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Abstract

By collecting data continuously over 24 hours, accelerometers and other wearable devices can 

provide novel insights into circadian rhythms and their relationship to human health. Existing 

approaches for analyzing diurnal patterns using these data, including the cosinor model and 

functional principal components analysis, have revealed and quantified population-level diurnal 

patterns, but considerable subject-level variability remained uncaptured in features such as wake/

sleep times and activity intensity. This remaining informative variability could provide a better 

understanding of chronotypes, or behavioral manifestations of one’s underlying 24-hour rhythm. 

Curve registration, or alignment, is a technique in functional data analysis that separates “vertical” 

variability in activity intensity from “horizontal” variability in time-dependent markers like 

wake and sleep times; this data-driven approach is well-suited to studying chronotypes using 

accelerometer data. We develop a parametric registration framework for 24-hour accelerometric 

rest-activity profiles represented as dichotomized into epoch-level states of activity or rest. 

Specifically, we estimate subject-specific piecewise linear time-warping functions parametrized 

with a small set of parameters. We apply this method to data from the Baltimore Longitudinal 

Study of Aging and illustrate how estimated parameters give a more flexible quantification of 

chronotypes compared to traditional approaches.
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1. Introduction

A person’s circadian rhythm is driven by the internal clock that dictates his or her daily 

physiological cycles, including sleep-wake times, hormone release, core body temperature, 

blood sugar regulation, and other components of the homeostatic system, all of which 

influence how one distributes his or her daily activity (Zee et al., 2013). Although circadian 

rhythms can be influenced by social and solar clocks, they are endogenous and determined 

largely genetically (Roenneberg et al., 2003). Chronotypes, or phenotypes of circadian 

rhythms that can be used to identify population subgroups and classify individuals, have 

been linked to numerous health outcomes. For example, some individuals wake earlier in the 

day (i.e., a “morningness chronotype”) while others stay awake later into the night (i.e., a 

“eveningness chronotype”). Those with an eveningness chronotype also tend to be at greater 

risk for some mental health disorders and general health problems such as hypertension, 

asthma, and type 2 diabetes (Partonen, 2015). Chronotypes have typically been defined on 

a single scale ranging from morningness to eveningness (Dunlap et al., 2004; Partonen, 

2015). Methods have been developed to estimate chronotype along this scale as a continuous 

or dichotomous variable, using measurements obtained from either body temperature and 

hormone levels (Dunlap et al., 2004), self-reported wake and sleep times via self-report 

(Horne & Ostberg, 1976; Roenneberg et al., 2007) or actigraphy (Urbanek et al., 2018).

Despite the current emphasis on a single morningness to eveningness scale to describe 

chronotypes, there may be more nuanced phenotypes characterizing one’s pattern of 

energy over the course of a day, independent of sleep and wake time preferences. For 

example, a recent study revealed that measures of sleep quality, sleep duration, and diurnal 

inactivity (e.g. nap times or wakeful rest) showed very little correlation with self-reported 

chronotype on a scale from “definitely a ‘morning’ person” to “definitely an ‘evening’ 

person”, suggesting that these other sleep features provide new information beyond the 

established chronotypes (Jones et al., 2019). The sleep and diurnal features examined were 

extracted from accelerometers, which give rich data for studying daily activity patterns by 

collecting epoch-by-epoch (often minute-by-minute) data on activity intensity over 24 hours. 

Accelerometers are a natural mechanism for tracking diurnal patterns in order to detect 

underlying circadian rhythms. Novel data-driven techniques are now capable to leverage the 

rich information collected by accelerometers to confirm the existence of morningness and 

eveningness chronotypes, to identify more subtle differences in chronotypes, and to illustrate 

how these are manifested in various epidemiological cohorts and clinical sub-groups.

We introduce a new accelerometer data-driven approach, based on curve registration 

(Wrobel et al., 2019), for understanding circadian rhythms. Curve registration uses tools 

from functional data analysis, a statistical subfield that focuses on the kind of intensive 

longitudinal data made possible by wearable devices and other technologies (Ramsay & 

McDonnell et al. Page 2

Biol Rhythm Res. Author manuscript; available in PMC 2023 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Silverman, 2002, 2005). Our method separates and analyzes both 1) “horizontal” variability 

in time-dependent markers like wake and sleep times, and 2) “vertical” variability in activity 

intensity; by doing so, the method gives distinct insights into underlying circadian rhythms. 

The remainder of this paper is organized as follows. In Section 1.1, we provide a review of 

existing approaches for using accelerometer data to study circadian rhythms. In Section 2, 

we describe the study methods, including our proposed registration method and motivating 

data from the Baltimore Longitudinal Study of Aging (BLSA). In Section 3, we use the 

registration method to analyze accelerometer data from the BLSA and compare results to 

those of existing methods. We conclude with a discussion in Section 4.

1.1. Review of existing approaches

Circadian rhythms can be studied using a range of data collection instruments. The 

temporality provided by diurnally measured core body temperature, melatonin, and cortisol 

is considered to be the most accurate way to determine chronotype (Dunlap et al., 2004; 

Melo et al., 2017), though challenging to measure. Self-reports such as the Horne-Ostberg 

Morningness-Eveningness Questionnaire (MEQ) (Horne & Ostberg, 1976) and the Munich 

ChronoType Questionaire (MCTQ) (Roenneberg et al., 2003, 2007) are also instruments 

for collecting chronotype information. The MCTQ for example asks questions about sleep 

routines on work and work-free days including questions about when respondents go to bed 

and when they get out of bed. The midpoint of the sleep interval as determined from self-

reports can be used to describe chronotype on a morningness-eveningness scale (Roenneberg 

et al., 2003, 2007).

Below we highlight methods for evaluating chronotype that involve the collection of minute-

by-minute accelerometer data. We categorize accelerometer-based methods into two distinct 

classes: landmark methods, which extract predefined features such as sleep and wake 

times, and methods that use the full 24-hour activity profile in an attempt to quantify the 

complexity of diurnal patterns.

Landmark methods define chronotypes based on one or two summary measures of a 

subset of one’s 24-hour period. Some of these methods identify a fixed-length interval, 

including the 5 least active consecutive hours and the 10 most active consecutive hours, 

often abbreviated L5 and M10, respectively, in the chronotype literature. The timing of such 

intervals can indicate morningness versus eveningness preferences (Witting et al., 1990). 

Other landmark methods identify intervals whose length varies across subjects, such as 

sleep or daytime intervals (Gershon et al., 2018; Kaufmann et al., 2018; Urbanek et al., 

2018). One example is the sleep period time window (SPT-window) approach of van Hees 

et al. (2015, 2018). The SPT-window, developed for 3-axial raw accelerometer data, is a 

heuristic approach that entails searching within the 12-hour period centered around the L5 

midpoint for periods of “sustained inactivity,” defined by absence of change in arm angle. 

The SPT-window then stretches from the start of the first period of sustained inactivity to 

the end of the last period within that 12-hour span. For sleep and daytime intervals, both the 

duration and the timing of the interval’s midpoint can be assessed, although the midpoint 

alone is often used to define chronotypes on either a continuous scale (Urbanek et al., 
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2018) or dichotomously by establishing some cut-off for the midpoint (Gershon et al., 2018; 

Kaufmann et al., 2018).

All landmark methods suffer from the same drawback: they condense activity data to 

produce a single, pre-defined aggregate measure (or a few such measures) within long 

time windows. This can eliminate subtle, but important and relevant differences in daily 

accelerometry profiles which may help to differentiate, for example, someone who is an 

early riser but is sedentary in the afternoon from someone who is an early riser and remains 

continuously active throughout the day. Moreover, only the data inside the landmark interval 

of interest is summarized, rather than the full 24-hour rest-activity profile. Lastly, for those 

methods that use only the timing of an interval’s midpoint to define chronotypes, duration 

of activity and sleep is not factored into the chronotype at all; someone who sleeps from 

10PM to 6AM has the same sleep interval midpoint as someone who sleeps from 11PM 

to 5AM. Therefore, without separate adjustment for sleep duration, landmark methods may 

incorrectly classify a broad range of circadian rhythm patterns into a single chronotype.

Other methods utilize 24-hour rest-activity profile, leveraging the complex information and 

extracting more intricate features of circadian rhythms. The cosinor method captures both 

the timing and intensity of one’s daily active period in a single three-parameter model. 

It does so using a parametric regression model with clinically interpretable parameters, 

including the MESOR (midline estimating statistic of rhythm) or model-based mean 

intensity, the amplitude or peak intensity, and the acrophase or timing of the peak intensity 

(Halberg et al., 1967; Marler et al., 2006). The acrophase parameter in particular has been 

shown to strongly correlate with the MEQ (coefficient of determination = 0.7) (Roveda 

et al., 2017). The cosinor method has been widely used to study circadian rhythms 

(Cornelissen, 2014; Refinetti et al., 2007). However, a major limitation of this method is 

that it assumes all activity curves conform to a cosine shape: this fit may be too restrictive to 

accurately represent the circadian rhythm profile for many subjects.

Like the cosinor approach, functional principal components analysis (FPCA) models epoch-

by-epoch accelerometry data; however, FPCA is a data-driven approach that does not 

impose any pre-defined parametric assumptions about the shape of daily rest-activity 

rhythms. Each person’s 24-hour rest-activity profile is represented via a combination 

of common population-level patterns (principal components) that capture most of the 

variability across subjects representing the population. Principal component (PC) scores for 

a given subject each indicate the degree to which these patterns are present for that subject 

and tell a piece of the circadian rhythm puzzle: whether he or she has a generally more 

active day, whether he or she wakes up early or late, how long his or her day is, and other 

specific and independent aspects of the circadian rhythm. FPCA has recently gained traction 

within the sleep research community (Gershon et al., 2016; Zeitzer et al., 2013), in part 

due to the appeal of its flexibility. However, 24-hour rest-activity profiles have two distinct 

sources of variability: horizontal variability, which reflects the timing of features like wake 

and sleep times and peaks of activity, and vertical variability, which reflects the intensity 

of activity. FPCA does not separate these distinct sources of variability, and the patterns 

that are identified can conflate the two sources in ways that could mask the true behavioral 

differences between people.
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The registration method introduced in this paper retains the strengths of existing approaches 

while addressing their limitations. By using the full 24-hour rest-activity profile, registration 

can identify differences in landmarks such as sleep and wake times, but also provides more 

detailed information than landmark methods. In contrast to the cosinor approach, registration 

does not place a restrictive shape on the data, but still produces interpretable and clinically 

meaningful parameters. Registration builds on FPCA as a standalone method by separating 

horizontal variability (timing of activity) from vertical variability (intensity of activity), 

which results in more easily interpretable PCs. We will show that the registration method, 

by explicitly separating the sources of variability, reveals new insights into accelerometry-

estimated chronotypes and circadian rhythms.

2. Methods

2.1. Our proposed registration method

2.1.1 Overview—Our approach brings two new ideas to the study of circadian rhythms. 

First, we dichotomize the minute-level activity counts into “active” or “resting” states rather 

than directly analyzing minute-level (or other epoch-level) activity counts like the methods 

discussed in the previous section. When activity counts are analyzed directly, the periods 

with high-intensity exercise or other strenuous activities may heavily influence the shape 

of one’s activity profile and consequently our inference about one’s chronotype. Another 

limitation of existing approaches is that they provide results that depend on the definition 

or scale of activity count that is often device- and manufacturer-specific. We expect our 

approach to be invariant to the scale of activity count because we dichotomize minute-level 

activity-counts with the objective of detecting patterns in the probability of active state over 

time, which we term “activity probability profiles”. Note that we use “resting” to refer both 

to “sedentary” (awake, but not active) and sleep periods.

Second, we introduce registration in the context of accelerometry-estimated circadian 

rhythms. The goal of our method is to align subjects’ activity probability profiles – smooth, 

underlying curves that quantify the probability that a subject is active at each time of the day 

– based on shared features such as wake and sleep times and peaks in activity probability. 

We accomplish this by separating the variability across activity probability profiles into 

the horizonal and vertical sources. Figures 1 and 2 illustrate this process. In the left panel 

of Figure 1, each curve represents a different subject’s activity probability profile over 

a 24-hour period, with one subject highlighted in red. Differences across subjects in the 

timing of common features such as sleep and wake times make it difficult to identify any 

shared daily patterns. In the right panel of Figure 1, we have used the proposed registration 

approach to align these curves and a clearer shared pattern is revealed, showing a morning 

peak, a midday dip in activity, and an afternoon peak; nearly all variability in the right panel 

of Figure 1 is vertical variability. The transformation of curves in the left panel to curves 

in the right panel is accomplished through subject-specific (curve-specific) time-warping 

functions shown in the middle panel of Figure 1, which capture the horizontal variability.

Warping functions map observed “chronological” time to a latent “registered” time domain 

on which all profiles are aligned. Figure 2 illustrates the effect of the warping function for 

the subject highlighted in Figure 1. In the left panel of Figure 2, this subject’s window of 
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activity between 3AM and 9AM in chronological time (top) becomes stretched, or slowed 

down in registered time (bottom), so that it covers nearly half the day. In other words, 

the activity profile that this subject experienced in the first 6 hours of their morning, most 

people take until just before 3PM to complete. Conversely, the 15-hour window from 9AM 

to nearly midnight in chronological time becomes compressed or sped up in registered 

time, so that it only accounts for what would be a typical late afternoon and evening. After 

midnight time is similar between chronological and registered timelines, suggesting this 

subject has an average bedtime relative to the study population. The shape of the warping 

function in the right panel of Figure 2 reflects this exact mapping from chronological time 

(x-axis) to registered time (y-axis). Note that our registration framework assumes two time 

points (knots) that split the 24-hour period into three different periods with different linear 

dependences (slopes or angles of the linear lines) between the chronological and registered 

times. Each subject’s set of parameters, i.e., the two knots and three slopes, describe how the 

timing of his or her activity profile features differ from the population mean. We expand on 

this in more technical detail below.

2.1.2. Technical details—Registration accomplishes the separation of horizontal and 

vertical variability using an iterative two-step approach, cycling between estimating 

warping functions to capture the horizontal source of variability, and applying FPCA to 

understand vertical variability in the post-warped/registered patterns. We will begin with 

the mathematical representation of this two-step iterative process and then provide a more 

heuristic breakdown of each step. The following notation draws from the statistical subfield 

of functional data analysis, which provides a useful conceptual framework for intensive 

longitudinal data (e.g., minute-by-minute rest/active states over 24 hours). Let ti∗ represent 

chronological time and let Y i ti∗  represent the itℎ subject’s activity probability profile 

over chronological time. Warping functions ℎi
−1 map observed chronological time ti∗ to 

registered time t. The resulting unregistered and registered activity probability profiles 

can be written as Y i ti∗  and Y i(t) = Y i ℎi
−1(ti∗) , respectively; this notation implies activity 

probability profiles observed over continuous time, although in practice we observe these 

profiles at discrete times (for example, at minute level). The warping functions align the 

observed activity probability profiles to subject-specific mean templates μi(t), which are 

estimated using a binary form of FPCA. Notationally, we combine warping functions with 

FPCA through the following:

E Y i ℎi
−1(ti∗) ∣ ci, ℎi

−1 = μi(t)

logit μi(t) = α(t) + ∑
k = 1

K
cikψk(t),

(1)

where ψk(t) are the PC functions, cik are subject-specific PC scores, and α(t) is the population 

mean function. In the first step of Equation (1), we estimate the warping functions ℎi
−1 while 

holding the mean templates μi(t) fixed. In the second step, we estimate the mean templates 

μi(t) using FPCA on the registered data while holding ℎi
−1 fixed. We iterate through these 
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two steps until convergence. Below we explain these two steps in greater detail; a full 

technical overview of registration can be found in (Wrobel et al., 2019).

Registration step 1. Warping functions.: In the first step of Equation (1), we estimate 

subject-specific warping functions ℎi
−1 to map chronological time ti∗ to registered time t

so that the resulting registered activity probability profiles are aligned to the most recent 

mean templates μi(t). The warping functions can take many forms; in this paper, we define 

a 2-knot piecewise linear function that is novel in the literature, elegant in its simplicity 

and interpretability, and flexible enough to accurately register daily activity profiles. As 

demonstrated in Figures 1 and 2, the function for a given subject i consists of a series of 

three slopes β1i, β2i, β3i  connected at two knot locations k1i, k2i  along the chronological 

timeline:

ℎi
−1 ti∗ =

ti∗β1i, 0 ≤ ti∗ ≤ k1i

k1iβ1i + ti∗ − k1i β2i, k1i < ti∗ ≤ k2i

k1iβ1i + k2i − k1i β2i + ti∗ − k2i β3i, k2i < ti∗ ≤ 1.

(2)

For simplicity, we rescale the 24-hour period so that time is defined on 0,1 . We place 

additional constraints on the warping functions to ensure that they are always increasing 

(i.e., we never warp time backwards) and that times 0 (the beginning of the 24-hour period) 

and 1 (the end of the 24-period) always map to 0 and 1, respectively. The three slopes and 

two knots that make up each subject’s warping function convey information about his or her 

diurnal pattern relative to the population.

Registration step 2. FPCA.: In the second step of Equation (1), we use FPCA to estimate 

subject-specific mean templates μi(t), using the most recent warping functions to define 

registered time t = ℎi
−1 ti∗ . In other words, we perform FPCA on the newly registered 

activity probability profiles Y ℎi
−1 ti∗ . Because we propose to dichotomize the activity 

counts, we use the extension of FPCA that applies to binary functional data (Goldsmith 

et al., 2015; van der Linde, 2008). Binary FPCA estimates a functional template μi(t)
of the probability of activity over registered time for each subject, which reflects the 

population mean behavior while allowing for subject-specific deviation. Specifically, at each 

iteration of this step we estimate a population-level functional mean α(t) population-level 

functional PCs ψ1(t), …, ψK(t), and subject-specific scores ci1, …, cik which indicate how 

much each component contributes to the subject-specific activity probability template. These 

population- and subject-level parameters are combined to provide an updated estimate of 

logit μi(t)  as defined in Equation (1).

Iterate between the warping function and FPCA steps.: Registration iterates between 

these two steps of Equation (1) until the activity probability curves are temporally aligned 

across subjects. After registration, we have separated the original activity probability profiles 

into warping functions and aligned activity probability profiles, which can each be used to 
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understand different aspects of individual variation in circadian rhythms. From the warping 

functions, subject-specific slopes reveal information about the increasing/decreasing nature 

of subject-specific time with respect to the registered time and the two times of the day when 

the linear slopes defining the subject-specific alignment change. From the aligned activity 

profiles, we can learn about both population-level and subject-specific activity patterns. 

The estimated population mean activity profile and PC functions describe a typical 24-hour 

activity probability profile and the major sources of variability across subjects, respectively. 

The subject-specific PC scores indicate individual deviations from the population mean 

profile after removing any variability in the timing of landmark features. All of these pieces 

of information contain useful insights into heterogenous complex nature of chronotypes 

across subjects. The registration procedure is implemented in the R package “registr” 

(Wrobel et al., 2020).

2.2. Motivating data

Our motivating data come from the Baltimore Longitudinal Study of Aging (BLSA), 

a prospective observational study collecting health, cognitive, and physical performance 

evaluations of initially healthy participants every 1–4 years for life. Data were collected by 

the Intramural Research Program of the National Institute on Aging and the protocol for this 

secondary analysis was approved by the Institutional Review Board of Columbia University. 

All subjects provided written informed consent to participate in the study. Actiheart activity 

monitors (Schrack et al., 2014) were worn by the participants for up to seven consecutive 

days. We illustrate our approach by analyzing the first available Tuesday from each subject, 

chosen to represent typical weekday activity without the after-weekend inertia typically 

observed on Mondays (Urbanek et al., 2018). Twenty-four-hour activity periods began at 

3AM of the specified day and ended at 2:59AM of the following day. Minute-level activity 

counts were dichotomized into active (activity count > 10) or resting (activity count ≤ 

10) state, using a threshold that was previously established for the BLSA Actiheart data 

(Schrack et al., 2018, 2019; Wanigatunga et al., 2019). This value was specifically selected 

for this device and study population by first separating patients’ minute-level activity 

into sedentary, light, moderate, and vigorous activity based on heart rate reserve (HRR) 

levels measured using continuous recordings from a heart rate monitor, and then examining 

distributions of activity counts within those categories. Note that this threshold is specific to 

the BLSA Actiheart data; other devices or populations may require different cut points.

3. Results

3.1. Registration application

After data processing, 492 subjects were analyzed. The median age was 71 years 

(interquartile range: 62 to 80), and 54% were male. We applied the registration method 

to these 24-hour rest/active binary profiles, using two PCs for the binary FPCA step. 

The left, middle, and right panels of Figure 1 display unregistered activity probability 

profiles obtained by smoothing minute-level rest/active binary curves, estimated warping 

functions, and registered activity probability profiles, respectively. At the population level, 

the registered curves in the right panel reveal a common trend across subjects, which 

includes a morning activity peak, a midday dip during which subjects are in a more restful 
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state, and a late afternoon/evening activity peak. The horizontal variability in activity data 

is captured in the warping functions and remaining vertical variability in activity probability 

profiles is captured through the FPCA decomposition of the registered data; these are both 

interpretable in the context of chronobiology.

The warping functions are parameterized by three subject-specific slopes given in Equation 

(2), each of which reveal different information about morningness and eveningness. A steep 

first line segment (slope > 1) indicates that a subject’s activity during the late night and 

morning gets moved forward in time to match the population pattern — that is, his or her 

day started earlier in chronological time than the average BLSA subject. An extremely steep 

first line segment suggests an “early bird”, similar to the example subject from Figures 1 and 

2. On the contrary, a warping function with a flatter first line segment (slope < 1) indicates 

that one’s day started later in chronological time. We can apply analogous interpretations to 

the third line segment of the warping function, which generally takes place during evening 

and nighttime hours: extremely steep third line segments indicate “night owls”, while flatter 

third line segments represent subjects who end their active day earlier than most. When a 

subject has a warping function close to the identity line (i.e., all three slopes near 1), this 

suggests that his or her activity probability profile in chronological time was in line with 

the population mean and therefore needed little to no warping to map to the registered time 

domain.

The registered activity probability profiles are parameterized by the subject-specific scores 

from the two PCs estimated using binary FPCA. Figure 3 shows the population mean 

activity probability profile in black plus (blue) or minus (red) one standard deviation of the 

first (left panel) or second (right panel) PC score. Together these panels show the patterns 

identified by FPCA for these data. The first PC captures variability across subjects in terms 

of overall activity probability. The second PC captures variability across subjects in terms 

of which activity peak (morning or evening) is more dominant. This should not be confused 

with morningness vs. eveningness chronotypes, which are a reflection of sleep timing (and 

are better captured by warping function parameters). Some remaining variability in wake 

times that was not captured in the warping functions is indeed evident in this second PC, as 

well as some potential restlessness at the end of the activity profile. However, the second PC 

largely indicates whether a subject is most consistently active immediately upon waking or 

later in the day.

Pairwise correlations between the five registration parameters (three warping function slopes 

and two PC scores) reveals low correlation among the first and third slopes and the PC 

scores (absolute value of Pearson correlation coefficients ≤ 0.12), but higher correlation 

between the second slope and the other two slopes (absolute value of Pearson correlation 

coefficients ≥ 0.44, Supplementary Figure S1). As such, in the remainder of this paper we 

focus our interpretations on the two PC scores and the first and third slopes. Each of the 

axes (parameters) in this four-dimensional space has a clear interpretation and is not strongly 

correlated with the other axes.

This continuous four-dimensional parametric space is well-suited to describe complex 

between-subject differences in accelerometry-estimated circadian rhythms, going beyond 
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the continuous one-dimensional morningness-eveningness scale. Extreme values on these 

four dimensions may be interesting and may yield new, more nuanced description of the 

complexity of observed chronotypes. For example, extreme values of the warping function 

slopes classify subjects by their wake and sleep times, leading to chronotypes of “morning 

lark” vs. “anti-lark” (early vs. late wake time) and “night owl” vs. “anti-owl” (late vs. 

early sleep time). Extreme values of the first PC score reveal potential chronotypes of 

“penguin” vs. “hummingbird” (low vs. high overall activity probability); and extreme values 

of the second PC score reveal potential chronotypes of “rooster” vs. “roadrunner” (most 

active in the morning vs. afternoon). These potential chronotypes are summarized in Table 

1, with corresponding simulated activity probability profiles displayed in Figure 4. In 

Figure 4, for chronotypes that are defined by warping function slopes, defining features 

of these chronotypes are most evident before registration, i.e., before the warping functions 

absorb horizontal variability or differences in sleep and wake times. Conversely, defining 

features of the PC-score-based chronotypes are more strongly evident after registration, once 

probability activity profiles have been aligned and all that remains is vertical variability.

We emphasize that these chronotypes are not mutually exclusive, but rather describe four 

independent domains on which a subject can be typical or outlying. A clustering analysis 

validates our proposed chronotypes and illustrates that multi-dimensional approaches can 

uncover sophisticated subtypes of behavior. By applying k-means clustering to the four-

dimensional registration parameter space, and considering a balance of average silhouette 

width and interpretability, we identified six clusters. The six subgroups identified by 

this unsupervised learning method have defining features that align with the chronotypes 

proposed in Table 1. The clusters are presented in Figure 5, with labels corresponding 

to their most distinguishing feature(s). Two clusters contained the larks and owls, whose 

deviations from the population mean activity probability profile were mainly temporal shifts 

or horizontal variability. The remaining four clusters grouped subjects by patterns of activity 

characterized by the PC scores. The ability to define chronotypes across all four dimensions 

of the registration model may lead to the identification of more sophisticated and distinct 

subgroups of circadian rhythm patterns compared to existing methods.

3.2. Comparison to existing methods

We compared our approach to three existing methods: i) the SPT-window landmark method, 

ii) the cosinor method, and iii) binary FPCA without registration.

3.2.1. Comparing registration with landmark times—For the SPT-window, we 

lacked the tri-axial data necessary to calculate arm angle, so we modified the definition 

of sustained inactivity to be a status of rest for a duration of more than 20 consecutive 

minutes. This 20-minute criterion was chosen post-hoc after visually inspecting its ability to 

identify approximate sleep and wake times. We estimated two SPT-windows: one during the 

night between Monday noon and Tuesday noon, and one during the night between Tuesday 

noon and Wednesday noon. The end of the former SPT-window defined the Tuesday wake 

time, while the start of the latter SPT-window defined the Tuesday sleep time. Using this 

approach, we identified wake and sleep times for 424 of the 492 subjects.
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Figure 6 contains two panels of lasagna plots (Swihart et al., 2010), in which each row 

represents a different subject’s rest/activity status over 24 hours, with blue cells representing 

active minutes and white cells representing rest minutes. In each panel, wake and sleep 

times for each subject are highlighted in black and the daytime interval midpoint (DIM) for 

each subject is highlighted in red. Landmark times were first estimated on the chronological 

time scale (left); and then we evaluated where these landmarks mapped to in registered 

time (right). Before registration, we first take note that DIMs are not a strong indicator of 

morningness vs. eveningness; there is considerable overlap in DIM between those who wake 

later (near the top of the plot) and those who wake earlier (near the bottom of the plot). After 

registration, we see better alignment in sleep times and wake times as expected, although 

there is still some between-subject variability, particularly in sleep times. What is more 

concerning, however, is that the DIM does not consistently map to an intuitively meaningful 

feature of the registered activity probability profiles. For some patients, the DIM takes place 

during their midday dip or period of rest. For other patients, it takes place at the height of 

their morning peak, and still for others, it takes place toward the end of their evening activity 

peak. The DIM, which is simply calculated as the halfway point between wake and sleep, 

fails to define any single feature of one’s circadian rhythm.

3.2.2. Comparing registration with the cosinor model—We fit cosinor curves 

to each subject’s non-binarized activity count data, noting that the fitted values did not 

always accurately describe the underlying activity profile, particularly during periods of rest 

(Supplementary Figure S2). The cosinor models produced three estimated parameters for 

each subject: the MESOR, the amplitude, and the acrophase. These parameters represent the 

estimated model-based mean, the peak or maximum deviation from the mean, and the timing 

of the peak, respectively. Pairwise correlations reveal a strong linear relationship between 

the MESOR and the amplitude (Pearson correlation coefficient 0.65, Supplementary Figure 

S1). Examples of potential chronotypes as defined by extreme values of cosinor parameters, 

analogous to potential chronotypes based on registration parameters presented in Figure 

4, are presented in Supplementary Figure S3. Specifically, the cosinor model allows for 

two main parameter axes on which to evaluate chronotypes. The MESOR and amplitude 

together describe one’s overall activity intensity, while the acrophase describes horizontal or 

temporal shifts in one’s activity count profile. Using the cosinor approach, new chronotype 

discovery is limited because subjects can only deviate along these two axes and their 

resulting activity count profiles are restricted to the cosine shape.

Below we examine correlations between these cosinor parameters and the two PC scores 

of registration’s FPCA step. The top row of Figure 7 shows strong negative correlations 

between the first PC score and the MESOR and amplitude parameters, which is consistent 

with expectations. All three cosinor parameters showed at least weak associations with at 

least one slope parameter as well (Supplementary Figure S4); this highlights that, in contrast 

to the registration parameters, the cosinor parameters are not designed to explicitly explain 

one source of variability. In the bottom row of Figure 7, no cosinor parameters are correlated 

with the second PC, suggesting that this is new information gained from registration that the 

cosinor model could not uncover, perhaps due to its restricting shape.
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3.2.3. Comparing registration with unregistered FPCA—For standalone binary 

FPCA without registration, we explored a range of different numbers of PCs K (from 2 to 

4) and determined that K = 3 had the best fit and interpretability. The estimated population-

level mean is shown in Figure 8 (black lines). In the left panel, colored lines represent the 

mean plus (blue) or minus (red) one standard deviation in the first PC. Similarly, the middle 

and right panels show deviations in the second and third PC’s, respectively. The first PC 

mostly describes the single-dimensional continuum of morningness vs. eveningness, with 

some additional information about morning activity intensity and the magnitude of midday 

dip. The second PC describes overall vertical variability in activity probability. The third 

PC largely describes the timing of the highest peak, but it also contains some remaining 

information about wake and sleep times that the first PC failed to capture.

Binary FPCA without registration is tasked with making sense of all variability, including 

both horizontal and vertical. Because of this, both the estimated mean and the types of 

variability explained in these PCs differ from those of registration (Figure 3), which can 

capture more advanced levels of variability in patterns of activity probability. Binary FPCA 

without registration captured the general trend of two activity peaks with a midday dip 

in its population mean activity probability profile, but these features were not as distinct 

as those revealed with registration. Furthermore, although its resulting PCs can separate 

subjects with more active mornings versus more active afternoons (similar to the second PC 

of registration), this information is confounded by claims about the number of peaks, as well 

as wake and sleep times.

4. Discussion

We have demonstrated that registration of 24-hour accelerometric rest-activity profiles can 

provide new insights into the complexity of chronotypes compared to existing methods by 

carefully separating and handling distinct sources of variability in daily activity patterns. 

By doing registration, we also uncovered limitations in the interpretability of traditional 

landmark approaches, specifically the DIM estimated from SPT-windows.

Though registration provides useful information beyond that obtained from the cosinor 

method, our goal was to introduce registration as an approach that complements rather 

than replaces the cosinor method. Like the cosinor method, registration reveals interpretable 

parameters; but registration provides extra flexibility by allowing the shape of the mean 

activity probability profile to be driven by the data instead of restricted to a cosine-like 

or any other parametric shape. That said, we acknowledge that some extensions to the 

cosinor model, including the multiple-component cosinor (Cornelissen, 2014) and the 

sigmoidally-transformed cosinor (Marler et al., 2006), also provide flexibility that improves 

upon the original cosinor approach, albeit in different parametric ways. We aim to introduce 

registration as another available tool among this set of flexible methods, one which learns 

the shape of the activity probability profile solely from the data.

When comparing registration to the cosinor method in this analysis, it is important to note 

the difference in outcomes. The cosinor method modeled the log-transformed activity counts 

as a continuous outcome, whereas the proposed registration method modeled binary states 
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of active vs. rest. We made this modeling choice because we believe that the binarized 

activity data is of greater utility than the log-transformed (or untransformed) activity counts 

for studying circadian rhythms. In part, this is because when using the noisy log-transformed 

counts, modeling methods may be overly influenced by extreme values which may indicate 

high levels of activity at a particular point in time, but do not convey information about 

timing of circadian rhythms.

Another limitation of using raw activity counts is the dependence of the results on the 

definition of activity counts that are often device and manufacturer specific. Binarized 

accelerometer data has the advantage of being more robust to device-specific activity 

count definitions. To analyze data from multiple types of devices using our approach, 

one only needs to establish device-specific thresholds that yield agreeable definitions of 

active and resting states. We emphasize that this threshold determination is thought of as 

a pre-processing step rather than part of our proposed registration method. We recommend 

using established threshold values most appropriate for each device type or manufacturer.

There may still be some circumstances under which continuous activity count data are 

preferred, for example in younger populations where scientists may want to understand 

moderate to vigorous physical activity (MVPA). For these research questions, methods for 

registering Gaussian data have been developed and are available in the “registr” package 

in R (Wrobel et al., 2020). However, for the reasons listed above, we believe binarized rest-

activity profiles are useful for studying circadian rhythms. Our approach to understanding 

circadian rhythms using binarized accelerometer data is compelling and novel, particularly 

the insights gained from the second PC obtained with our method.

While registration may seem vastly different from methods commonly used in 

chronobiology research such as the cosinor method and FPCA, we see many parallels 

between them. Obviously FPCA and registration are related in the sense that FPCA itself is 

a step in the registration method. However, a more fundamental similarity across all three 

methods is the treatment of accelerometer data as functional data across the 24-hour time 

span. The equations behind the registration, cosinor, and FPCA models are all written as 

functions of time. From this perspective, we see that the concept of registration is not so 

far-fetched from the types of methods that are already commonly applied in chronobiology. 

Finally, our approach is unique in that it borrows information across all subjects. Thus, 

the approach is potentially more powerful compared to those that focus only on a subject-

specific data. This can be leveraged in multiple ways. For example, a population-level 

algorithm could be developed to more accurately estimate bedtime periods. Additionally, the 

steepness (fast vs. slow) of the reduction in activity probability in the evening hours after 

bedtime could be investigated as proxies for sleep inertia.

One limitation of this method, as well as the cosinor method and FPCA, is that they 

require a full 24 hours of activity data. For older studies these data may not be available 

since subjects have sometimes been instructed to remove the accelerometer device during 

sleeping hours (Troiano et al., 2014; Urbanek et al., 2018). However, 24-hour data collection 

of wrist-worn accelerometer data is becoming increasingly more popular in the physical 
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activity and sleep research communities (Doherty et al., 2017; van Hees et al., 2018). Access 

to full 24-hour activity profiles will be less of a challenge looking forward.

Relatedly, each of these analysis approaches utilize only a single day of data per subject. 

We specifically analyzed data collected on a Tuesday for each subject to alleviate day-of-

the-week variability, which is minimal in an older population such as the BLSA but may be 

more relevant for younger populations. Moreover, since our method is only concerned with 

binarized epochs of activity or rest, our analysis is less sensitive to anomalies such as bouts 

of exercise on a particular day. That said, to make robust claims about one’s chronotype, 

one might ideally analyze several days or a week of accelerometer data and estimate 

within-subject day-to-day stability, variability, and regularity of rest-activity rhythms, topics 

that are currently under active investigation (Phillips et al., 2017). Work is also underway 

to create multilevel extensions of the registration method that will address this issue. 

Although methods targeting multiday registration are not available, the supplementary 

material contains a sensitivity analysis in which we aggregated over 3 weekdays per subject 

in an attempt to perform registration on a more stable estimate of one’s weekday activity 

probability profile. Results of this multiday analysis are similar to those for the single-day 

analysis, with some changes in the interpretation of PCs. These differences may be due to 

the reduced sample size, as well as misalignment within subjects across days that is not 

accounted for in the average curves.

Performing the proposed chronotype analysis on multi-day data, or even single-day data in 

a larger study population, would require that the proposed method be scalable. Registration 

is the most computationally demanding element of our approach to identify data-driven 

chronotypes, and this is indeed scalable: a recent publication applied registration to the UK 

Biobank dataset (N > 88,000 patients) (Wrobel et al., 2021). Although the analysis is not a 

study of chronotypes, it involves the registration of daily activity probability profiles from 

binarized accelerometer data. Several tools were used to ensure that the analysis remained 

computationally feasible. Although these steps were not necessary for our analysis of the 

BLSA data (N = 492), they are available in the R package “registr.”

It is also important to note that the interpretations of our registration results, i.e., the 

potential chronotypes presented in Table 1 and Figure 4, may be specific to this analysis. 

Performing registration on other datasets or with other analysis specifications, such as the 

choice of starting point for the 24-hour period, may yield PCs with different interpretations. 

Here we have defined the daily cycle to start at 3AM; we would expect a different mean 

function with different PCs and warping functions if the analysis were re-run using a 

different starting time. Future work is needed to validate our potential new chronotypes 

using other data sources. As additional future work, it would be interesting to validate the 

novel measures we introduced in this paper against additional measures of chronotype, such 

as the MCTQ (Roenneberg et al., 2003, 2007), which were not collected in the BLSA but 

may be available in other settings.

Our approach assumes that the population has an underlying mean structure that is shared, 

at least to some extent, across subjects. This shared mean structure is represented in 

the registration algorithm’s FPCA step through the mean curve α(t) and the PCs ψk(t), 
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which describe the few directions in which subjects generally deviate from that mean 

curve These are population-level parameters that are shared across subjects, while PC 

scores model individual differences. In our analysis, the mean curve suggested a morning 

activity peak, and midday dip, and an afternoon activity peak, with rest during nighttime 

hours. This biphasic structure has also been identified as an FPCA component of other 

large-scale accelerometer studies such as the National Health and Nutrition Examination 

Survey (NHANES) (Leroux et al., 2019) and the Osteoporotic Fractures in Men (MrOS) 

study (Zeitzer et al., 2018) as well as in monkeys (Leroux, 2015). Furthermore, the existence 

of a shared mean structure is supported by the BLSA data in the sense that many warping 

functions lie close to the identity line, suggesting minimal warping required to align these 

subjects. A shared mean structure may not be relevant to individuals with highly irregular 

chronotypes, such as shift workers or patients with sleep disorders, and it may be possible 

to identify these individuals using either warping functions or subject-level goodness-of-fit 

analyses. In general, registration is not appropriate for settings in which behavioral patterns 

are very dissimilar across participants. In these cases, binary FPCA cannot identify useful 

PCs with which to construct subject-specific mean templates – because shared patterns don’t 

exist across subjects.

Our method may be an important tool for identifying more subtle deviations from the 

mean profile of a typical population. Chronotype differences have been shown to relate 

to health outcomes even among more normally-phased healthy participants. Approximately 

87% of day workers suffer from social jetlag, which is akin to a milder form of shift 

work. Furthermore, about a quarter of the general population meet the criteria for advanced 

sleep phase disorder or delayed sleep phase disorder, defined as deviations of at least 

2 hours from desired sleep time (Roenneberg & Merrow, 2016). Subtle differences in 

circadian rhythms such as social jetlag or <7 hours of sleep per night have been linked 

to health outcomes including obesity, addiction, and cognitive under-performance (Goel 

et al., 2015; Wittmann et al., 2006). This suggests the clinical utility of our registration 

method, which we have shown can identify more nuanced chronotypes in a somewhat 

homogeneous population than other approaches. The registration-based chronotypes can 

be defined on a four-dimensional continuum, similar to but more flexible than the well-

known single-dimensional morningness-eveningness chronotype continuum, which has been 

shown to correlate with health outcomes (Partonen, 2015). Future work is needed to both 

validate these registration-based dimensions using independent data sources and to explore 

associations between these potential chronotypes and health outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Activity probability profiles pre-registration (left), warping functions (middle), and activity 

probability profiles post-registration (right). In each panel, each curve represents data for a 

particular subject. Data from one subject is highlighted in red across all panels.
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Figure 2. 
Example of a warping function for one subject mapping chronological time to registered 

time. The left panel demonstrates where certain points throughout his chronological day 

fall on his registered timeline. The right panel displays the corresponding 2-knot piecewise 

linear warping function.
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Figure 3. 
Population mean activity probability profile from registration’s binary FPCA step (black 

lines), plus or minus some variability (red and blue lines, respectively). The left panel 

demonstrates the mean +/− 1 standard deviation in the first principal component, and the 

right panel demonstrates the mean +/− 1 standard deviation in the second component.
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Figure 4. 
Simulated activity probability profiles from select chronotypes for demonstration. The top 

row compares a lark and an owl in terms of their profiles in chronological time (top left), 

warping functions, (top middle), and profiles in registered time (top right). In the bottom 

left, the profiles of a hummingbird and a penguin are compared in registered time. In the 

bottom right, the profiles of a roadrunner and a rooster are compared in registered time. 

These simulated profiles were generated by specifying warping function parameters and 

PC scores that meet each chronotype’s definition. We refer the reader to Table 1 for these 

definitions.
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Figure 5. 
Results from k-means clustering on the registration’s 4-dimensional parametric space. Top 

row shows data under chronological time, and the bottom row shows data under registered 

time. Columns contain distinct clusters, and cluster labels correspond to the chronotypes 

proposed in Table 1 and they are chosen to reflect each cluster’s most distinguishing 

features.
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Figure 6. 
Lasagna plots pre-registration (left) and post-registration (right), with colored markers for 

landmark times estimated from the (modified) SPT-window approach. In each panel, each 

row represents a different subject’s binary activity status over time. Blue cells indicate 

periods of activity, and white cells indicate periods of rest. Sleep and wake times for each 

subject are marked in black. The daytime interval midpoint (DIM) is marked in red.
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Figure 7. 
Registration-based principal component scores by cosinor parameter values. Registration-

based first and second PC scores by cosinor MESOR (top left and bottom left, respectively); 

registration-based first and second PC scores by cosinor amplitude (top center and bottom 

center, respectively); and registration-based first and second PC scores by cosinor acrophase 

(top right and bottom right, respectively).
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Figure 8. 
Population mean activity probability profile from binary FPCA without registration (black 

lines), plus or minus some variability (red and blue lines, respectively). The left, middle, and 

right panels demonstrates the mean +/− 1 standard deviation in the first, second, and third 

principal components, respectively.
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Table 1.

Potential chronotypes defined by cut-off values of registration parameters.

Registration parameter (for subject i) Values Proposed
chronotype

Defining feature

β1i (1st slope of warping function)
High Lark Early wake time

Low Anti-lark Late wake time

β3i (3rd slope of warping function)
High Owl Late sleep time

Low Anti-owl Early sleep time

c1i (1st PC score)
High Penguin Low overall activity probability

Low Hummingbird High overall activity probability

c2i (2nd PC score)
High Rooster Most active during (registered) morning

Low Roadrunner Most active during (registered) afternoon
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