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Abstract

The prognostic value of peripheral blood mononuclear cell (PBMC) expression profiles, when 

used in patients with chronic hypersensitivity pneumonitis (CHP), as an adjunct to traditional 

clinical assessment is unknown. RNA-seq analysis on PBMC from 37 patients with CHP at initial 

presentation determined that (1) 74 differentially expressed transcripts at a 10% false discovery 

rate distinguished those with (n=10) and without (n=27) disease progression, defined as absolute 

FVC and/or diffusing capacity of the lungs for carbon monoxide (DLCO) decline of ≥10% and 

increased fibrosis on chest CT images within 24 months, and (2) classification models based on 

gene expression and clinical factors strongly outperform models based solely on clinical factors 

(baseline FVC%, DLCO% and chest CT fibrosis).

INTRODUCTION

Hypersensitivity pneumonitis (HP) is an immunologically mediated form of lung disease 

resulting from inhalational exposure to a large variety of antigens. A subgroup of patients 

with HP develop chronic HP (CHP) and progressive pulmonary fibrosis, a leading cause of 

death in HP.1
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The current traditional clinical assessment does not include the molecular attributes that are 

prototypical of CHP progression, and that could prove vital in terms of prognosis. Thus 

far, no study has attempted to use low-risk peripheral blood (safe and accessible alternative 

to bronchoscopy or lung biopsy) transcriptional data of affected patients to create CHP 

prognostic molecular signatures to enhance the prognostic accuracy of current CHP clinical 

risk stratification. Therefore, we aimed to determine if a risk indicative, transcriptomic 

signature in peripheral blood mononuclear cells (PBMCs) from patients with CHP can be 

used to predict disease progression within 2 years of presentation.

METHODS

Expression data were generated for peripheral blood RNA specimens from adult subjects 

with CHP enrolled in the National Jewish Health interstitial lung disease (NJH ILD) 

research programme.2 All participants in this study provided written institutional review 

board-approved informed consent (HS-2946). All subjects had a multidisciplinary consensus 

diagnosis of HP3 at initial clinic presentation (time of blood draw), and were evaluated for 

evidence of disease progression within the first 24 months of follow-up, defined as absolute 

FVC and/or diffusing capacity of the lungs for carbon monoxide (DLCO) decline of ≥10% 

and ≥10% increase in reticulation and/or honeycombing on chest CT.

PBMCs extracted from frozen cell pellets in whole blood were subjected to mRNA 

bead capture, quality control (Qiagen) and RNA-seq library build (Kapa Biosystems Inc). 

Libraries were QCed on the Bioanalyzer (Agilent Technologies) and sequenced on the 

Illumina 2500 at 1×50 bp (mean: 40 million standard error 12 million reads/sample).

Demographics, smoking history, occupational and environmental history, pulmonary 

function, high-resolution CT (HRCT) scan and treatment data were collected at the time 

of blood draw. HRCT scans were reviewed in a blinded fashion by a thoracic radiologist 

at baseline and 24 months. Percentage of lung fibrosis was scored to the nearest 5%.4 

To evaluate the importance of baseline measures of disease severity in predicting disease 

progression, patients were also stratified into one of three levels: mild (FVC≥80%, CT 

without fibrosis), moderate (FVC: 70%–79%, CT fibrosis) and severe (FVC≤69%, CT 

fibrosis). Three cases were exceptions to the FVC thresholds because they had no CT 

fibrosis (mild FVC=75%, moderate FVC=68%, severe FVC=49%).

Differential expression (DE) analysis

FASTQ files from the Illumina bcl2fastq V.2.17 converter were adapter trimmed using 

skewer V.0.2.2 and aligned to the hg19 human reference genome with the STAR aligner 

V.2.4.15 using Ensembl V.75 (http://ensembl.org) gene models. Counts of uniquely mapped 

reads per gene were quantified using the Subread V.1.5.1 software. Subject data were 

scaled using the variance stabilising transform in the DESeq2 package and visualised 

using the pheatmap package and PC analysis princomp package (http://www.R-project.org/) 

Differential gene expression between progressors/non-progressors was performed with 

DESeq2 for transcripts with ≥10 reads, using the Wald test and a 10% false discovery rate 

(FDR). Pathway analysis used Gene Ontology terms in DAVID (https://david.ncifcrf.gov/).
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Predictive modelling

Logistic regression models used the R glm function to predict progressor or non-progressor 

status, controlling for age, gender and smoking status. Models with baseline measurements 

of clinical variables (FVC%, DLCO%, and CT presence of fibrosis–reticulation and/or 

honeycombing) were compared with models with gene expression alone or in combination 

with these clinical variables. Models were also made using expression data for sets of genes 

defined by three published signatures of idiopathic pulmonary fibrosis (IPF) in PBMCs 

(mild vs severe IPF, top 10 genes as in Yang et al6 from their table 5) and lung (IPF vs 

control, top 10 or 74 genes by p value as in Yang et al7 from their table S2; or HP vs 

IPF, top 10 or 74 genes by TNoM, Selman et al8 from their table E2). Expression data 

were included in the models using the first three principal components (PCs) of the data. 

Prediction performance was measured by leave-one-out cross-validation to compute area 

under the receiver operating characteristics curve (AUC), with 95% CIs using the cvAUC R 

package. The pROC package was used to compute Delong’s one-sided p value between two 

AUCs, at 0.05 significance.

As a secondary analysis, the transcriptomic signature data were hierarchically clustered 

(Ward’s linkage on correlation) to identify subclusters of subjects. The number of clusters 

was determined by the elbow method on tree-branch heights.

RESULTS

Compared with non-progressors, progressors were more likely to have lower FVC%, chest 

CT features of fibrosis and less likely to have mild disease severity at presentation (table 1). 

Clinical disease severity stratification at presentation did not perfectly correlate with disease 

course (table 1). Among progressors, 40% (4/10) had moderate disease at presentation. 

Among non-progressors, 15% (4/27) had severe disease. The majority of non-progressors 

cluster with the second PC (figure 1). Two of the non-progressors grouped with progressors 

along the first PC had mild disease. Statistical tests for DE between progressors and non-

progressors revealed 74 DE transcripts, many on pathways relevant to lung fibrosis (figure 

2A).9 10 11

The prediction performance by leave-one-out cross-validation of a logistic regression model 

of progression using baseline clinical parameters (AUC=0.70) was significantly improved 

when adding the first three PCs of the 74 DE gene data in combination with baseline clinical 

variables (AUC=0.90, pairwise Delong p=0.0149) (figure 2B). The combined model also 

outperformed models using only the top 10 DE genes and clinical data or any model using 

published IPF signature genes (all Delong p≤0.0065), indicating the 74 DE signature is 

specific to CHP progression.

Hierarchical clustering of the 74 DE transcripts further subclustered samples (figure 2C). 

Clinical characteristics of patients showed patient tree cluster 4 to be enriched for patients 

with severe disease at presentation, CT reticulation and honeycombing, though not all 

patients with advanced disease fell into this cluster. Five-year mortality was also confined to 

tree cluster 4 (three patients). The majority of the non-progressors were further subdivided 

by gene expression into three subgroups, distinct from cluster 4. Compared with the logistic 
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regression models, 10/13 predicted as progressors using only the 74 DE genes and all nine 

predicted as progressors by combined clinical and 74 DE genes fall in cluster 4, reinforcing 

that prediction performance was driven largely by the molecular data.

DISCUSSION

Using a cross-validation method, we demonstrate that including baseline gene expression 

signature data leads to a significant increase in the prediction accuracy and AUC compared 

with that by clinical parameters alone or compared with existing signatures of IPF. 

Hierarchical clustering applied to the 74 DE transcripts shows distinct subgroups among 

subjects, distinguishing patients with disease progression from patients with more stable 

disease regardless of baseline disease severity.

Prior observational studies have evaluated the value of gene expression profiling in HP.8 12 

These studies were limited by specimen collection bias by only including subjects with 

surgical lung biopsy specimens (not a practical biomarker measurable in the clinic).

While this pilot study provides the first and the largest cohort evaluating PBMC expression 

profiles as a potential adjunct to traditional clinical assessment in providing HP-specific 

prognostic information, the dataset was not large enough to have a separate training and 

test set; thus, leave-one-out cross-validation was used to provide a more efficient use of 

limited data. We recognise that gene expression signatures may not overlap completely 

between blood and lung tissue in HP. In the future, once we establish a prognostic peripheral 

blood HP biomarker, we can determine whether that signal is present within the lungs 

consistently across all individuals. Also, despite an expert thoracic radiologist providing a 

visual estimation of fibrosis extent, potential observer variability might limit the reliability 

of CT scoring. Lastly, caution is needed in interpreting the prediction model’s performance 

since further independent external validations with a large sample size are warranted.

In conclusion, despite the differences in clinical and imaging features at the initial 

presentation, molecular phenotyping by gene expression can be a promising and valuable 

predictor of CHP disease progression and complement traditional clinical risk stratification.
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Figure 1. PC analysis of chronic hypersensitivity pneumonitis gene expression data.
Using expression data normalised for sequencing depth, we generated a PC analysis using 

the top 15% highly variable genes and labelled samples by (A) severity or (B) progression 

status. Variability in genes was determined using the IQR divided by the median for each 

gene across samples, a non-parametric analogue to coefficient of variation. Though perfect 

separation of clusters is not expected when no phenotype information is used for gene 

selection a priori, the stronger clustering by progression status than by disease severity 

in this unbiased analysis suggests that the expression data would be a useful predictor of 

progression. PC, principal component.
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Figure 2. Analyses with differentially expressed genes.
(A) Pathway analysis using gene ontology GO_FAT_BP terms in DAVID (https://

david.ncifcrf.gov/). Next to the terms, genes annotated to the term are shown in brackets 

and the significance of the upregulated genes to HP biology is shown in parentheses. (B) 
Predictive performance by leave-one-out cross-validation of logistic regression classifiers 

of progressors versus non-progressors (adjusted for age, gender and smoking status) using 

only baseline clinical parameters (FVC%, DLCO% and CT presence of fibrosis–reticulation 

and/or honeycombing); using only expression data; or using clinical data in combination 

with expression data. Shown is AUC, with 95% CIs in brackets, and the p value for the 

one-sided Delong test of significant difference (p<0.05) between AUC of a given model 

and the best AUC among all models. Gene expression data were included in a model using 

the first three PCs of the data for a given set of genes. Gene sets were either taken from 

among the 74 DE genes for HP progressors versus non-progressors (all 74 or top 10 by 

FDR value, models 2–5) or from three published gene signatures of IPF in PBMCs (mild vs 

severe IPF genes, top 10 genes as in Yang et al6 from their table 5; models 6–7) and lung 

(IPF vs control, top 74 or 10 genes by p value as in Yang et al7 from their table S2; models 

8–11; or HP vs IPF, top 74 or 10 genes by TNoM as in Selman et al8 from their table E2, 

models 12–15). The original gene signatures varied greatly in size across the IPF studies 

(from 13 genes to 5465 genes). To make comparisons unbiased by signature size, we used 

the ranking established by the original authors and considered only the top 74 genes of each, 

where possible, to be comparable to our signature of size 74, or the top 10, as limited by 

the smallest signature in IPF PBMCs, where only 10 of the 13 original publication’s genes 

had data in our dataset (CCDC18-AS1 and the two unnamed transcripts were not used). 

None of the top 10 or top 74 genes listed in the published signatures were found among our 
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74 DE genes. Performance for predicting CHP progression using only clinical data (model 

1 AUC=0.70) was significantly improved when adding the first three PCs of the 74 DE 

genes combined with clinical features (model 3 AUC=0.90, Delong one-sided test of the two 

AUCs p=0.0149). The combined model (model 3) was also a significant improvement over 

using a signature of just the top 10 DE genes in combination with clinical features (model 

5 AUC=0.69; the 10 genes are starred ** in C, only 11th ranked AC011484.1 was not 

used), or any of the models using genes from published signatures of IPF (all models 6–15 

with AUCs ranging from 0.50 to 0.68 had one-sided pairwise Delong tests against model 

three with p≤0.0065), indicating our 74 DE signature combined with clinical features is 

specific to predicting CHP progression. The combined model (model 3) was not statistically 

better than either expression only model, using 74 DE genes (model 2, AUC=0.87, Delong 

p=0.24) or 10 DE genes (model 4, AUC=0.82, Delong p=0.23), indicating that expression 

was a major contributor to predictive accuracy. (C) Hierarchical clustering of 74 DE genes 

(FDR=0.1). Data were scaled per gene (row) to have mean zero and SD 1 and clustered 

using Ward’s linkage on correlation. Eleven genes were DE at FDR=0.05 (**) and one at 

FDR=0.01 (***). AUC, area under the curve; CHP, chronic hypersensitivity pneumonitis; 

DE, differential expression; DLCO, diffusing capacity of the lungs for carbonmonoxide; 

FDR, false discovery rate; IPF, idiopathic pulmonary fibrosis; PC, principal component.
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