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Abstract Hybridization is a major evolutionary force that can erode genetic differentiation 
between species, whereas reproductive isolation maintains such differentiation. In studying a hybrid 
zone between the swallowtail butterflies Papilio syfanius and Papilio maackii (Lepidoptera: Papilion-
idae), we made the unexpected discovery that genomic substitution rates are unequal between the 
parental species. This phenomenon creates a novel process in hybridization, where genomic regions 
most affected by gene flow evolve at similar rates between species, while genomic regions with 
strong reproductive isolation evolve at species-specific rates. Thus, hybridization mixes evolutionary 
rates in a way similar to its effect on genetic ancestry. Using coalescent theory, we show that the 
rate-mixing process provides distinct information about levels of gene flow across different parts 
of genomes, and the degree of rate-mixing can be predicted quantitatively from relative sequence 
divergence (‍FST ‍) between the hybridizing species at equilibrium. Overall, we demonstrate that 
reproductive isolation maintains not only genomic differentiation, but also the rate at which differ-
entiation accumulates. Thus, asymmetric rates of evolution provide an additional signature of loci 
involved in reproductive isolation.

Editor's evaluation
The authors leverage theory, simulations, and empirical population genomics to evaluate what are 
the consequences of differences in substitution rates in hybridizing species. This is a largely over-
looked pheonomenon. This study highlights the issue and demonstrates that two hybridizing species 
of Papilio have differences in thir substitution rates. The work will be of interest to a large group of 
evolutionary biologists, especially those studying evolution at the whole-genome level.

Introduction
DNA substitution, the process whereby single-nucleotide mutations accumulate over time, is a critical 
process in molecular evolution. Both molecular phylogenetics and coalescent theory rely on observed 
mutations (Yang and Rannala, 2012; Wakeley, 2016), and so the rate of substitution/mutation is 
the predominant link from molecular data to information about the timing of past events (Bromham 
and Penny, 2003). Substitution rates often vary among lineages: generation time, spontaneous 
mutation rate, and fixation probabilities of new mutations could all contribute to the variation of 
substitution rates (Ohta, 1993; Lynch, 2010). Recent evidence suggests mutation rates are even 
variable among human populations (Harris, 2015; DeWitt et  al., 2021). As such variation affects 
how fast the molecular clock ticks, reconstructing gene genealogies among different species some-
times accounts for species-specific rates of evolution (Lepage et al., 2007). However, under the stan-
dard coalescent framework, empirical studies of within- and between-species variation tend to ignore 
rate variation among populations (Costa and Wilkinson-Herbots, 2017; Wolf and Ellegren, 2017; 
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Kautt et al., 2020). The latter is partly based on 
a popular assumption in coalescent theory that 
neutral mutation rate is constant for a given locus 
across the whole genealogy (Hudson, 1990). 
Hybridization and speciation lie in the gray zone 
of these extremes, and have their own problem: 
molecular clocks from different lineages could 
be mixed by cross-species gene flow — a gene 
could evolve under one clock before it flows into 
another species and switches to evolve according 
to a different clock (Figure 1). This mixing process 
is largely outside the scope of existing theories 
and has received little attention from empirical 
studies.

However, if mixing between molecular clocks 
exists and can be measured, its strength could 
carry information about gene flow, which is 
important for studying reproductive isolation 
between incipient species. Genomic regions 
responsible for reproductive isolation lead to 
locally elevated genomic divergence (“genomic 
islands”), often caused by linked genomic regions 
experiencing less gene flow (“barrier loci”; Nosil 
et al., 2009; Michel et al., 2010; Renaut et al., 
2013; Payseur and Rieseberg, 2016). In studying 
a hybrid zone between two butterfly species, 
Papilio syfanius and Papilio maackii, we discov-
ered evidence for unequal genome-wide substi-
tution rates between the two species. Using this 
system, we investigate the interaction between 
unequal substitution rates and gene flow, and 
whether this interaction reveals new information 
on reproductive isolation.

As these butterflies are rare species, occur-
ring in a remote region of China, and are hard to 
collect, we employed methods based on analysis 
of whole-genome sequences of a few specimens. 
We hope that these methods may prove of use 
in studying other rare or perhaps endangered 
species where few individuals can be sacrificed. 
Results will follow two parallel lines: first, we 

provide evidence that genomic islands are associated with barrier loci. Then we infer the existence of 
unequal substitution rates. Finally, using a coalescent model, we calculate the relationship between 
the magnitude of genomic islands and the degree of mixing between substitution rates in linked 
regions. Throughout the analysis, we assume reverse mutations are rare, so that higher substitution 
rates always lead to higher numbers of observed substitutions.

Results
Divergent sister species with ongoing hybridization
We sampled 11 males of P. syfanius and P. maackii across a geographic transect (Figure 2A, dashed 
lines) covering both pure populations (in the sense of being geographically far from the hybrid zone) 
and hybrid populations. We also include four outgroup species, two of which have chromosome-
level genome assemblies (P. bianor, P. xuthus; Lu et al., 2019; Li et al., 2015), while the other two (P. 
arcturus, P. dialis) are new to this study. All samples were re-sequenced to at least 20× coverage across 
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Figure 1. Gene flow interacts with divergent 
substitution rates and affects observed numbers of 
substitutions. Each gray block represents a species 
with its species-specific substitution rate. Solid lines 
represent gene genealogies prior to coalescence, and 
horizontal jumps between species represent inter-
specific gene flow. Dots are substitutions. When a gene 
sequence inherits mutations derived under multiple 
rates, the number of substitutions it carries will reflect a 
mixture of substitution rates among different species. 
If gene flow is strong, each lineage carries a similar 
number of substitutions; If gene flow is weak, genes 
evolve independently with species-specific rates, and 
the distribution of substitutions in each lineage will 
likely be skewed towards the distribution of species-
specific substitution rates.

https://doi.org/10.7554/eLife.78135
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Figure 2. Overview of the study system. (A) The geographic distribution of P. syfanius (red) and P. maackii (blue). Scale-bar: 100 km. Dashed line is the 
sampling transect covering five populations (colored circles). (B) Elevation, climate, and sample sizes along the transect. (C) Mitochondrial tree with four 
outgroups. (D)‍FST ‍ across chromosomes (50 kb windows with 10 kb increments). The inset shows the estimated density of ‍FST ‍ on each chromosome.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Estimated ‍FST ‍ between populations KM and XY (50 kb windows with 10 kb increments).

Source data 2. ‍DXY ‍  and ‍π‍ estimated for populations KM and XY (non-overlapping 10 kb windows).

Source data 3. The phylogeny and alignment among mitochondrial genomes.

Source data 4. Results and data for MaxEnt species distribution models.

Source data 5. Sample information.

Figure supplement 1. Polymorphic mimetic color patterns in P. syfanius.

Figure supplement 2. Estimated seasonal occurrence times of P. syfanius and P. maackii adults.

Figure supplement 3. Estimated geographic distribution of P. syfanius and P. maackii ssp. han.

Figure supplement 4. Window-based ‍DXY ‍ and ‍π‍ estimated for populations KM and XY.

https://doi.org/10.7554/eLife.78135
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the genome and mapped to the genome assembly of P. bianor. Among sampled local populations, P. 
syfanius inhabits the highlands of Southwest China (Figure 2A, red region), whereas P. maackii domi-
nates at lower elevations (Figure 2A, blue region) (see Figure 2—figure supplement 3 and Figure 
2—source data 4 for the complete distribution). The two lineages form a spatially contiguous hybrid 
zone at the edge of the Hengduan Mountains (Figure 2B) with individuals exhibiting intermediate 
wing patterns (Figure 2A: purple dot, corresponding to population WN in Figure 2B). Consistent with 
previous results (Condamine et al., 2013), assembled whole mitochondrial genomes are not distinct 
between the two lineages (Figure 2C, Figure 2—source data 3), suggesting either that divergence 
was recent, or that gene flow has homogenized the mitochondrial genomes. However, the two species 
are likely adapted to different environments associated with altitude, as several ecological traits are 
strongly divergent (Kashiwabara, 1991; Figure 2—figure supplement 1). Similarly, between pure 
populations (KM and XY in Figure 2B), relative divergence (‍FST ‍) is also high across the entire nuclear 
genome (Figure 2D, Figure 2—source data 1). The ‍FST ‍ on autosomes averages between 0.2–0.4, 
and on the sex chromosome (Z-chromosome) it reaches 0.78. A highly heterogeneous landscape of 

‍FST ‍ is accompanied by numerous islands of elevated sequence divergence (‍DXY ‍) and reduced genetic 
diversity (‍π‍) scattered across the genome (Figure 2—figure supplement 4, Figure 2—source data 
2). Since animal mitochondrial DNA generally has higher mutation rates than the nuclear genome 
(Haag-Liautard et al., 2008), its low divergence between the two species are likely the result of gene 
flow. Overall, despite ongoing hybridization, genomes of the pure populations of P. syfanius and P. 
maackii are strongly differentiated.

Genomic islands are associated with barrier loci
A natural question is whether genomic differentiation is associated with barrier loci and reproduc-
tive isolation. In other words, can ‍FST ‍ variation be attributed to gene flow variation between sister 
species? We suspect that barrier loci likely exist, because sequence variation between pure popula-
tions suggests that elevated ‍FST ‍ is associated with reduced ‍π‍ and elevated ‍DXY ‍ across autosomes 
(Figure 3A), as expected for hybridizing species (Irwin et al., 2018). The Z chromosome (sex chromo-
some) has the highest ‍DXY ‍ and the lowest ‍π‍ among all chromosomes (Figure 2—figure supplement 
4), another characteristic of hybridizing species with barriers to gene flow (Kronforst et al., 2013).

To test for the presence of barrier loci, we augment the analysis with the sequences of four indi-
viduals from the population closest to the center of the hybrid zone (Population WN). We investigate 
whether differences in ancestry variation provide additional evidence for barrier loci in this hybrid 
zone. The underlying logic is that barrier loci will simultaneously:

1.	 Reduce linked ‍π‍ in pure populations (Ravinet et al., 2017);
2.	 Elevate linked ‍DXY ‍ between pure populations (Ravinet et al., 2017);
3.	 Elevate pairwise linkage disequilibrium in hybrid zones (Barton, 1983);
4.	 Enrich linked ancestry from one lineage in hybrid zones (Sedghifar et al., 2016).

Effects 3 and 4 can be bundled together as “reduced ancestry randomness” around barrier loci 
because both are expected if intermixing of segments of different ancestries within a genomic interval 
is prevented. For effects 3 and 4, because of small sample sizes, estimating site-specific statistics 
such as pairwise linkage disequilibrium is untenable. However, our high-quality chromosome-level 
reference genome enabled accurate estimation of local ancestry. As a remedy for small sample sizes, 
we employ two entropy metrics borrowed from signal-processing theory to quantify ancestry random-
ness in local regions along chromosomes (see Materials and methods). By dividing chromosomes 
into segments, we can extract indirect information about effects 3 and 4 at the expense of reduced 
genomic resolution. The proposed metrics, ‍Sb‍ and ‍Sw‍, correspond to the randomness of ancestry 
between and within individual diploid genomes from a local population (Figure 3B). For a cohort 
of ideal chromosomes with uniform recombination and marker density, if ancestry is independent 
between homologous chromosomes, both ‍Sb‍ and ‍Sw‍ increase with reduced local ancestry correlation 
and more balanced parental contribution (Figure 3C).

For a given autosomal segment, we then calculate ‍π‍, ‍DXY ‍, and ‍FST ‍ between pure populations, as 
well as entropy metrics ‍Sb‍ and ‍Sw‍ in hybrid individuals for the same segment. To investigate whether 
effects 1–4 are all present in our system, the joint range among entropy, ‍π‍, and ‍DXY ‍ is shown in 
Figure  3D, which suggests that low ancestry randomness (low entropy) is likely associated with 
reduced ‍π‍ within species and elevated ‍DXY ‍ between species. To further quantify such association, we 

https://doi.org/10.7554/eLife.78135
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estimated Pearson’s correlation coefficients (‍ρ‍) between entropy and the latter statistics (Figure 3E). 
These associations are strongly significant (‍Z ‍-scores > 3). Consequently, reduced ancestry random-
ness in hybrids (effects 3 & 4) coincides with classical patterns of barrier loci between pure populations 
(effects 1 and 2). This analysis is not sufficient to exclude all alternative hypotheses. For instance, we 
cannot entirely exclude the possibility that patterns are driven by low-recombination regions (‍Sw, Sb ↓‍) 
that experience linked selection (‍π ↓‍) also have elevated mutation rates (‍DXY ↑‍). Nonetheless, this 
alternative seems most unlikely, as low-recombination regions should typically be less rather than 
more mutable (Lercher and Hurst, 2002; Jensen-Seaman et al., 2004; Yang et al., 2015; Arbeit-
huber et al., 2015; Liu et al., 2017). Overall, adding information from hybrid populations strengthens 
the evidence for barrier loci acting across autosomes.
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Figure 3. Evidence for barrier loci on autosomes. For all plots, pure populations refer to XY & KM, and hybrid population refers to WN. (A) Between 
pure populations, reduced diversity (‍π‍, showing values averaged between pure populations) is associated with increased divergence (‍DXY ‍) across 
autosomes (30 segments per chromosome). Error bars are standard errors. (B) The conceptual picture of entropy metrics on diploid, unphased ancestry 
signals. In a genomic window, between-individual entropy (‍Sb‍) measures local ancestry randomness among individuals, while within-individual entropy 
(‍Sw‍) measures ancestry randomness along a chromosomal interval. (C) Simulated behaviors of entropy in a simplified model of biparental local ancestry. 
Chromosomes are assumed to be spatially homogeneous, thus recombination rate is uniform among 1000 equally spaced SNPs, and adjacent SNPs 
have a single probability of ancestry disassociation. For each haplotype block with linked ancestry, its ancestry is randomly assigned according to the 
average contribution from each species. Each pair of haploid chromosomes are combined into an unphased ancestry signal before calculating entropy. 
The top plot assumes equal contribution from both species, and the bottom plot assumes ancestry disassociation probability = 0.001. Solid lines are 
average entropies across 1000 repeated simulations, and shaded areas represent averaged upper and lower deviations from the mean. (D) The joint 
range among entropy, ‍π‍, and ‍DXY ‍ across autosomes (20 segments per chromosome). Color range is normalized by the range of entropy in each plot. 
Gray represents higher entropy, and colored regions are associated with lower entropy. Heatmaps represent linear fits to the ensembles of points. 
(E) The correlation ‍ρ‍ on autosomes between entropy in hybrid populations and {‍π‍, ‍DXY ‍, ‍FST ‍} within and between pure populations. ‍ρ‍ is shown above 
each regression line. Error bars are standard errors of entropy from 50 repeated estimates of local ancestry using software ELAI (parameters are in 
Materials and methods). The significance of ‍ρ‍ is estimated using block-jackknifing among all segments: ‍Z ‍-scores are shown in parentheses.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Estimated entropy (‍Sw‍, ‍Sb‍), ‍DXY ‍, ‍π‍, ‍FST ‍ on 20 segments per chromosome (including the Z chromosome).

Figure supplement 1. An example run of the local ancestry estimation software ELAI on chromosomes 1–30.

https://doi.org/10.7554/eLife.78135
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The Z chromosome was excluded from this analysis as it likely differs in mutation rate or effective 
population size (Presgraves, 2018), but its ancestry in hybrid individuals either retains purity or resem-
bles very recent hybridization (long blocks of heterozygous ancestry, Figure 3—figure supplement 
1). The Z chromosome has low ancestry randomness, and it also has the highest level of divergence 
(Figure 2D), both of which suggest strong barriers to gene flow between P. syfanius and P. maackii on 
this chromosome.

Asymmetric site patterns
A hint that substitution rates differ between the two species comes from site-pattern asymmetry (but 
this asymmetry alone is insufficient to establish the existence of divergent rates). We focus on two kinds 
of biallelic site patterns. In the first kind, choose three taxa (P1,P2,O1), with P1=syfanius, P2=maackii, 
while O1 is an outgroup. Assuming no other factors, if substitution rates are equal between P1 and 
P2, then site patterns (P1,P2,O1)=(A,B,B) and (B,A,B) occur with equal frequencies, where “A” and “B” 
represent distinct alleles. This leads to a ‍D‍ statistic describing the asymmetry between three-taxon 
site patterns:

	﻿‍ D3 = DP1,P2,O1 = nABB−nBAB
nABB+nBAB

,‍� (1)

where ‍n‍ is the count of a particular site pattern across designated genomic regions. A significantly 
non-zero ‍D3‍ indicates strongly asymmetric distributions of alleles between P1 and P2.
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Figure 4. ‍D‍  statistics are unanimously negative. For each data point, we choose an ‍FST ‍ threshold (x-axis) and report ‍D‍ statistics on SNPs with a 
background ‍FST ‍ (50 kb windows and 10 kb increments) no less than the given threshold. Error bars are standard errors estimated using block-jackknife 
with 1 Mb blocks. The aberrant behavior for the highest ‍FST ‍ bins is we believe mostly due to low sample sizes for these bins.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. ‍D3‍, ‍D4‍ statistics with their ‍Z ‍-scores.

Figure supplement 1. ‍D3‍, ‍D4‍ statistics plotted with their ‍Z ‍-scores.

https://doi.org/10.7554/eLife.78135
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In a second kind of site pattern test, we compare four taxa (P1,P2,O1,O2) and calculate a similar 
statistic between site patterns (A,B,B,A) vs (B,A,B,A):

	﻿‍ D4 = DP1,P2,O1,O2 = nABBA−nBABA
nABBA+nBABA ‍� (2)

Classically, a significantly non-zero ‍D4‍ suggests that gene flow occurs between an outgroup and 
either P1 or P2, thus it is widely used to detect hybridization (the ABBA-BABA test) (Durand et al., 
2011; Hibbins and Hahn, 2022). Here, ‍D4‍ is used more generally as an additional metric of site 
pattern asymmetry.

We compute both ‍D3‍ and ‍D4‍ on synonymous, nonsynonymous, and intronic sites, with P. syfanius 
and P. maackii samples taken from pure populations (KM and XY). For each type of site, we progres-
sively exclude regions with local ‍FST ‍ below a certain threshold, and report ‍D‍ statistics on the remaining 
sites in order to show the increasing site-pattern asymmetry in more divergent regions (Figure 4). ‍D3‍ 
is significantly negative regardless of outgroup or site type for most ‍FST ‍ thresholds, and ‍D4‍ is also 
significantly negative for most outgroup combinations when computed across the entire genome 
(‍Z ‍-scores are shown in Figure 4—figure supplement 1), proving that site-patterns are strongly asym-
metric between P. syfanius and P. maackii. Importantly, the direction of asymmetry is nearly identical 
across all outgroup comparisons. This asymmetry cannot be attributed to batch-specific variation as 
all samples were processed and sequenced in a single run, and variants were always called on all indi-
viduals of P. syfanius and P. maackii. Sequencing coverage is normal for most annotated genes used 
in the analysis (Table 1), suggesting that asymmetry is not due to systematic copy-number variation 
that could affect variant calls. Nonetheless, two independent processes of evolution could explain 
observed asymmetric site patterns. In hypothesis I (Figure  5A, left), asymmetry is generated via 
stronger gene flow between P. syfanius and outgroups, leading to biased allele-sharing. In hypothesis 
II, site pattern asymmetry is due to unequal substitution rates between P. syfanius and P. maackii, 
which is further modified by recurrent mutations in all four outgroups (Figure 5A, right). We test each 
hypothesis below.

Hybridization with outgroups does not explain site-pattern asymmetry
We first test hypothesis I by phylogenetic reconstruction using SNPs in annotated regions. We construct 
local gene trees for each 50 kb non-overlapping window for all samples, including the four outgroup 
species. As biased gene flow with outgroups should rupture the monophyletic relationship among all 
P. syfanius +P. maackii individuals, the fraction of windows producing paraphyletic gene trees can be 
used to assess the potential impact of gene flow. However, almost all gene trees show the expected 
monophyletic relationship (Figure 5B). This conclusion is independent of the level of support used to 
filter out genomic windows with ambiguous topologies (see Materials and methods). Consequently, 
hardly any window shows a phylogenetic signal of hybridization with outgroups. Nonetheless, branch 
lengths in reconstructed gene trees suggest possible substitution rate divergence between the two 
species: Among highly supported monophyletic trees (bootstrap support ≥ 95), P. maackii (in popu-
lations YA, BJ, XY) is always significantly more distant than P. syfanius from the most recent common 
ancestor of P. maackii +P. syfanius (Figure 5C, significance levels reported via a Wilcoxon signed-rank 
test for each pair of individuals, see Figure 5—source data 2). Second, the direction of allele sharing 
in the ‍D‍ statistics is unanimously biased towards P. syfanius. If hypothesis I were true, hybridization 
with outgroups is required to take place mainly in the highland lineage. There is no evidence to 
support why the highland lineage should receive more gene flow based on current geographic distri-
butions, as outgroups P. xuthus and P. bianor overlap broadly with both P. maackii and P. syfanius, while 
outgroup P. dialis is sympatric only with P. maackii (Condamine et al., 2013). Although it is possible 
that historical and modern geographic distributions differ, and archaic gene flow might have occurred 

Table 1. Coverage abnormality in SNPs from coding sequences (CDSs).
Abnormal coverage is inferred if the average coverage of a CDS exceeds twice of the median 
coverage of all CDSs in the genome.

Number of SNPs from CDSs with abnormal coverage 1993

Total number of SNPs from all CDSs 1060525

https://doi.org/10.7554/eLife.78135
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preferentially with P. syfanius, it should still leave some phylogenetic signal of introgression. Overall, 
we find little evidence for biased hybridization required by hypothesis I.

One might worry that by rejecting hypothesis I, we also throw doubt on widely accepted conclu-
sions of the ABBA-BABA test for gene flow in other systems (that a significantly nonzero ‍D4‍ implies 
hybridization with outgroups) (Durand et al., 2011). However, in the next section, we show why ‍D3‍ 
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Figure 5. Unequal substitution rates between pure population of P. syfanius and P. maackii. (A) Two hypotheses to explain negative ‍D‍ statistics. (B) The 
percentage of local gene trees (50 kb non-overlapping windows) where P. syfanius and P. maackii are together monophyletic. For each level of support, 
we filter out windows with Support(monophyly) and Support(paraphyly) below a given level, and report both the percentage of windows passing the 
filter (informative windows) and the percentage of monophyletic windows. (C) The distribution of P. syfanius branch lengths (‍Ls‍) relative to those of P. 
maackii (‍Lm‍) among highly supported monophyletic trees (Support ≥95). Each curve corresponds to a pairwise comparison between a syfanius individual 
and a maackii individual. Branch lengths are distances from tips to the most-recent common ancestor of all syfanius +maackii individuals. (D) Behavior 
of ‍D3‍ under divergent substitution rates and recurrent mutations in outgroups (O1). (E) Behavior of ‍D4‍ under divergent substitution rates and recurrent 
mutations in outgroups (O1 & O2). (F) Left: Median ‍D3‍ is positively correlated with node height; Right: Median ‍D4‍ is negatively correlated with 

‍(∆Node height)/(ΣNode height)‍. Node height is used as a proxy for the probability of recurrent mutation (‍pi‍).

The online version of this article includes the following source data for figure 5:

Source data 1. Concatenated gene trees based on 50 kb windows and the underlying support for each binary split.

Source data 2. Results of the signed-rank test on branch elongation in P. maackii.

https://doi.org/10.7554/eLife.78135
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and ‍D4‍ are fully consistent with hypothesis II, and so this is just a special case where the ABBA-BABA 
test produces a false positive for gene flow.

Evidence for divergent substitution rates
In hypothesis II, divergent substitution rates between P. maackii and P. syfanius interact with recurrent 
mutations in outgroups to produce asymmetric site patterns. To understand its effect on ‍D‍ statistics, 
consider a simplified model of recurrent mutation (Figure 5D,E), where a site in outgroup ‍‍ mutates 
with probability ‍pi‍, producing the same derived allele with probability ‍c‍. When averaged across the 
genome, ‍c‍ can be treated as a constant, and ‍pi‍ increases with distance to the outgroup. In the absence 
of gene flow, for three-taxon patterns, recurrent mutations modify ‍D3‍ by a factor of approximately 

‍(1 − 2cp1)‍ (Figure 5D, see Materials and methods), and observed ‍D3‍ will thus be positively correlated 
with ‍p1‍. For four-taxon patterns, it can be shown that observed ‍D4‍ is always negative due to larger 
probabilities of recurrent mutation in more distant outgroups (Figure 5E, see Materials and methods). 
Assuming no significant contribution of incomplete lineage sorting (Maddison and Knowles, 2006), 
the value of ‍D4‍ becomes more negative with increasing ‍∆pi/Σpi = (p2 − p1)/(p2 + p1)‍.

To test these signatures, we employ estimated node heights of outgroups in the mitochondrial 
tree (Figure 2C) as proxies for outgroup distance, and hence for the relative probability of recurrent 
mutation (‍ρi‍). In line with expected signatures, we find that observed ‍D3‍ indeed increases with node 
height (Figure 5F, left), and observed ‍D4‍ decreases with (Δ Node height/∑ Node height; Figure 5F, 
right). Thus, the directions and magnitudes of both ‍D‍ statistics are congruent with hypothesis II. As 
hypothesis II naturally predicts unanimously negative ‍D3‍ and ‍D4‍ as well as their relative magnitudes 
among different outgroup combinations, it is more parsimonious than hypothesis I. Hence, divergent 
substitution rates likely exist between P. syfanius and P. maackii.

Rate-mixing at migration-drift equilibrium
Having tested for the existence of divergent substitution rates, we now explore how they become 
mixed by gene flow using a coalescent framework. In particular, we will assess whether the conceptual 
picture in Figure 1 can be recovered quantitatively in the butterfly system. As gene flow is ongoing 
between the two lineages, consider two haploid populations of size ‍N ‍ exchanging genes at rate ‍m‍ 
(Figure 6A). This simple isolation-with-migration (IM) model at equilibrium has relative divergence 
(Notohara, 1990)

	﻿‍
FST =

1
1 + 4Nm‍�

(3)

To quantify the signature of mixed rates, consider the asymmetry in observed numbers of 
substitutions (circles in Figure  6A). Take a pair of sequences from two populations. Let ‍⟨n1⟩‍ 
be the expected number of derived alleles exclusive to the sequence in population 1, and let 

‍⟨n2⟩‍ be the same expected number in population 2. Their ratio is defined as observed rate ratio: 

	﻿‍
r =

⟨n2⟩
⟨n1⟩‍�

(4)

Evidently, ‍r = 1‍ is the symmetric point where both sequences have the same number of derived 
alleles. Further, let the actual substitution rate in population 1 be ‍µ1‍, and the actual substitution 
rate in population 2 be ‍µ2‍. The ratio between the two actual rates are defined as the true rate ratio: 

	﻿‍
r0 =

µ2

µ1 ‍�
(5)

At migration-drift equilibrium, observed rate ratio (‍r‍) and observed divergence (‍FST ‍) are related 
by the following formula parameterized singly by ‍r0‍ (Figure  6B, see Materials and methods): 

	﻿‍
r =

1 + r0 + FST(r0 − 1)
1 + r0 − FST(r0 − 1)

,
‍�

(6)

https://doi.org/10.7554/eLife.78135
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which translates into

	﻿‍
FST ≈

r − 1
r0 − 1

if r0 ≈ 1
‍�

(7)

These formulae indicate that unequal substitution rates are more mixed in regions with lower 
genomic divergence. Equation 7 is surprising, because it reveals that the remaining fraction of substi-
tution rate divergence (‍(r − 1)/(r0 − 1)‍) is almost the same as ‍FST ‍, which corresponds to the fraction 
of genetic variance explained by population structure (Wright, 1949). In Figure 6B, the relationship 
between ‍r‍ and ‍FST ‍ is still largely linear when one species evolves three times as fast as its sister species 
(‍r0 = 3‍), and so Equation 7 might be robust under biologically realistic rates of substitutions between 

Strong gene flow, weak coalescence
(m � N−1 ⇐⇒ FST → 0)

Weak gene flow, strong coalescence
(m � N−1 ⇐⇒ FST → 1)

•• ••
•

••

••

•
•

•

�••

•

•

••

�

•
••
•
•
••
•

↓ coalescent ↓ coalescent

〈n1〉 ≈ 〈n2〉 〈n1〉 �= 〈n2〉

B
ac

kw
ar

d
in

tim
e

N N
mPopulation 1 with

substitution rate µ1

Population 2 with
substitution rate µ2

A

0 0.2 0.4 0.6 0.8 1

FST

0

1

2

3

4

5

O
b
se
rv
ed

ra
te

ra
ti
o
(r
)

r = 1+r0+FST (r0−1)
1+r0−FST (r0−1)

0.0

0.5

1.0

1.5

2.0

3.0

4.0

5.0
r0

B

����������
�������������
������

��
��
��
��

���
��
���

���

C

0.0 0.2 0.4 0.6 0.8 1.0

FST

1

2

O
b
se
rv
ed

ra
te

ra
ti
o

Synonymous

R2= 0.899
r0= 1.813±0.051

0.0 0.2 0.4 0.6 0.8 1.0

FST

1

2
Nonsynonymous

R2= 0.726
r0= 1.633±0.068

0.0 0.2 0.4 0.6 0.8 1.0

FST

1

2
Intron

R2= 0.991
r0= 1.837±0.016

D

ρ0

Figure 6. Divergence is correlated with increased differences in the relative number of substitutions. (A) Behavior of the equilibrium isolation-with-
migration model with divergent substitution rates. If coalescence is weaker than gene flow, each lineage has a similar number of derived alleles. If 
coalescence is stronger than gene flow, lineages sampled from the population with a faster substitution rate will also inherit more derived alleles. 
(B) Theoretical relationship between observed rate ratio (‍r ‍) and relative divergence (‍FST ‍), parameterized by the true ratio r0) of substitution rates. 
(C) Observed rate ratios between P. maackii (population XY) and P. syfanius (Population KM), partitioned by ten ‍FST ‍ intervals. Error bars are standard 
errors calculated using 1 Mb block-jackknifing. (D) The theoretical relationship between ‍r ‍ and ‍FST ‍ is a good fit to observation.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Simulated results from equilibrium symmetric migration models of rate-mixing.

Figure supplement 2. Simulated results from equilibrium conservative migration models of rate-mixing.

Figure supplement 3. Simulated results from equilibrium stepping-stone models of rate-mixing.

https://doi.org/10.7554/eLife.78135
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incipient species. Using extensive simulations (Figure 6—figure supplement 1 to Figure 6—figure 
supplement 3), we show that the full formula (Equation 6) is also robust in a number of equilibrium 
population structures.

To test whether such predictions are met, we calculate ‍r‍ on synonymous, nonsynonymous, and 
intronic sites partitioned by their local ‍FST ‍ values between pure populations (KM & XY), and recover a 
similar monotonic relationship across most ‍FST ‍ partitions (Figure 6C). For introns, the observed rela-
tionship between ‍r‍ and ‍FST ‍ is a near perfect fit to Equation 6 (Figure 6D, squares), with an estimated 

‍r0‍ = 1.837. For synonymous (Figure  6D, circles) and nonsynonymous sites (Figure  6D, triangles), 
Equation 6 also provides an excellent fit in regions with low to intermediate ‍FST ‍. Estimated ‍r0‍ for 
synonymous sites is 1.813, close to that of introns, while nonsynonymous sites have a considerably 
lower ‍r0‍ of 1.633. If introns and synonymous substitutions are approximately neutral, we infer that 
neutral substitution rates are about 80% greater in the lowland species.

Discussion
Entropy as a useful measure of ancestry randomness
A critical step in our analysis is to associate genomic islands with barrier loci. Conventionally, infor-
mation on increased association between barrier sites in hybrid populations comes from two-locus 
linkage disequilibrium (Slatkin, 1975). Empirical studies on hybrid populations frequently use such 
statistics to strengthen the evidence for barriers to gene flow (Knief et al., 2019; Wang et al., 2022). 
Alternatively, if phased haplotypes can be sequenced, the length of ancestry tracts (Sedghifar et al., 
2016) or the density of ancestry junctions (Janzen et al., 2018; Wang et al., 2022) also carry infor-
mation on barrier loci. All these methods break down with small numbers of unphased samples, as 
forced phasing can produce a large number of false ancestry junctions. However, conventional notions 
such as “ancestry tract length” are not definable for unphased local ancestry. The dilemma forces us to 
consider more robust statistics that carry information on ancestry association even in unphased data.

The development of both entropy metrics follows three intuitions:

•	 Vectorization: ancestry is a categorical concept, and it should map to a signal containing the 
contribution of each source population.

•	 Conservation law: the total ancestry from all sources at a particular locus is conserved.
•	 Highly (auto)correlated signals have a concentrated spectrum (low spectral entropy).

Since entropy carries information about the degree of ancestry correlation, it will decrease in 
regions of low recombination and high genetic relatedness. If genetic relatedness is produced by 
inbreeding, it should affect the entire genome in a similar way, and between-individual entropy (‍Sb‍) 
will be similar across different parts of the genome. However, if inbreeding is so severe that ‍Sb‍ is glob-
ally zero, it will not be an informative metric. It is worth noting that within-individual entropy ‍Sw‍ shares 
a conceptual similarity to the wavelet transform of ancestry signals (Pugach et al., 2011; Sanderson 
et al., 2015). These entropy metrics will be particularly useful for window-based genomic analysis of 
ancestry correlation with limited sampling, and they are also compatible with larger sample sizes and 
more than two parental species. (The formulae of entropy with two parental species are presented 
in Materials and methods, and mathematical details are discussed in Appendix 1.) Nonetheless, this 
entropy approach assumes local ancestry can be accurately inferred, which will be challenging for 
studies with low-coverage sequencing, non-chromosomal genome assembly, or lacking reference 
populations.

Potential mechanisms of divergent substitution rates
Interestingly, a higher substitution rate in the lowland lineage P. maackii is congruent with the evolu-
tionary speed hypothesis (Rensch, 1959), where evolution accelerates in warmer climates. Our finding 
echoes the results of many previous studies (Gillooly et al., 2005; Wright et al., 2006; Lin et al., 
2019; Ivan et al., 2022). Without measuring the per-generation mutation rates in both species, it is 
unclear what mechanisms cause increased substitution rates, but the lowland lineage typically has an 
additional autumn brood that is absent in P. syfanius (Takasaki et al., 2007; Figure 2—figure supple-
ment 2). Warmer temperatures in lowland habitats might also increase spontaneous mutation rates in 
ectothermic insects (Waldvogel and Pfenninger, 2021). Both mechanisms could produce increased 
substitution rates in the lowland species. It is surprising that estimated ‍r0‍ between synonymous sites 

https://doi.org/10.7554/eLife.78135
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and introns agree with each other under such a coarse framework, and estimated ‍r0‍ for nonsyn-
onymous sites is considerably lower. Less asymmetric rates for nonsynonymous substitutions could 
perhaps be explained by the nearly neutral theory (Ohta, 1993), which argues that many nonsyn-
onymous mutations are mildly deleterious, and selection is more efficient in suppressing them in 
larger populations and slowing down substitutions. In the field, the lowland species often appears in 
larger numbers with well-connected habitats, while the highland species faces a highly heterogeneous 
landscape of the Hengduan Mountains, which could lead to differences in effective population sizes 
required by our expectation under the nearly neutral theory.

Are introgression tests robust to substitution rate variation?
An additional result from our study is that divergent substitution rates might produce spuriously non-
zero ‍D4‍ statistics when combined with recurrent mutations, which could increase the false positive 
rate of the ABBA-BABA test (Durand et al., 2011). This phenomenon has been suspected in humans 
(Amos, 2020), and is certainly a theoretical possibility (Hibbins and Hahn, 2022), but has not been 
tested in most empirical studies.

A wide class of introgression tests targeting gene flow between outgroups and a pair of taxa 
are based on site pattern information. Hahn’s ‍D3‍ computes absolute sequence divergence between 
groups in a triplet of species (Hahn and Hibbins, 2019), and will be affected by unequal substitution 
rates in a similar way to our ‍D3‍. Martin’s ‍fd‍ computes the same numerator as our ‍D4‍ (Martin et al., 
2015), so it could also produce false positives under similar situations. Related statistics include ‍Dp‍ 
(Hamlin et al., 2020), ‍Df ‍ (Pfeifer and Kapan, 2019). A general guideline for site-pattern based statis-
tics is that the focal pair of taxa are closely related such that substitution rates do not differ, while 
outgroups should not be too distant to minimize recurrent mutations (Hibbins and Hahn, 2022). 
However, whether these assumptions are met in empirical studies is worthy of investigation, and our 
system provides a counterexample even between sister species with ongoing hybridization.

A separate pitfall might occur if introgression tests based on site-patterns are applied to genomic 
windows to locate regions introgressed from outgroups. In our case, ‍FST ‍ peaks have the most asym-
metric substitution rates between P. maackii and P. syfanius, thus they will most likely be associated 
with false-positive ‍D‍ statistics. This could lead to the incorrect interpretation that some barrier loci 
(“speciation genes”) are introgressed from outgroups – a popular hypothesis in adaptive introgression 
and hybrid speciation, see Edelman and Mallet, 2021.

To this end, we speculate that using appropriate substitution models to infer gene tree topology 
will perform better in assessing the impact of introgression with outgroups.

The conceptual picture of rate-mixing
In the gray zone of incomplete speciation, interspecific hybrids bridge between gene pools of diver-
gent lineages (Mallet, 2005). We here demonstrate a similar role of hybridization in coupling and 
mixing differing substitution rates. Divergent rates of substitution carry information about outgroups, 
while divergence based on allele frequency differences does not. Preserving divergent substitution 
rates is a stronger effect than maintenance of allele frequency differences, because divergence of 
allele frequencies is a prerequisite for rate preservation. This dependency can be coarsely quantified 
across the genome by the relationship between observed rate ratio ‍r‍ and relative divergence ‍FST ‍ in 
an equilibrium system of hybridizing populations (Equation 6). At migration-drift equilibrium, it is 
not surprising that divergent substitution rates are associated with relative divergence. In Figure 6A, 
when coalescence occurs rapidly compared to gene flow, most substitutions separating individuals 
are species-specific. However, when gene flow is faster than coalescence, individuals will carry substi-
tutions that occurred in both species. This could have important implications, because preserving 
lineage-specific substitution rates as measured by ‍r‍ might not require low absolute rates of gene flow. 
Instead, reducing effective population sizes via recurrent linked selection might achieve a similar result 
in populations at equilibrium (‍N ↓⇒ FST ↑⇒ r ↑‍).

The theory in its present form has several limitations. First, mutations follow the infinite-site model 
(Kimura, 1969), so that reverse mutations, double mutations, and substitution types are not accu-
rately reflected in the estimated ratio between species-specific substitution rates. Second, population 
structure is assumed at equilibrium, whereas real data could carry footprints from non-equilibrium 
demographic processes (e.g. secondary contact) (Hey, 2010). Third, there could be considerable 

https://doi.org/10.7554/eLife.78135
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population structure within each species contributing to elevated ‍FST ‍ but not necessarily to rate-
divergence. This effect could be seen in simulated stepping-stone models (Figure 6—figure supple-
ment 3) and will underestimate the level of rate divergence. Fourth, substitution is stochastic across 
the genome, and accurately estimating observed rate ratio ‍r‍ relies on averaging substitution numbers 
across a large number of sites. This poses a problem if sites linked to high ‍FST ‍ regions are rare (i.e. few 
genomic islands). Lastly, as the theory is built upon the neutral coalescent, it is best suited for studying 
behaviors of neutral sites.

Nonetheless, the monotonic relationship between ‍r‍ and ‍FST ‍ (i.e. larger sequence divergence is 
associated with more asymmetric substitution rates) might be qualitatively robust regardless of the 
aforementioned caveats. For instance, even for hybrid zones formed by recent secondary contact, 
reducing the absolute rate of gene flow by barrier loci in principle also keeps divergent rates from 
mixing, simply because it prevents substitutions accumulated in the allopatric phase from flowing 
between species.

In conclusion, our study characterizes several genomic consequences of the rate-mixing process 
when molecular clocks tick at different speeds between hybridizing lineages. This process provides 
new information on reproductive isolation but also leads to pitfalls in interpreting results of popular 
introgression tests. As this phenomenon is neglected in most studies of hybridization and speciation, 
its full scope awaits further investigation in both theories and empirical systems.

Materials and methods
Museum specimens and climate data
Museum specimens with verifiable locality data of all species were gathered from The University 
Museum of The University of Tokyo (Harada et al., 2012; Yago et al., 2021), Global Biodiversity Infor-
mation Facility (The Global Biodiversity Information Facility, 2021b; The Global Biodiversity Infor-
mation Facility, 2021a), and individual collectors (Figure 2—source data 5). Records of P. maackii 
from Japan, Korea and NE China were excluded from the analysis, so that most P. maackii individuals 
correspond to ssp. han, the subspecies that hybridizes with P. syfanius. Spatial principal component 
analysis was performed on elevation, maximum temperature of warmest month, minimum tempera-
ture of coldest month, and annual precipitation, all with 30s resolution from WorldClim-2 (Fick and 
Hijmans, 2017). The first two PCAs, combined with tree cover (Hansen et al., 2013), were used in 
MaxEnt-3.4.1 to produce species distribution models that use known localities to predict occurrence 
probabilities across the entire landscape (Phillips et al., 2017). Outputs were trimmed near known 
boundaries of each species. See Figure 2—figure supplement 3 for the final result.

Sampling, re-sequencing, and mitochondrial phylogeny
Eleven males of P. syfanius and P. maackii, with one male of P. arcturus and one male of P. dialis were 
collected in the field between July and August in 2018 (Figure 2—source data 5), and were stored 
in RNAlater at –20 °C prior to DNA extraction. E.Z.N.A Tissue DNA kit was used to extract genomic 
DNA, and KAPA DNA HyperPlus 1/4 was used for library preparation, with an insert size of 350 bp 
and 2 PCR cycles. The library is sequenced on a Illumina NovaSeq machine with paired-end reads of 
150 bp. Adaptors were trimmed using Cutadapt-1.8.1, and subsequently the reads were mapped 
to the reference genome of P. bianor with BWA-0.7.15, then deduplicated and sorted via Picard-
Tools-2.9.0. The average coverage among 13 individuals in non-repetitive regions varies between 20× 
and 30×. Variants were called twice using BCFtools-1.9 – the first including all samples, used in analyses 
involving outgroups, and the second excluding P. arcturus and P. dialis, used in all other analyses. The 
following thresholds were used to filter variants: ‍10N <‍ DP ‍< 50N ‍, where ‍N ‍ is the sample size; QUAL > 
30; MQ > 40; MQ0F < 0.2. As a comparison, we also called variants with GATK4 and followed its best 
practices, and 93% of post-filtered SNPs called by GATK4 overlapped with those called by BCFtools. 
We used SNPs called by BCFtools throughout the analysis. Mitochondrial genomes were assembled 
from trimmed reads with NOVOPlasty-4.3.1 (Dierckxsens et al., 2017), using a published mitochon-
drial ND5 gene sequence of P. maackii as a bait (NCBI accession number: AB239823.1). We also 
used the following published mitochondrial genomes (NCBI accession numbers): KR822739.1 (Papilio 
glaucus), NC_029244.1 (Papilio xuthus), JN019809.1 (Papilio bianor). The neighbor-joining mitochon-
drial phylogeny was built with Geneious Prime-2021.2.2 (genetic distance model: Tamura-Nei), and 

https://doi.org/10.7554/eLife.78135


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Xiong et al. eLife 2022;11:e78135. DOI: https://doi.org/10.7554/eLife.78135 � 14 of 31

we used 104 replicates for bootstrapping. The reference genome of P. xuthus was previously aligned 
to the genome of P. bianor and we used this alignment directly in all analysis (Lu et al., 2019).

Calculating site-pattern asymmetry
Given a species tree {{P1,P2},O}, where P1 and P2 are sister species and O is an outgroup, if mutation 
rates are equal between {P1,P2}, and no gene flow with O, then on average the number of derived 
alleles in P1 should equal the number of derived alleles in P2. Let ‍S‍ be a collection of sites, ‍fs‍ be the 
frequency of a particular site pattern at site ‍s ∈ S‍. “ABB” be the pattern where only P2 and O share 
the same allele, and “BAB” be the pattern where only P1 and O share the same allele, then the three-
species ‍D3‍ statistic is calculated as

	﻿‍
DP1,P2,O =

∑
s∈S (fs,ABB − fs,BAB)∑
s∈S (fs,ABB + fs,BAB)

,
‍�

(8)

where ‍S‍ is always limited to sites without polymorphism in the outgroup O. This statistic is in prin-
ciple capturing the same source of asymmetry as the statistic proposed by Hahn and Hibbins, 2019, 
although their version uses divergence to the outgroup instead of frequencies of site-counts. Similarly, 
the four-species ‍D4‍ statistic, which considers species tree {{{P1,P2},O1},O2} and site patterns ABBA 
versus BABA (Durand et al., 2011) is calculated as

	﻿‍
DP1,P2,O1,O2 =

∑
s∈S (fs,ABBA − fs,BABA)∑
s∈S (fs,ABBA + fs,BABA)

,
‍�

(9)

where ‍S‍ is always limited to sites without polymorphism in the second outgroup O2. The significance 
of both tests was computed using block-jackknife over 1 Mb blocks across the genome. Additionally, 
we estimated rate ratio as follows. First we restricted to sites where all outgroups are fixed for the 
same ancestral allele to dampen the influence of recurrent mutation. Then, for each site, sample one 
allele at random from each focal lineage. Calculate the probability of observing a derived allele in 
P1 but not in P2, and the probability of observing a derived allele in P2 but not in P1. The rate ratio is 
computed as the ratio between the two probabilities. Explicitly, let ‍I(·)‍ be the identity function, and ‍fs‍ 
be the frequency of the derived allele, then:

	﻿‍
Rate ratio r =

∑
s∈S fs,P1 (1 − fs,P2 )Πi∈outgroupsI(fs,i = 0)∑
s∈S (1 − fs,P1 )fs,P2Πi∈outgroupsI(fs,i = 0) ‍�

(10)

Its standard error was estimated using 1 Mb block-jackknifing. We excluded P. xuthus from the 
outgroups to increase the number of informative sites when using this formula.

D3 and D4 under unequal substitution rates and recurrent mutations
In this section, we calculate observed ‍D3‍ and ‍D4‍ assuming that incomplete lineage sorting contributes 
insignificantly to both statistics. If incomplete lineage sorting is present, it will not create new bias 
(numerators are on average unchanged), but will likely dampen existing bias (inflating denominators).

As substitutions are independent along each lineage, we can mute recurrent mutations in outgroups 
and generate them afterwards. For three taxa with gene tree {{P1,P2},O1}, before recurrent mutations, 
there are ‍n1‍ sites with pattern (B,A,A), and ‍n2‍ sites with pattern (A,B,A). If substitution rate is higher in 
P2, we have ‍n2 > n1‍, so the true value of ‍D3‍, written as ‍̂D3‍, is always negative:

	﻿‍
D̂3 =

n1 − n2

n1 + n2
< 0

‍�
(11)

Next, recurrent mutations in O1 occur at each site with an average probability ‍p1‍, and with an 
average probability ‍c‍, ancestral alleles from affected sites in O1 are converted to the same derived 
allele in {P1,P2}. ‍c‍ will be independent of ‍n1‍ and ‍n2‍, as long as substitutions between {P1,P2} are only 
different in rates, but not mutation types. Hence, two possible mutation paths exist:

	﻿‍

(A, B, B) p1−→ (A, B, ·) c−→ (A, B, A) ≡ (B, A, B)

(B, A, B) p1−→ (B, A, ·) c−→ (B, A, A) ≡ (A, B, B)‍�
(12)

https://doi.org/10.7554/eLife.78135
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The expected site counts, after recurrent mutations, become

	﻿‍

⟨nABB⟩ = (1 − p1)n1 + cp1n2

⟨nBAB⟩ = (1 − p1)n2 + cp1n1‍�
(13)

Using the new expected site counts in ‍D3‍ statistics produce the following value:

	﻿‍
D3 =

1 − (c + 1)p1

1 + (c − 1)p1
D̂3 ≈ (1 − 2cp1)D̂3

‍�
(14)

Since ‍̂D3‍ is negative, it grows approximately linearly near small values of ‍p1‍. (The full equation is 
still monotonic in ‍p1‍.)

Similarly, for four-taxon statistics, before recurrent mutation, there are two types of sites: (A,B,B,B)- 

‍n1‍; (B,A,B,B)- ‍n2‍. Suppose the average probability of recurrent mutation is ‍p1‍ in O1, and ‍p2‍ in O2, 
and the conversion probability of each recurrent mutation into derived alleles of {P1, P2} is ‍c‍ for both 
outgroups. Using the same procedure, one can show that

	﻿‍
D4 =

p2 − p1

p2 + p1
D̂3

‍�
(15)

Since recurrent mutations occur more frequently in distant outgroups, ‍p2 > p1‍. Because ‍̂D3‍ is nega-
tive, we have ‍D4 < 0‍.

Local gene trees
Local gene trees were estimated using iqtree-2.0 (Minh et  al., 2020) on 50  kb non-overlapping 
genomic windows with options -m MFP -B 5000. Only SNPs from annotated regions (synonymous 
sites +nonsynonymous sites +introns) across all individuals were used. For diploid individuals, hetero-
zygous sites were assigned IUPAC ambiguity codes and iqtree assigned equal likelihood for each 
underlying character, thus information from heterozygous sites is largely retained. This is crucial as we 
are interested in the branch length of inferred trees. Option -m MFP implements iqtree’s ModelFinder 
that tests the FreeRate model to accommodate maximum flexibility with rate-variation among sites 
(Kalyaanamoorthy et  al., 2017). We also used UltraFast Bootstrap to calculate the support for 
different types of splits in each window (the -B 5000 option; Hoang et al., 2018). In each window, 
we extracted the support for monophyly among P. maackii +P.syfanius directly from the output of 
UltraFast Bootstrap, and we define the support for paraphyly among P. maackii +P.syfanius as (100 - 
the support for monophyly). For each level of support, we filtered out genomic windows where both 
the support for monophyly and the support for paraphyly drop below the given level. The remaining 
windows were considered informative.

Rate-mixing under the equilibrium IM model
We construct a continuous-time coalescent model as follows. Both populations have ‍N ‍ haploid 
individuals, gene flow rate is ‍m‍, and coalescent rate is ‍N−1‍ in each population. In the equilib-
rium system, as we track both haploid individuals backward in time, there are six distinct states: 

‍(1|2), (2|1), (1, 2|), (|1, 2), (0|), (|0)‍, where 1 and 2 represent two individuals prior to coalescent, 0 is the 
state of coalescent, and ‍(·|·)‍ shows the location of each lineage. Its transition density ‍p(t)‍ satisfies 

‍∂tp = Ap‍, where ‍A‍ is given as

	﻿‍




−2m 0 m m 0 0

0 −2m m m 0 0

m m −2m − 1
N 0 0 0

m m 0 −2m − 1
N 0 0

0 0 1
N 0 −m m

0 0 0 1
N m −m




‍�

(16)

Let ‍Si|j(T)‍ be the mean sojourn time of an uncoalesced individual inside population ‍‍ during 

‍0 ≤ t ≤ T ‍, conditioning on the individual being taken from population ‍j‍ at ‍t = 0‍. Assuming the 

https://doi.org/10.7554/eLife.78135
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infinite-site mutation model, let ‍µi‍ be the substitution rate in population ‍‍, observed rate ratio ‍r‍ is thus 

	﻿‍
r =

µ2S2|2(∞) + µ1S1|2(∞)
µ1S1|1(∞) + µ2S2|1(∞)‍�

(17)

where (due to symmetry)

	﻿‍

S1|1(∞) = S2|2(∞) =
´ +∞

0 (1, 0, 0, 1, 0, 0)eAt(1, 0, 0, 0, 0, 0)Tdt = 1+2Nm
2m

S2|1(∞) = S1|2(∞) =
´ +∞

0 (0, 1, 1, 0, 0, 0)eAt(1, 0, 0, 0, 0, 0)Tdt = N ‍�
(18)

Let ‍r0 = µ2/µ1‍, and since ‍FST = (1 + 4Nm)−1
‍, we have 

	﻿‍
r =

1 + r0 + FST(r0 − 1)
1 + r0 − FST(r0 − 1)‍�

(19)

Local ancestry estimation
Software ELAI (Guan, 2014) with a double-layer HMM model was used to estimate diploid local 
ancestries across chromosomes. An example command is as follows: elai-lin -g ​genotype.​maackii.​txt 
-p 10 -g ​genotype.​syfanius.​txt -p 11 -g ​genotype.​admixed.​txt -p 1 -pos ​position.​txt -s 30 -C 2 -c 10 
-mg 5000 --exclude-nopos.

Note that -mg specifies the resolution of ancestry blocks, thus increasing its value will increase the 
stochastic error of incorrectly inferring very short blocks of ancestry. To control for uncertainty, we 
estimated repeatedly for 50 times. All replicates were used simultaneously in finding the correlation 
coefficients between entropy and other variables. Results from an example run is in Figure 3—figure 
supplement 1.

Ancestry and entropy
Here we introduce concisely the data transformation framework for calculating the entropy of local 
ancestry. The mathematical detail of this approach is presented in the appendix.

Ancestry representation
The space of all ancestry signals is high-dimensional, and directly calculating the entropy in this space 
is not feasible with just a few individuals. So we propose to measure only the pairwise correlation 
of ancestries among sites, which captures only the second-order randomness, but is sufficient for 
practical purposes. Consider a hybrid individual with two parental populations indexed by ‍k = 1, 2‍. 
Assuming a continuous genome, let ‍pk(l) = 0, 1

2 , 1‍ be the diploid ancestry of locus ‍l‍ within genomic 
interval ‍[0, L]‍. By definition, we have ‍p1(l) + p2(l) = 1‍, that is the total ancestry is conserved every-
where in the genome. The bi-ancestry signal at locus ‍l‍ is defined as the following complex variable 

	﻿‍ z(l) =
√

p1(l) + i
√

p2(l) = ei arccos
√

p1(l),‍� (20)

where ‍i =
√
−1‍ is the imaginary number. An advantage of using a complex representation for the 

bi-ancestry signal is that we can model different ancestries along the genome as different phases of a 
complex unit phasor (‍eiθ‍), such that the power of the signal at any given locus is simply the sum of both 
ancestries, which is conserved (‍|z(l)|2 = 1‍). It ensures that we do not bias the analysis to any particular 
region or any particular individual when decomposing the signal into its spectral components.

Within-individual spectral entropy (‍Sw‍)
To characterize the average autocorrelation along an ancestry signal at a given scale ‍l‍, define the 
following scale-dependent autocorrelation function

	﻿‍ A(l) = Re[ 1
L
´ L

0 z(ξ)z(ξ + l) dξ],‍� (21)

https://doi.org/10.7554/eLife.78135
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where ‍z(l)‍ is understood as a periodic function such that ‍z(ξ + l) = z(ξ + l − L)‍ whenever the position 
goes outside of ‍[0, L]‍. The Wiener-Khinchin theorem guarantees that ‍z(l)‍’s power spectrum ‍ζ(f)‍, which 
is discrete, and the autocorrelation function ‍A(l)‍ form a Fourier-transform pair. Due to the uncertainty 
principle of Fourier transform, ‍A(l)‍ that vanishes quickly at short distances (small-scale autocorrelation) 
will produce a wide ‍ζ(f)‍, and vice versa. So the entropy ‍Sw‍ of ‍ζ(f)‍, which measures the spread of the 
total ancestry into each spectral component, also measures the scale of autocorrelation. In practice, 

‍ζ(f)‍ is the square modulus of the Fourier series coefficients of ‍z(l)‍, and we fold the spectrum around 

‍f = 0‍ before calculating the within-individual entropy ‍Sw‍. The formula used in the manuscript is

	﻿‍

Sw = −
∑+∞

n=0 ζn ln ζn

ζn =




|Zn|2 + |Z−n|2 (n > 0)

|Z0|2 (n = 0) ‍�

(22)

where ‍Zn‍ are the Fourier coefficients from the expansion ‍z(l) =
∑+∞

n=−∞ Znei2πnl/L
‍. To speed up the 

Fourier expansion, we could densely pack equally-spaced markers that sample a continuous ancestry 
signal into a discrete signal, which then undergoes Fast Fourier Transform (FFT). The spectrum of FFT 
(discrete and finite) approximates the continuous-time Fourier spectrum (discrete and infinite), and 
entropy also converges as marker density increases.

Between-individual spectral entropy (‍Sb‍)
As ancestry configuration is far from random around barrier loci, it will also influence the correlation of 
ancestry between different individuals at the same locus. For a genomic region experiencing strong 
barrier effects, two individuals could either be very similar in ancestry, or very different. This effect can 
be quantified by first calculating the cross-correlation ‍Cj,j′ (l) = zj(l)zj′ (l)‍ at position ‍l‍ between individ-

uals ‍j‍ and ‍j′‍, and then averaging across a genome interval: ‍cj,j′ = 1
L
´ L

0 Cj,j′ (l) dl‍. The ‍J × J ‍ dimensional 
matrix ‍C‍ with entries ‍cj,j′‍ describes the pairwise cross-correlation within the cohort of ‍J ‍ individuals. 
We also have ‍cj,j ≡ 1‍ as each individual is perfectly correlated with itself. The matrix ‍C‍ is Hermitian, 
so it has a real spectral decomposition with eigenvalues ‍λj‍ that satisfy ‍

∑
j λj/J = 1‍. This process is 

very similar to performing a principal component analysis on the entire cohort of individuals, and ‍λj/J ‍ 
describes the fraction of the total ancestry projected onto principal component ‍j‍. If many loci co-vary 
in ancestry, the spectrum ‍{λj}‍ will be concentrated near the first few components. Similarly, we use 
entropy to measure the spread of the spectrum, and hence the between-individual spectral entropy 
is defined as

	﻿‍ Sb = −
∑

j
λj
J ln λj

J ‍� (23)
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Xiong T, Mallet J 2022 Hybridization between 
Papilio syfanius and Papilio 
maackii

https://www.​ncbi.​
nlm.​nih.​gov/​sra/​
PRJNA765117

NCBI Sequence Read 
Archive, PRJNA765117

Xiong T 2022 Database for the code used 
in the 2021 manuscript on 
the hybrid zone between 
Papilio syfanius and Papilio 
maackii

https://​github.​
com/​tzxiong/​2021_​
Maackii_​Syfanius_​
HybridZone

GitHub, 2021_Maackii_
Syfanius_HybridZone

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Lu S, Yang J, Dai X, 
Xie F, He J, Dong Z, 
Mao J, Liu G, Chang 
Z, Zhao R, Wan W, 
Zhang R, Li Y, Wang 
W LX

2019 Supporting data for 
"Chromosomal-level 
reference genome of 
Chinese peacock butterfly 
(Papilio bianor) based on 
third-generation DNA 
sequencing and Hi-C 
analysis"

http://​dx.​doi.​org/​10.​
5524/​100653

GigaDB Datasets, 
10.5524/100653
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Appendix 1 

Representation of ancestry on a hybrid chromosome
The ancestry of a hybrid depends on the pure reference populations. The following assumptions are 
used throughout this section:

•	 There are a finite number of pure reference populations indexed by ‍k ∈ {1, 2, · · · , K}‍. In most 
cases, we are only interested in ‍K = 2‍, for instance, a hybrid zone between two lineages.

•	 The chromosome has so many sites so that it can be treated as a contiguous rod with length 
‍L‍. ‍l ∈ [0, L]‍ is the index of positions on a chromosome.

•	 The species’ ploidy is ‍np‍ (completely phased data ⇔ ‍np = 1‍). When not specified, we assume 
the data is unphased, so that the ancestry on a particular chromosome always refers to the 
ancestry on a collection of ‍np‍ homologous chromosomes.

•	 Ancestry can be inferred. In practice, regions with low density of informative SNPs will make 
inference difficult.

As "ancestry" is a categorical variable (i.e., there is no intrinsic order among the reference populations), 
to quantify the correlation of ancestry along a chromosome, we need to map the contribution of 
each ancestry category to some numeric value that can be used to calculate correlation.

The first choice is to use the probability of each category. For unphased data, let ‍pk(l)‍ be 
the fraction of the ‍np‍-ploid chromosome at position ‍l‍ coming from reference population ‍k‍. The 
vector-valued function ‍p(l) = (p1(l), p2(l), · · · , pK(l))⊤‍ completely describes the ancestry on a single 
chromosome. By definition, ‍

∑
k pk(l) ≡ 1‍. This is the conservation of total ancestry at any position. 

However, by this representation, the correlation ‍p⊤(l1)p(l2)‍, which is the product of ancestries at 
different positions, will have units of the square of probabilities. If a locus is to be compared with 
itself, then the correlation will be

	﻿‍
p⊤(l)p(l) =

∑
k

p2
k(l) ≤ 1

‍�
(24)

Ideally, we want the correlation of ancestry of a locus with itself to be the same regardless of 
its ancestry configuration. Equation (24) does not meet this criteria as it depends on ‍p‍. Here we 
borrow some concepts from signal-processing theory. The conservation of total ancestry means that 
ancestry is more analogous to the "energy" of a signal, which is in units of [squared-signal], rather 
than the signal itself. Therefore, we could instead define a second type of ancestry representation 
by taking the square roots of probabilities.

Definition 1 (Spherical representation of ancestry)
If the probability representation of ancestry is ‍p(l)‍, then the spherical representation ‍y(l)‍ takes the 
square-root of each element of ‍p(l)‍:

	﻿‍ y(l) = (
√

p1(l),
√

p2(l), · · · ,
√

pK(l))⊤‍� (25)

Following this representation, the autocorrelation between two spherical ancestries becomes a 
natural measure of the similarity between two probability distributions:

Definition 2 (Correlation between two spherical ancestries)
The autocorrelation function between ‍y(l1)‍ and ‍y(l2)‍ is the following quantity known as the 
Bhattacharyya coefficient, also known as the fidelity measure in information theory:

	﻿‍ A(l1, l2) = y⊤(l1)y(l2) =
∑

k
√

yk(l1)yk(l2) ∈ [0, 1]‍� (26)

Further, self-correlation is always 1:

	﻿‍ A(l, l) = y⊤(l)y(l) =
∑

k pk(l) ≡ 1‍� (27)

The conservation of self-correlation will be important when we decompose ancestry into its 
spectral components, as it will not bias our analysis to any particular region of the chromosome. 

https://doi.org/10.7554/eLife.78135


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Xiong et al. eLife 2022;11:e78135. DOI: https://doi.org/10.7554/eLife.78135 � 24 of 31

There is also a geometric meaning associated with this representation. Since ‍y(l)‍ has a ‍L2‍-norm of 1, 
each ancestry configuration corresponds to a point on the unit sphere in ‍RK ‍, and different ancestries 
are represented by the orientation of this vector in ‍RK ‍.

In many studies we are dealing only with two reference populations, such as hybrid zones between 
a pair of divergent lineages. This situation allows a more compact representation of ancestry using 
complex numbers:

Definition 3 (Complex representation of ancestry)
If ‍K = 2‍, define the following complex variable ‍z(l)‍ as the representation of ancestries: 

	﻿‍ z(l) =
√

p1(l) + i
√

p2(l)‍� (28)

where ‍i =
√
−1‍ is the imaginary number.

This seemingly artificial definition is not the first time that a complex number is used to model 
a physical phenomenon. In quantumn mechanics, the quantumn wave function of a particle is 
represented by a complex wave with the probability of occurrence measured by the square-modulus 
of the wave. Here, we are also using the square-modulus of ‍z(l)‍ to represent the total ancestry of a 
given locus.

A complex-valued signal ‍z(l)‍, like any real signal, has the definition of autocorrelation:

Definition 4 (Correlation between two complex ancestries)
The correlation between two complex ancestries ‍z(l1)‍ and ‍z(l2)‍ is the following product:

	﻿‍

A(l1, l2) = z(l1)z(l2)

=
√

p1(l1)p1(l2) +
√

p2(l1)p2(l2) + i(
√

p2(l1)p1(l2) −
√

p1(l1)p2(l2))‍�
(29)

By this definition, the real part ‍Re[A(l1, l2)]‍ of the autocorrelation is just the Bhattacharyya 
coefficient between two ancestry configurations on l1 and l2, which is a measure of similarity. The 
absolute value of the imaginary part of the autocorrelation ‍|Im[A(l1, l2)]|‍ measures the volume of the 
parallelogram spanned by vectors ‍y(l1)‍ and ‍y(l2)‍, thus it is a measure of dissimilarity. Further, the self-
correlation ‍A(l, l)‍ is also conserved for all ‍l‍, as ‍Im[A(l, l)] ≡ 0‍ and ‍Re[A(l, l)] ≡ 1‍.

The complex representation possesses some useful properties not shared with the spherical 
representation, but it also limits our analysis to cases with only two reference populations. This will 
not pose a problem for the study of hybrid zones between a pair of parapatric lineages.

Mean autocorrelation vs. hybrid index
The hybrid index is defined as the average ancestry in a hybrid from a given reference population 
over a set of loci. It is usually calculated for each individual or for each chromosome. In our notation:

Definition 5 (Hybrid index)
The hybrid index over a given genomic interval ‍[0, L]‍ for reference population ‍k‍ is 

	﻿‍ hk = 1
L
´ L

0 pk(l) dl‍� (30)

In contrast, the average of the spherical or the complex representation provides information 
about autocorrelation within the chromosome instead of the mean ancestry.

Theorem 1 (Mean autocorrelation)
With the spherical or the complex representation, the squared ‍L2‍-norm (or the 
squared modulus, when a complex representation is available) of the average signal 
represents the mean autocorrelation of the ancestry on the genomic interval ‍[0, L]‍. 

	﻿‍
a := 1

L2

˜
[0,L]2 A(l1, l2) dl1 dl2 =

∥∥∥ 1
L
´ L

0 y(l) dl
∥∥∥

2
=
∣∣∣ 1

L
´ L

0 z(l) dl
∣∣∣
2

‍� (31)
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Proof. For a general spherical representation ‍y(l)‍, we have

	﻿‍

��� 1
L
´ L

0 y(l)dl
���

2
= 1

L2

∑
k

(´ L
0
√

pk(l)dl
)

= 1
L2

∑
k
´ L

0
√

pk(l1)dl1
´ L

0
√

pk(l2)dl2

= 1
L2

˜
[0,1]2

∑
k
√

pk(l1)pk(l2) dl1 dl2 = 1
L2

˜
[0,L]2 A(l1, l2) dl1 dl2‍�

For a complex representation ‍z(l)‍, notice that ‍A(l1, l2) = A(l2, l1)‍, so

	﻿‍
1
L2

˜
[0,L]2 A(l1, l2) dl1 dl2 = 1

L2

˜
[0,L]2 ReA(l1, l2) dl1 dl2 = 1

L2

˜
[0,1]2

∑
k=1,2

√
pk(l1)pk(l2) dl1 dl2‍�

This guarantees that the mean autocorrelation when using a complex representation is the same 
as the mean autocorrelation when using a spherical representation with ‍K = 2‍. Additionally,

	﻿‍

∣∣∣∣∣
1
L

ˆ L

0
z(l)dl

∣∣∣∣∣
2

= 1
L2

ˆ L

0
z(l1)dl1

ˆ L

0
z(l2)dl2 = 1

L2

¨

[0,L]2
z(l1)z(l2)dl1dl2 = 1

L2

¨

[0,L]2
A(l1, l2)dl1dl2

‍�

This completes the proof.
The quantity ‍a‍ is a measure of the average similarity of the ancestry configurations. It does not 

consider the genomic position of different ancestry configurations, so it does not contain information 
about whether similar ancestry configurations are clustered together.

The entropy of ancestry
To characterize the scale of correlation, the distance between loci is important because correlation 
often drops while distance between loci increases. The information about the spatial scale of 
correlation is retained when the full spectrum of correlation is considered within a single individual.

A second source of correlation arises when we consider the relationship between individuals. 
To convey the main idea, let’s compare between a set of ancestry signals from an inversion and a 
set of ancestry signals from a regular region subject to normal recombination. For the inversion, 
since recombination between chromosomes of different ancestry is often completely suppressed, 
the ancestry signal along the inversion will be close to constant. When two haploid individuals 
are compared at the inverted region, they are either different everywhere in terms of ancestry, 
or completely the same. Comparing between diploid individuals is similar, although the difference 
is more fine-grained due to the presence of the heterozygotes. However, in a collinear region 
subject to a regular rate of recombination, any ancestry signal will switch stochastically between 
states. In the latter case, the similarity between two ancestry signals will be similar across multiple 
pairwise comparisons. It will be helpful to think in the principal component (PC) space spanned by all 
individuals’ ancestry signals. Ancestry signals from an inversion will form several tight clusters in the 
PC space, while those from a regular region will form a single cloud with a larger dispersion.

Both sources of correlation, and hence both types of randomness, can be measured using entropy 
in information theory.

Definition 6 (Shannon entropy)
The Shannon entropy for a discrete probability distribution ‍{pj}‍, ‍j ∈ Z‍, is defined as

	﻿‍ S({pj}) = −
∑

j∈Z pj ln pj‍� (32)

For a continuous distribution with probability density function ‍p(x)‍, ‍x ∈ R‍, the Shannon differential 
entropy is defined as

	﻿‍
S(p(x)) = −

ˆ

R
p(x) ln p(x) dx

‍�
(33)

For any nonnegative series ‍{pj}‍ or nonnegative function ‍p(x)‍, suppose they converge upon 
summation/integration, we use the same notations ‍S({pj})‍ and ‍S(p(x))‍ to denote the entropy after 
they are appropriately normalized to probability distributions.
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Shannon entropy (or any other entropy measure) is a useful measure of the spread of a distribution 
over its entire configuration space. When the distribution is concentrated (low randomness, high 
certainty), ‍S‍ will be low. ‍S = 0‍ if and only if ‍pj = 1‍ for some ‍j‍.

Entropy associated with the correlation within a single individual
Definition 7 (Fourier spectrum of the spherical representation)
For the spherical representation of ancestry on genomic interval  ‍[0, L]‍

	﻿‍ y(l) = (
√

p1(l),
√

p2(l), · · · ,
√

pK(l))⊤,‍�

expand each component into its Fourier series:

	﻿‍

√
pk(l) =

+∞∑
n=−∞

p̂k,nei 2π
L nl

‍�

The folded Fourier spectrum is defined as

	﻿‍

ζn =




2
∑K

k=1 |p̂k,n|2 (n > 0)
∑K

k=1 |p̂k,0|2 (n = 0) ‍�
(34)

Definition 8 (Fourier spectrum of the complex representation)
For the complex representation of ancestry on genomic interval‍[0, L]‍

	﻿‍ z(l) =
√

p1(l) + i
√

p2(l),‍�

expand ‍z(l)‍ into its Fourier series:

	﻿‍
z(l) =

+∞∑
n=−∞

Znei 2π
L nl

‍�

The folded Fourier spectrum is defined as

	﻿‍

ζn =




|Zn|2 + |Z−n|2 (n > 0)

|Z0|2 (n = 0) ‍�
(35)

The following theorem guarantees that the folded spectrum ‍ζn‍ is the same for bi-ancestry signals 
using either representation.

Theorem 2
When ‍K = 2‍, the folded Fourier spectrum ‍ζn‍ is the same for ‍y(l) = (

√
p1(l),

√
p2(l))⊤‍ and 

‍z(l) =
√

p1(l) + i
√

p2(l)‍.
Proof. Expand each component into its Fourier series:

	﻿‍

√
p1(l) =

+∞∑
n=−∞

p̂1,nei 2π
L nl

√
p2(l) =

+∞∑
n=−∞

p̂2,nei 2π
L nl

‍�

The folded spectrum using the spherical representation is

	﻿‍

ζn =




2|p̂1,n|2 + 2|p̂2,n|2 (n > 0)

|p̂1,0|2 + |p̂2,0|2 (n = 0) ‍�

Using the linearity of Fourier expansion, we have

	﻿‍ Zn = p̂1,n + ip̂2,n‍�
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Thus,

	﻿‍

ZnZn = (p̂1,n + ip̂2,n)(p̂1,n − ip̂2,n) = p̂1,np̂1,n + p̂2,np̂2,n + ip̂2,np̂1,n − ip̂1,np̂2,n

= p̂1,np̂1,n + p̂2,np̂2,n − 2Im(p̂2,np̂1,n) ‍�

Since the Fourier coefficients of a real function at opposite frequencies are complex conjugates to 
each other, we have

	﻿‍ Z−nZ−n = p̂1,−np̂1,−n + p̂2,−np̂2,−n − 2Im(p̂2,−np̂1,−n) = p̂1,np̂1,n + p̂2,np̂2,n − 2Im(p̂2,np̂1,n)‍�

Finally,

	﻿‍ |Zn|2 + |Z−n|2 = ZnZn + Z−nZ−n = 2p̂1,np̂1,n + 2p̂2,np̂2,n − 2Im(p̂2,np̂1,n + p̂2,np̂1,n)‍�

Since ‍̂p2,np̂1,n + p̂2,np̂1,n‍ is real, the last term of the previous equation becomes zero. For the zero-th 
component ‍ζ0‍, as both ‍̂p1,0‍ and ‍̂p2,0‍ are real, there is no difference between the two representations. 
This completes the proof.

A nice property of the Fourier spectrum ‍ζn‍ is that it can be interpreted as a probability distribution 
of ancestry among different frequency components. By Parseval’s theorem, it is easy to verify that 

‍
∑

n ζn = 1
L
´ L

0 (
∑

k pk(l)) dl = 1‍. From the Wiener-Khinchin theorem, the unfolded spectrum forms a 
Fourier transform pair with the autocorrelation function of the original signal. The significance of the 
Wiener-Khinchin theorem is that information about the autocorrelation of the original signal can now 
be extracted from the Fourier spectrum ‍ζn‍.

Definition 9 (Within-individual entropy)
Let ‍Sw = −

∑
n ζn ln ζn‍. ‍Sw‍ is the Shannon entropy of the folded Fourier spectrum ‍ζn‍. As ‍Sw‍ captures 

the correlation structure within each individual, we also call it the within-individual entropy.
Formally, we have the following uncertainty principle relating the within-individual entropy to the 

scale of autocorrelation.

Theorem 3 (Entropic uncertainty)
Let ‍A(l) = 1

L
´ L

0 y⊤(x)y(x + l) dx‍ be the average autocorrelation at scale ‍l‍ (‍0 ≤ l ≤ L‍) for the spherical 
ancestry. Here, ‍y‍ is understood as a periodic function of period ‍L‍. The following inequality holds:

	﻿‍
Sw = S({ζn}) ≥

´ L
0

A2(l)
Q ln A2(l)

Q dl +
(

1
L
´ L

0 A(l) dl − 1
)

ln 2 + ln L
‍� (36)

where ‍Q =
´ L

0 A2(l) dl‍ is a normalization factor. Note that the right-hand-side of the inequality is 
invariant under linearly re-scaling ‍A(l)‍ to a different interval ‍[0, L′]‍. Thus, we can also write the 
inequality compactly, supposing ‍A(l)‍ has been rescaled to ‍[0, 2]‍, as

	﻿‍ Sw ≥ −S(A2(l)) + a ln 2,‍� (37)

where ‍a‍ is the average autocorrelation defined in Equation 31.
Proof. (i) In this part, we establish the Wiener-Khinchin relation that ‍A(l)‍ expands into a Fourier 

series with coefficients ‍ηn =
∑K

k=1 |p̂k,n|2‍:

	﻿‍
A(l) =

∑+∞
n=−∞

K∑
k=1

|p̂k,n|2ei 2π
L nl

‍�
(38)

The derivation is as follows:

	﻿‍

A(l) = 1
L
´ L

0

K∑
K=1

yk(x)yk(x + 1)dx =
K∑

K=1

1
L
´ L

0

(
+∞∑

n=−∞
P̂k,nei 2π

L nx

)(
+∞∑

n=−∞
P̂k,nei 2π

L n(x+1)
)

dx

=
K∑

K=1

+∞∑
n=−∞

ei 2π
L nl 1

L
´ L

0 P̂k,nP̂k,−ndx =
+∞∑

n=−∞

K∑
K=1

���P̂k,n

���
2

ei 2π
L nl =

+∞∑
n=−∞

ηnei 2π
L nl

‍� (39)
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(ii) Let ‍
´ L

0 A2(l) dl = Q‍. It is obvious that ‍{ηn/
√

Q}‍ are Fourier series coefficients of ‍A(l)/
√

Q‍, they obey 
the Hausdorff-Young inequality

	﻿‍

( +∞∑
n=−∞

���ηn/
√

Q
���
q′
) 1

q′

≤

(ˆ 1

0

���A(xL)/
√

Q/L
���
q

dx

) 1
q

,
‍�

(40)

where ‍q ∈ (1, 2)‍ and ‍1/q′ + 1/q = 1‍. Let 
‍
ϕ(q) =

(´ 1
0
��A(xL)/

√
Q/L

��q dx
) 1

q −

(
+∞∑

n=−∞

��ηn/
√

Q
��q′

) 1
q′

‍
. Since 

Fourier series preserve the 2-norm, ‍ϕ(2) = 0‍, and since ‍ϕ(q) ≥ 0‍ for ‍q ∈ (1, 2)‍, we have ‍ϕ
′(2) ≤ 0‍. This 

translates into

	﻿‍

(´ 1
0
��A(xL)/

√
Q/L

��2 dx
) 1

2
{
− 1

4 ln
´ 1

0
��A(xL)/

√
Q/L

��2 dx

+ 1
2

´ 1
0

��A(xL)/
√

Q/L
��2 ln

��A(xL)/
√

Q/L
�� dx´ 1

0

��A(xL)/
√

Q/L
��2 dx

}

−

(
+∞∑

n=−∞

��ηn/
√

Q
��2
) 1

2




1
4 ln

+∞∑
−∞

��ηn/
√

Q
��2 − 1

2

+∞∑
n=−∞

��ηn/
√

Q
��2 ln

��ηn/
√

Q
��

+∞∑
n=−∞

��ηn/
√

Q
��2




≤ 0,

‍�

(41)

which yields

	﻿‍
S({η2

n}) = −
+∞∑

n=−∞

η2
n

Q
ln η2

n
Q

≥
ˆ L

0

A2(l)
Q

ln A2(l)
Q

dl + ln L
‍�

(42)

Note that the quantity ‍
´ L

0
A2(l)

Q ln A2(l)
Q dl + ln L‍ is actually independent of ‍L‍ upon re-scaling.

(iii) Next, we show that ‍S({ηn}) ≥ S({η2
n})‍. Since ‍

∑
n ηn = 1‍ and ‍ηn‍ is nonnegative, we can always 

re-order them into a descending series ‍̂ηn‍ (‍n ≥ 0‍) with the same entropy as ‍S({ηn})‍ (because entropy 
is permutation-invariant). The result follows as long as ‍S({η̂n}) ≥ S({η̂2

n})‍. Let ‍βn = η̂n+1/η̂n ≤ 1‍. The 
two series, after normalization, can be written as

	﻿‍

{η̂n} = η̂0, η̂0β0, η̂0β0β1, η̂0β0β1β2, · · ·

{η̂2
n /Q} = η̂2

0
Q , η̂2

0
Q β2

0 , η̂2
0

Q β2
0β

2
1 , η̂2

0
Q β2

0β
2
1β

2
2 , · · ·‍�

(43)

Consequently,

	﻿‍ η̂0(1 + β0 + β0β1 + · · · ) = η̂2
0

Q (1 + β2
0 + β2

0β
2
1 + · · · ) = 1‍� (44)

This implies that ‍̂η0 ≤ η̂2
0/Q‍. Suppose there exists ‍j ≥ 0‍ such that

	﻿‍ η̂0(1 + β0 + β0β1 + · · · + β0β1 · · ·βj) > η̂2
0

Q (1 + β2
0 + β2

0β
2
1 + · · · + β2

0β
2
1 · · ·β

2
j )‍� (45)

Then there exists ‍j′ ≤ j‍ such that ‍̂η0β0β1 · · ·βj′ > η̂2
0

Q β2
0β

2
1 · · ·β

2
j′‍. So for any ‍j ≥ j′‍, we have 

‍̂η0β0β1 · · ·βj > η̂2
0

Q β2
0β

2
1 · · ·β

2
j ‍. The difference

	﻿‍ ∆j = η̂0(1 + β0 + β0β1 + · · · + β0β1 · · ·βj) −
η̂2

0
Q (1 + β2

0 + β2
0β

2
1 + · · · + β2

0β
2
1 · · ·β

2
j )‍� (46)

will always be positive and monotonically increases for any ‍j ≥ j′‍. This is not consistent with the fact 
that ‍limj→∞ ∆j = 0‍. Thus, we conclude that for any ‍j‍, the partial sum follows the inequality

	﻿‍ η̂0(1 + β0 + β0β1 + · · · + β0β1 · · ·βj) ≤
η̂2

0
Q (1 + β2

0 + β2
0β

2
1 + · · · + β2

0β
2
1 · · ·β

2
j )‍� (47)

This is to say that infinite sequence ‍{η̂
2
0/Q}‍ majorizes ‍{η̂n}‍. By Theorem 2.2 of Li and Busch, 2013, 

‍S({η̂n}) ≥ S({η̂2
n})‍, and so  ‍S({ηn}) ≥ S({η2

n})‍
(iv) Finally, since ‍ζn = ηn + η−n = 2ηn‍ for ‍n ≥ 1‍, we have
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	﻿‍

S({ζn}) = −ζ0 ln ζ0 −
∑

n≥1 2ηn ln(2ηn)

= −ζ0 ln ζ0 −
∑

n≥1(ηn + η−n)(ln ηn + ln 2) = S({ηn}) − (1 − η0) ln 2,‍�
(48)

which is equivalent to

	﻿‍
S({ζn}) +

(
1 − 1

L

ˆ L

0
A(l) dl

)
ln 2 = S({ηn})

‍�
(49)

Combining previous four steps yields the result of the theorem.

Entropy associated with the correlation between individuals
Definition 10 (Entropy of a linear operator)
Let ‍L‍ be a compact self-adjoint linear operator on a Hilbert space ‍H‍. If ‍L‍ has a countable set of 
eigenvalues ‍{νi}‍, and is positive semidefinite, then define the entropy of ‍L‍ as

	﻿‍ S(L) := −
∑

i
νi

TrL ln νi
TrL ,‍� (50)

where ‍TrL =
∑

i νi‍ is the trace of the linear operator  ‍L‍

Definition 11 (Mercer’s spectrum)
Let ‍Aj(l1, l2)‍ be the autocorrelation function for individual ‍j (1 ≤ j ≤ J)‍, and define the average 
autocorrelation function as

	﻿‍ ⟨A⟩(l1, l2) = 1
J
∑

j Aj(l1, l2).‍�

Since ‍Aj‍ is Hermitian, the average ‍⟨A⟩‍ is also Hermitian, thus the integral operator ‍I⟨A⟩‍ defined by 

‍I⟨A⟩ϕ(l) =
´ L

0 ⟨A⟩(l, s)ϕ(s) ds‍ has a series of real eigenvalues ‍{νj}‍ satisfying ‍
∑

j νj = L‍. ‍νj‍ is the solution 
to the eigenvalue problem:

	﻿‍

ˆ L

0
⟨A⟩(l, s)ϕj(s) ds = νjϕj(l)

‍�
(51)

The spectrum defined by ‍{νj/L}‍ is the Mercer’s spectrum.

Definition 12 (Cross-correlation spectrum)
Let the cross-correlation matrix be 

‍C = {cj,j′}J×J ‍, where ‍cj,j′‍ is the average cross-correlation between individual ‍j‍ and ‍j′‍: 

	﻿‍

cj,j′ =




1
L
´ L

0 y⊤j (l)yj′ (l) dl (for the spherical representation)
1
L
´ L

0 zj(l)zj′ (l) dl (for the complex representation) ‍�
(52)

As ‍C‍ is Hermitian, it has a series of real eigenvalues ‍λj‍ satisfying ‍
∑

j λj = J ‍. Let the normalized 
spectrum of ‍C‍ be ‍{λj/J}‍, then ‍{λj/J}‍ is defined as the cross-correlation spectrum.

The following theorem states that when the complex representation is adopted for bi-ancestry 
signals, the Mercer’s spectrum coincides with the cross-correlation spectrum, so that even if the 
Mercer’s spectrum is calculated using correlation within individuals, both captures the correlation 
between individuals.

Theorem 4
If ‍{zj(l)}J

j=1‍ is a collection of complex bi-ancestry signals, then its Mercers’ spectrum is the same as its 
cross-correlation spectrum.

Proof. The average autocorrelation ‍⟨A⟩‍ is computed as

	﻿‍ ⟨A⟩(l1, l2) = 1
J
∑

j zj(l1)zj(l2)‍�
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So the integral equation (51) becomes

	﻿‍
1
J
∑

j zj(l)
´ L

0 zj(s)ϕ(s) ds = νϕ(l),‍�

where ‍(ν,ϕ)‍ forms the solution to the above equation. Rearranging the terms, we write

	﻿‍
ϕ(l) =

∑
j

[
ν−1

J
´ L

0 zj(s)ϕ(s) ds
]

zj(l) =
∑

j αjzj(l),‍�

where ‍αj‍ stands for the constant inside the bracket. Substituting into the original integral equation, 
we have

	﻿‍
1
J
∑

j zj(l)
´ L

0 zj(s)
∑

j′ αj′zj′ (s) ds = ν
∑

j αjzj(l),‍�

which is equivalent to

	﻿‍

∑
j


∑

j′
αj′

ˆ L

0
zj′ (s)zj(s) ds


 zj(l) = Jν

∑
j

αjzj(l)
‍�

Notice that the integral in the bracket contains the cross-correlation between ‍j′‍ and ‍j‍, so if the 
following relationship holds

	﻿‍
∑

j′ αj′
1
L
´ L

0 zj′ (s)zj(s) ds =
∑

j′ αj′cj,j′ = Jν
L αj‍�

then the system has a solution of ‍ν‍. The above equation is equivalent to

	﻿‍ Cα = Jν
L α ⇔ Cα = Jν

L α‍�

Which means that ‍Jν/L‍ is the eigenvalue of the cross-correlation matrix ‍C‍, and since ‍C‍ is a Hermitian 
matrix, the existence of its real eigenvalues is guaranteed. So for each ‍νi‍, we have ‍λj = Jνj/L‍, which 
is to say

	﻿‍
λj
J = νj

L , for ∀ i‍�

As both spectra coincide for the complex representation, we can define the between-individual 
entropy using either of them.

Definition 13 (Between-individual entropy of the complex representation)
For complex bi-ancestry signals, let ‍Sb := S(I⟨A⟩) = S(C)‍. ‍Sb‍ is the Shannon entropy characterizing the 
between-individual correlation.

Corollary 1 (Maximum ‍Sb‍).
For ‍J ‍ diploid individuals with the complex representation of ancestry, the largest attainable ‍Sb‍ is 

given by

	﻿‍

Sb,max = − (J−1)(1−c)
J ln 1−c

J − 1+(J−1)c
J ln 1+(J−1)c

J ,

≈ (1 − c) ln J − (1 − c) ln(1 − c) − c ln c (J ≫ 1)‍�
(53)

where ‍c = (3 + 2
√

2)/8‍.
Proof. For entropy to be large, autocorrelation within each individual must be very weak. This 

will occur if a sufficient amount of recombination has taken place such that the ancestry across the 
genome is largely independent between loci. The maximum value will occur when both parental 
lineages contribute equally to the hybrid ancestry, so that the hybrid index ‍h = 0.5‍. The heterozygosity 
‍H ‍ is then 0.5 following a random distribution of ancestries along the two genome copies. The off-
diagonal elements in the cross-correlation matrix ‍C‍ thus take the value

	﻿‍
c = 2 ×

(
1
2 +

√
2−1
2

1
2

)2
= 3+2

√
2

8 ‍�
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For a ‍J × J ‍ matrix whose diagonal elements are all 1, and whose off-diagonal elements are all ‍c‍, its 
normalized eigenvalues are given by ‍{

1+(J−1)c
J , 1−c

J , · · · , 1−c
J }‍, which leads to the above result.

Corollary 2 (Minimum ‍Sb‍). ‍Sb = 0‍ is the minimum between-individual entropy, and is attainable if 
recombination is completely suppressed in the genomic interval of interest.

Proof. If recombination is completely suppressed along ‍[0, L]‍, the ancestry signal is constant 
along the interval in any individual with any ploidy. Hence, ‍Aj ≡ 1‍, and ‍⟨A⟩ ≡ 1‍. The only non-zero 
eigenvalue associated with a constant integral kernel is ‍ν = L‍, so that we have ‍Sb = 0‍ using the 
Mercer’s spectrum. Note that the converse is not true, because the diploid ancestry signal is unaware 
of phase. A region completely heterozygous may in fact has a recombination break point, and the 
ancestry can flip phases when crossing the break point. However, this extreme situation is unlikely 
as it requires two separate recombination events to have occurred at precisely the same point and 
in opposite directions. If the hybrid zone is old, a long track of heterozygous ancestry is therefore 
usually good evidence for the presence of barrier loci.

https://doi.org/10.7554/eLife.78135
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