated into calibration using the absolute 

time difference between the recording dates of the two samples in the comparison (a similar 

approach to Q2 calibration in this study). We note that the Q1 calibration approach, which 

considered the non-neutral speech detection scores from the two samples in a comparison 

independently, would likely benefit from additional training data.

The approach most successful with whisper was to use the output of the detector to select 

predetermined calibration parameters; this could potentially be applied to other forms of 

intrinsic variability that typically exist in a binary state, for example: falsetto speech, non-

speech vocalizations such as laughter or scream [73] (in such extreme cases, the best option 

is likely to be rejection of the comparison), or language switching.

Overcoming intrinsic variability is of key importance for unconstrained applications of 

speaker recognition, such as those encountered in forensic and investigative domains. 

Ensuring appropriate score calibration in the presence of intrinsic variability enables the 

use of speaker recognition to contribute evidence in the form of a likelihood ratio, or to 

make reliable decisions to inform an investigation. The approach presented in this study 

demonstrates the use of a non-neutral speech detector to achieve calibration performance 

close to that obtained using ground-truth non-neutral speech labels. This framework can be 
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applied independently of the speaker recognition system, and has potential to be extended to 

other forms of intrinsic speaker variability.
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Fig. 1. 
Distributions of same-speaker scores (solid lines) and different-speaker scores (dashed lines) 

for comparisons in different conditions, A and B, with a poorly-calibrated system and a 

well-calibrated system.
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Fig. 2. 
Zoo plots showing the movement in per-speaker scores between neutral vs. neutral (blue) 

comparisons and neutral vs. non-neutral (red) comparisons. Neutral calibration has been 

applied to all scores using a leave-one-out cross-validation approach on a per-corpus basis. 

Each (uniquely numbered) speaker is represented by one ellipse each condition, with its 

dimensions determined by the score variability.
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Fig. 3. 
t-SNE embedding of x-vectors for neutral and non-neutral 10 s speech chunks. 3(a) shows 

the x-vectors for Lombard speech (L, denoted by +) and neutral speech (N, denoted by o) 

across the three Lombard corpora. 3(b) shows the x-vectors for whisper (W, denoted by +) 

and neutral speech (N, denoted by o) speech across the three whisper corpora. For each 

corpus, female (F) and male (M) speakers are represented by different colors (Pool2010 

contains only male speakers).
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Fig. 4. 
Non-neutral speech detection: SVM output score distributions and associated EERs. In each 

plot, solid lines indicate the score distribution for non-neutral test x-vectors, and dashed 

lines indicate the score distribution for neutral test x-vectors. All SVM training and testing is 

cross-corpus: for Lombard, UT-SCOPE is used to train the SVM for testing Lombard-Grid, 

and Lombard-Grid is used to train the SVM for testing both UT-SCOPE and Pool2010. For 

whisper, UT-VE-II is used to train the SVM for testing CHAINS, and CHAINS is used to 

train the SVM for testing both UT-VE-II and wTIMIT.
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TABLE II

DISCRIMINATION PERFORMANCE WITHIN EACH CORPUS

N-N NN-NN N-NN ALL

i-vector

UT-SCOPE (LE) 5.63 9.07 10.78 8.98

Pool2010 (LE) 2.12 1.43 10.08 5.60

Lombard-Grid (LE) 3.33 3.10 8.26 5.74

UT-VE II (W) 8.23 10.86 30.12 28.47

CHAINS (W) 4.29 10.13 30.95 27.57

wTIMIT (W) 7.62 13.56 26.74 25.26

x-vector

UT-SCOPE (LE) 0.41 1.82 2.54 2.11

Pool2010 (LE) 0.02 0.03 2.60 1.52

Lombard-Grid (LE) 1.73 2.12 3.62 2.94

UT-VE II (W) 0.85 6.06 19.88 24.72

CHAINS (W) 0.95 5.96 23.74 26.85

wTIMIT (W) 1.67 7.36 19.56 24.58

EERs (%) for matched neutral vs. neutral (N-N) and non-neutral vs. non-neutral (NN-NN) comparisons, and mismatched neutral vs. non-neutral 
(N-NN) comparisons, and the pooled set of comparisons across these three conditions (ALL), for each lombard effect (LE) and whisper (W) 
corpus. All comparisons involved 10 second speech chunks, and the number of trials for each condition is shown in Table III.
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TABLE III

THE NUMBER OF TRIALS FOR ALL CONDITIONS AND CORPORA

N-N NN-NN N-NN ALL

# target trials

UT-SCOPE (LE) 370 33236 7695 41301

Pool2010 (LE) 262 355 896 1513

Lombard-Grid (LE) 540 450 1350 2430

UT-VE II (W) 360 360 900 1620

CHAINS (W) 480 480 1200 2160

wTIMIT (W) 960 960 2400 4320

# non-target trials

UT-SCOPE (LE) 16900 1203550 285450 1505900

Pool2010 (LE) 124868 100096 175652 400616

Lombard-Grid (LE) 35550 35550 71100 142200

UT-VE II (W) 29104 28352 57480 114936

CHAINS (W) 15500 15500 31000 62000

wTEVQT (W) 27600 27600 55200 110400

The number of target trials (same-speaker comparisons) and non-target trials (different-speaker comparisons) for each condition in each corpus.
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TABLE IV

CALIBRATION PERFORMANCE WITHIN EACH CORPUS

Train: Neutral Pooled Matched

Test: ALL

UT-SCOPE (LE) 0.112 0.083 0.073

Pool2010 (LE) 0.669 0.062 0.031

Lombard-Grid (LE) 0.134 0.113 0.103

UT-VE II (W) 3.025 0.743 0.3

CHAINS (W) 3.330 0.773 0.329

wTIMIT (W) 1.950 0.676 0.213

Test: N-N

UT-SCOPE (LE) 0.037 0.040 0.037

Pool2010 (LE) 0.003 0.033 0.003

Lombard-Grid (LE) 0.076 0.087 0.076

UT-VE II (W) 0.039 0.366 0.039

CHAINS (W) 0.049 0.441 0.049

wTTMIT (W) 0.067 0.311 0.067

Test: N-NN

UT-SCOPE (LE) 0.222 0.125 0.106

Pool2010 (LE) 2.000 0.117 0.088

Lombard-Grid (LE) 0.244 0.168 0.154

UT-VE II (W) 8.026 1.022 0.614

CHAINS (W) 7.915 1.046 0.718

wTIMIT (W) 4.45 0.944 0.597

Cllr for 10 second x-vector comparisons with three calibration variants: neutral, pooled, and matched. Three test comparison conditions are 

considered: neutral vs. neutral (N-N), neutral vs. non-neutral (N-NN), and the pooled set of scores from all conditions (ALL). Each of the 
calibration variants is applied with a leave-one-out cross-validation approach on a per-corpus basis.
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TABLE V

SCORE-QUALITY CALIBRATION PERFORMANCE

RC%

Cllr
min Cllr

M pooled Q 1 Q 2 pred.

UT-SCO. (LE) 0.105 0.106 17.92 22.64 4.72 25.47

Pool2010 (LE) 0.082 0.088 32.95 35.23 −7.95 132.95

L.-Grid (LE) 0.142 0.151 11.26 11.92 9.93 15.89

UT-VE II (W) 0.603 0.614 66.45 77.69 17.43 0.0

CHAINS (W) 0.705 0.718 45.68 45.54 −12.67 0.0

wTIMIT (W) 0.586 0.597 61.31 61.31 14.57 0.0

Neutral vs. non-neutral 10 second x-vector comparisons:Cllr
min

, matched calibration performance (Cllr
M

),and calibration loss relative to matched 

calibration (RC%) for: pooled calibration, Q1 calibration (uses the non-neutral speech detection scores of both comparison samples independently, 

(3)), Q2 calibration (uses the absolute difference between non-neutral speech detection scores as a quality measure, (4)), and predicted calibration 

(uses the non-neutral speech detection scores to select matched calibration parameters). Note that negative percentages indicate a lower Cllr than 

matched calibration.
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TABLE VI

SCORE-QUALITY DISCRIMINATION PERFORMANCE

EER%

matched pooled Q 1 Q 2 predicted

UT-SCOPE (LE) 1.66 2.16 2.17 2.01 2.20

P00I2OIO (LE) 0.78 1.65 1.65 0.88 1.29

Lombard-Grid (LE) 2.58 2.95 2.90 2.97 3.13

UT-VE II (W) 9.16 24.77 25.76 15.10 9.16

CHAINS (W) 10.53 26.91 25.08 10.78 10.63

wTIMIT (W) 9.69 24.58 23.87 13.92 9.69

10 second x-vector comparisons for all conditions: discrimination performance (EER%) with matched calibration, pooled calibration, Q1 
calibration (uses the non-neutral speech detection scores of both comparison samples independently), Q2 Calibration (uses the absolute difference 

between non-neutral speech detection scores as a quality measure), and predicted calibration (uses the non-neutral speech detection scores to select 
matched parameters).
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TABLE VII

SCORE-QUALITY CALIBATION PERFORMANCE IN NOISE

RC%

Cllr
min Cllr

M pool. Q 1 Q 2 Q1
M Q2

M

Cln-Cln 0.077 0.105 25.00 27.38 0.00 27.38 0.00

Cln-No 0.555 0.564 54.43 53.55 54.96 52.84 6.91

No-No 0.657 0.682 5.41 5.41 9.43 3.55 10.66

10 second x-vector comparisons of UT-SCOPE neutral vs le samples induced by crowd noise at 80 dB-SPL, with and without additive crowd noise 
at 0 dB SNR. Only neutral vs LE comparisons are considered: 875 target trials, 32 550 non-target trials. ‘cln-Cln’ denotes clean neutral vs. clean 
LE, ‘cln-No’ denotes clean neutral vs noisy LE, and ‘no-No’ denotes noisy neutral vs. noisy LE. The calibration approaches and RC metric are the 

same as in Table V, with the addition of matched (‘M’) condition Q1
M

 and Q2
M

 calibration.
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TABLE VIII

SCORE-QUALITY DISCRIMINATION PERFORMANCE IN NOISE

EER%

matched pooled Q 1 Q 2 Q1
M Q2

M

Cln-Cln 1.33 1.95 1.83 1.62 1.83 1.62

Cln-No 10.72 20.41 20.28 20.51 17.84 11.66

No-No 17.78 18.34 18.48 18.41 17.72 18.02

10 second x-vector comparisons of UT-SCOPE neutral and LE samples induced by crowd noise at 80 dB-SPL, with and without additive crowd 
noise at 0 dB SNR. All comparison conditions are considered: 1605 target trials, 65 100 non-target trials. ‘cln-Cln’ denotes clean neutral and clean 
LE, ‘cln-No’ denotes clean neutral and noisy LE, and ‘no-No’ denotes noisy neutral and noisy LE samples. The calibration approaches are the 

same as in Table V, with the addition of matched (‘M’) condition Q1
M

 and Q2
M

 calibration.
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