
Emerging Insights into the Impact of Air Pollution on Immune-
Mediated Asthma Pathogenesis

J. A. Tuazon1,2, B. Kilburg-Basnyat3, L. M. Oldfield4,5, R. Wiscovitch-Russo4, K. Dunigan-
Russell6, A. V. Fedulov7, K. J. Oestreich1,8, K. M. Gowdy6

1Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical 
Center, Columbus, OH 43210, USA

2Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA

3Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27858, 
USA

4Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD 20850, 
USA

5Department of Synthetic Genomics, Replay Holdings LLC, San Diego 92121, USA

6Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner 
Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210, USA

7Division of Surgical Research, Department of Surgery, Alpert Medical School, Brown University, 
Rhode Island Hospital, Providence, RI 02903, USA

8Pelotonia Institute for Immuno-Oncology, The Ohio State University, The James Comprehensive 
Cancer Center, Columbus, OH 43210, USA

Abstract

Purpose of Review—Increases in ambient levels of air pollutants have been linked to lung 

inflammation and remodeling, processes that lead to the development and exacerbation of allergic 

asthma. Conventional research has focused on the role of CD4+ T helper 2 (TH2) cells in 

the pathogenesis of air pollution-induced asthma. However, much work in the past decade has 

uncovered an array of air pollution-induced non-TH2 immune mechanisms that contribute to 

allergic airway inflammation and disease.

Recent Findings—In this article, we review current research demonstrating the connection 

between common air pollutants and their downstream effects on non-TH2 immune responses 

emerging as key players in asthma, including PRRs, ILCs, and non-TH2 T cell subsets. We also 
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discuss the proposed mechanisms by which air pollution increases immune-mediated asthma risk, 

including pre-existing genetic risk, epigenetic alterations in immune cells, and perturbation of the 

composition and function of the lung and gut microbiomes.

Summary—Together, these studies reveal the multifaceted impacts of various air pollutants on 

innate and adaptive immune functions via genetic, epigenetic, and microbiome-based mechanisms 

that facilitate the induction and worsening of asthma.

Keywords

Asthma; Air pollution; Epigenetics; Microbiome; T cells; Innate lymphoid cells

Introduction

Asthma is a heterogeneous lung disease that currently affects approximately 25 million 

people in the USA [1]. This chronic pulmonary disease is characterized by reversible 

airway obstruction, bronchial hyperresponsiveness, pulmonary inflammation, and increased 

airway secretions [2]. Maladaptive pulmonary immune responses to allergens and/or other 

environmental exposures are thought to give rise to asthma [2, 3]. Epithelial inflammation 

stemming from these exposures leads to a cascade of immunological events, including 

activation and priming of antigen-presenting cells (APCs), polarization and clonal expansion 

of naïve T cells, and secretion of cytokines and chemokines that recruit eosinophils and 

neutrophils into the airspace [4, 5]. These responses lead to structural alterations of the lung, 

including mucus hypersecretion, increased goblet cell numbers, and peribronchiolar fibrosis 

[6]. These pathologies and cellular mechanisms have been characterized in both rodent 

models and patient populations. However, the exact mechanisms by which these maladaptive 

pulmonary immune responses arise are still being defined.

Both epidemiological and laboratory studies have reported that air pollution can increase 

susceptibility to and severity of asthma [7•]. Air pollution exposure can directly and 

indirectly stimulate the innate and adaptive immune responses that are known to drive 

asthma pathogenesis (Fig. 1a-b). A major component of air pollution is particulate matter 

(PM), ranging from coarse PM with diameter ≤ 10 μm (PM10) that tends to deposit in 

the upper airway, fine PM ≤ 2.5 μm (PM2.5) that can deposit in the central and peripheral 

airways and alveoli, and ultrafine PM ≤ 0.1 μm (UFPs) that transiently affects respiratory 

tissues along the whole tract [8, 9]. Diesel exhaust particles (DEP) include a combination 

of PM with organic compounds such as polycyclic aromatic hydrocarbons (PAHs), sulfate, 

nitrate, and other trace elements [10]. In addition to PM, air pollution also contains a 

significant portion of noxious gasses, which include carbon monoxide (CO), nitrogen 

dioxide (NO2), and ozone (O3) [11]. Several studies in recent years have shown that these 

air pollutants alone can elicit an immune response that can potentially influence asthma 

pathogenesis. Therefore, understanding how air pollution induces pathogenic immune 

responses in the lung may provide novel therapeutic targets to prevent or treat asthma.

This review will provide insight into emerging investigations of the relationships between 

air pollution exposure and asthma pathogenesis. Specific emphasis will be placed on 

novel pulmonary immune mechanisms known to be altered with exposure to select air 
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pollutants. Within this scope, the role of genetics and epigenetics in these immunological 

and inflammatory mechanisms, and how the microbiome (both in the lung and gut) can 

modulate these responses, will also be explored. This overview will highlight what is known 

about these novel mechanisms and propose further areas of study to better examine the 

impact of air pollution on innate and adaptive immune responses that contribute to asthma.

Air Pollution Modulates Asthma Through the Classical TH2 Immune 

Response

Typically, the immune response driving sensitization in asthma begins with airway 

inflammation leading to the activation of APCs that interact with naïve CD4+ T lymphocytes 

using major histocompatibility complex (MHC) molecules loaded with antigen. A variety 

of environmental antigens polarize naïve CD4+ T cells toward the TH2 cell fate that 

is characteristic of the classical asthma phenotype [12]. TH2 cells are the canonical T 

cell population implicated in eosinophilic asthma and produce several pro-inflammatory 

cytokines including IL-4, IL-5, and IL-13 that affect downstream immune responses [13-15]. 

The presence of these TH2 cytokines in the environment leads to immunoglobulin E (IgE) 

class switching and cytokine production by B cells that drive many of the pathologies 

associated with subsequent allergen challenge [16]. Consequently, activation and cross-

linking of the IgE-FcεRI complex on effector cells (i.e., mast cells and basophils) lead to the 

release of vasoactive soluble mediators such as prostaglandins, leukotrienes, and histamine, 

resulting in bronchial mucosa edema, mucous production, and smooth muscle constriction 

[13, 16-19]. The combination of these immune responses and subsequent inflammatory 

factors leads to airway hyperresponsiveness (AHR) and airway obstruction associated with 

asthma, as well as other inflammatory airway diseases.

Though there have been extensive investigations in both laboratory models and human 

subjects defining how air pollution exposure alters TH2–driven asthma [20•, 21-23], there 

has been much less progress in understanding the inflammatory processes that initiate 

asthma and/or other T cell subsets known to alter the asthmatic phenotype. While a range of 

innate and adaptive immune response mechanisms has been described beyond TH2 cells, this 

review will focus on how air pollution alters other innate and adaptive immune responses 

in asthma, including diverse T cell subsets, pattern recognition receptors (PRRs), and innate 

lymphoid cell (ILC) populations (Fig. 1b).

Novel Roles of Non-TH2 T Cell Subsets in Asthma

It has long been appreciated that the adaptive immune response plays a critical role in 

asthma development and exacerbation. The traditional understanding of asthma pathogenesis 

implicates TH2 cells as the main drivers of eosinophilic allergic asthma. However, recent 

studies have noted a role for non-TH2 subsets, including T helper 17 (TH17), T follicular 

helper (TFH), regulatory T (TREG), and gamma delta T (γδT cells in asthma. Additionally, 

emerging evidence has also shown that air pollution affects the polarization and function of 

these cells in allergic airway disease. Below we review the recent literature describing the 

impact of air pollution on non-TH2 T cell subsets and their roles in asthma pathogenesis.
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TH17 Cells

TH17 cells are well-known to play a pro-inflammatory role in the body through the 

production of IL-17, which contributes to the pathogenesis of many autoimmune and 

inflammatory diseases like rheumatoid arthritis, psoriasis, multiple sclerosis, inflammatory 

bowel disease, and asthma [24]. In contrast to type-2-mediated eosinophilic asthma, many 

studies support a role for TH17 cells in driving neutrophilic asthma, which has been 

observed in a subset of asthmatics that are resistant to corticosteroid treatment [25]. A 

balance between pro-inflammatory TH17 cells and immunosuppressive TREG cells has been 

commonly described in the literature to play a significant role in asthma [26-28]. In mice, 

Zhou et al. found that PM2.5 exposure in a murine model of asthma increased the TH17/

TREG ratio and symptoms associated with asthma exacerbations [29]. Increases in TH17 

cells and effector cytokines such as IL-17A, IL-17F, and IL-23 have also been noted with 

DEP co-exposure with house dust mite (HDM) antigen [30]. Consistent with this, asthmatic 

children exposed to DEP also had significant increases in serum IL-17A [30]. These findings 

support the idea that air pollution exposure may contribute to the heterogeneity of asthma, 

potentially through TH17 polarization and expansion.

TFH Cells

TFH cells express the lineage-defining transcription factor B cell lymphoma-6 protein 

(BCL-6), as well as surface C-X-C chemokine receptor 5 (CXCR5), programmed death 

protein 1 (PD-1), and the inducible T cell co-stimulator (ICOS) [31, 32]. CXCR5 directs 

trafficking of TFH cells to the B cell follicle of secondary lymphoid organs, such as the 

tonsil, spleen, and lymph nodes. Here, TFH cells activate B cells, leading to the formation 

of germinal centers, affinity maturation, and productive antibody-mediated immunity and 

humoral immune responses [32, 33]. Within the context of asthma pathogenesis, class 

switching of IgE, the most common isotype implicated in allergic asthma, can be positively 

or negatively regulated by the TFH–produced cytokines IL-4 and IL-21, respectively [34•, 

35]. Thus, TFH cells have an indirect role in mediating allergic asthma development via 

regulation of B cell and IgE responses.

TFH cells are also known to display functional plasticity via their differentiation into TFH1, 

TFH2, TFH13, TFH17, and regulatory (TFR) cells; these subsets are specific for various 

immune responses, with transcription factors and phenotypes similar to their TH1, TH2, and 

TH17 counterparts [32, 34•]. TFH2 cells are of particular interest in asthma because they 

secrete IL-4, similar to TH2 cells, and thus initiate and support IgE production in allergic 

disease [36-39]. Furthermore, TFH13 cells, which produce IL-4 and IL-13 to regulate 

antibody class switching and IgE affinity, are significantly increased in patients with allergic 

rhinitis and asthma [34•, 40].

Given the relatively recent acknowledgement of the role of TFH2 cells in asthma [41] 

and the recent discovery of TFH13 cells [34•], the impacts of air pollution on TFH cells 

and asthma remain unknown. However, there is data suggesting that TFH cells are not 

exempt from the effects of air pollution on asthma exacerbation. Ma et al. found that in 

response to PM2.5 exposure, CD4+ and CD8+ T cells exhibited a macrophage-dependent 
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production of cytokines including IL-21, which could suggest the possibility of increased 

TFH differentiation, though a more targeted investigation is needed [42].

TREG Cells

TREG cells play an important role in the negative regulation of immune cells that cause 

allergic and autoimmune responses. There are two main subsets of TREG cells: “natural” 

TREG (nTREG) cells, which develop in the thymus, and “induced” TREG (iTREG) cells, 

which develop in the periphery [43]. Once they develop, nTREG cells express the lineage-

defining transcription factor forkhead box P3 (Foxp3), whereas iTREG cells upregulate 

Foxp3 expression following polarization [44, 45]. To perform their regulatory functions, 

TREG cells secrete immunosuppressive cytokines such as IL-10 and TGF-β [46], suppress 

APC activation [47], and sequester IL-2 [48], among other effector functions. These effects 

dampen the innate immune response [49] and suppress proliferation of differentiating 

immune cells like T cells that have been linked to asthma pathogenesis [50]. Additionally, 

TREG cells have been shown to play a role in inhibiting the proximal pathways of allergic 

sensitization and IgE production in response to allergen exposure [44, 51].

Studies have shown an association between ambient air pollution, impaired TREG function, 

and increased morbidity in people with asthma [52, 53]. A 2010 study comparing asthmatic 

and non-asthmatic children from Fresno, CA (poor air quality, with PM concentrations 

exceeding the federal annual standard by over 40%) to those from Stanford, CA (good 

air quality compared to Fresno) found that the more severe Fresno asthma group had 

reduced TREG cell immunosuppression, chemotaxis, and function [52]. This was also noted 

in another cohort in the 2015–2018 Nutrition in Early Life and Asthma (NELA) birth cohort, 

where García-Serna et al. found that levels of TREG cells were decreased in newborn cord 

blood exposed to transient NO2 or PM10 pollution in utero [54], corroborating similar data 

found in newborns and children [55]. Despite this, it is still unclear how air pollutants alter 

TREG numbers and function in the context of asthma.

γδT Cells

γδT cells are unconventional, innate-like T cells with T cell receptors (TCRs) made of γ 
and δ chains (instead of conventional α and β chains) that provide a bridge between innate 

and adaptive immune functions. Composed of only 5% of peripheral T cells, γδT cells can 

be divided into subsets that function analogous to conventional TH1, TH2, TH17, TREG, 

and TFH cells [56]. Thus, the contribution of γδT cells to asthma pathogenesis is complex. 

Although the overall proportion of γδT cells is lower in asthmatic patients [57], murine 

asthma models show that TH2-like and TH17-like γδT cells are increased in the blood 

and bronchoalveolar lavage (BAL), respectively [58]. Pulmonary γδT cells contribute to 

asthma pathogenesis by producing IL-4 [57], which enhances allergen-induced late airway 

responses and inflammation [59]. However, γδT cells have also been noted to inhibit AHR 

production via interferon gamma (IFN-γ) secretion and suppression of IgE production 

[60]. Additionally, IL-17-producing γδT cells play a dual role in asthma by altering AHR 

[61]. Recent publications have described an association between air pollution and γδT cell 

function. For example, O3 has been shown to increase total γδT and IL-13+ γδT cells within 

the lungs of obese mice compared to wildtype mice [62]. Additionally, murine lung injury 
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models have also shown that O3 and PM2.5 can increase the number of IL-17A–secreting 

cells, the majority of which are γδT cells, thus promoting lung fibrosis and inflammation 

[63, 64]. Further studies are needed to more fully understand how γδT cell subsets are 

impacted by air pollution in the context of asthma.

Innate Lymphoid Cells

In addition to the various T cell immune responses contributing to asthma, innate responses 

to air pollution have also been shown to play important roles in this chronic lung disease. 

An emerging area of innate immunity that has been implicated in asthma pathogenesis is the 

contribution of ILCs. ILCs are a family of non-T, non-B lymphocytes that have conserved 

effector cell function and are present in mucosal and lymphoid tissues. ILCs survey tissues 

for pathogens and damage to rapidly and efficiently respond in an antigen-independent 

manner [65]. They play a critical role in tissue homeostasis, resistance to infection, control 

of the composition of commensal microbiota, and pathology at mucosal surfaces [66, 67]. 

ILCs are composed of five subfamilies based on surface expression markers and effector 

function: the two cytotoxic ILC subfamilies (natural killer (NK) cells and lymphoid tissue-

inducer cells (LTi)) and the three helper ILC subfamilies (type 1 ILCs (ILC1s), ILC2s, and 

ILC3s) [65, 68, 69]. The helper ILCs parallel CD4+ T helper cells: ILC1s, ILC2s, and ILC3s 

function like TH1, TH2, and TH17 cells, respectively.

In asthma pathogenesis, ILC2s are the most widely studied subfamily. ILC2s function most 

like the asthma-mediating TH2 cells through production of IL-4, IL-5, and IL-13, which 

promote eosinophil recruitment, macrophage polarization, mast cell activation, goblet cell 

mucus production, and smooth muscle contraction [65, 70-72]. ILC2s also represent the 

most common resident and migratory ILC population in the asthmatic lung, with their 

frequency and activation increased during asthma [73, 74]. Furthermore, in a chronic 

murine model of allergic asthma, lung ILC2s, and not T or B cells, were required for 

disease maintenance [75]. It should be noted that ILC2 frequency decreases with inhaled 

corticosteroid treatment [76, 77]. Recent studies have unveiled novel ILC2 populations, 

including regulatory IL-10+ ILC2s [78-81] and novel ILC2-to-ILC1 or ILC2-to-ILC3 

plasticity [68, 82], indicating that there may be multiple roles that other ILC subsets play in 

asthma pathogenesis.

As the role of ILCs begins to emerge in the context of allergic asthma, several studies 

have shown that air pollution, specifically PM and O3, can alter ILC functions in the 

lung. Recent studies have reported that air pollution can reduce IFN-γ production and 

the cytotoxicity of ILC1s. Additionally, O3 can stimulate lung ILC2s by increasing IL-33 

levels and ILC2–specific activation, proliferation, and airway inflammation [62, 83-87]. 

Lastly, recent laboratory studies found that co-exposure of DEP with an allergen (e.g., 

HDM), but not DEP or HDM alone, leads to marked increases in IL-25 and IL-33 and 

moderate increases in ILC2 levels [88]. This suggests that DEPs may work synergistically 

with allergens to induce lung inflammation. These findings of ILCs have also been noted 

in human studies where PM10 exposure levels had a positive correlation with the frequency 

of ILC2s, particularly in severe asthmatics, whereas ILC1s correlated with O3, NO2, and 

CO exposure [89]. Taken together, these data identify an emerging role for ILC modulation 
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by air pollution, which may contribute to how these environmental exposures alter the 

susceptibility and heterogeneity of asthma.

Pattern Recognition Receptors in Asthma

Beyond ILCs, critical components of the innate inflammatory response involved in initiating 

asthmatic responses are pattern recognition receptors (PRRs), which recognize Pathogen-

Associated Molecular Patterns (PAMPs) and Damage-Associated Molecular Patterns 

(DAMPs) [90]. Primarily found on APCs, such as dendritic cells (DCs) and macrophages, 

PRRs include four main types: (1) toll-like receptors (TLRs), (2) nucleotide-binding 

oligomerization domain (NOD)-leucine rich repeats (LRR)-containing receptors (NLRs), 

(3) retinoic acid-inducible gene 1-like receptors (RLR), and (4) C-type lectin receptors 

(CLRs). Due to their ability to quickly sense environmental triggers, including air pollutants, 

TLRs and NLRs play major roles in the pathogenesis of lung inflammation and allergic 

asthma. It is through PRR signaling that many of the innate and adaptive immune responses 

downstream of pollutant exposure begin to unfold, as we detail in the sections that follow.

Toll-Like Receptors

TLRs are transmembrane receptors of the innate immune system located on the cell surface 

or in endosomes that are important for initiating adaptive immune responses. Environmental 

allergens are known to activate the TLRs of the lung airway epithelia, leading to allergic 

and asthmatic disease [91]. TLR2 and TLR4, which recognize gram-negative and -positive 

bacteria, respectively, are the most well-studied in the development and exacerbation of 

allergic asthma. TLR2 and/or TLR4 activation is known to drive exacerbation of acute and 

chronic inflammation associated with asthma and allergic disease by promoting neutrophil, 

eosinophil, TH2, and TH17 activation [92-95]. Deletion of TLR4 and downstream signaling 

molecules, including MyD88, leads to a reduction of asthma-related inflammation, as 

evidenced by various laboratory studies [96-99]. Additionally, TLR2 directly activates lung 

type 2 innate lymphoid cells (ILC2s), which are a source of IL-5 and IL-13 in allergic 

airway inflammation [100]. However, recent studies have noted a nonredundant role for 

other TLRs in allergic asthma. For instance, TLR9 has been shown to prevent ILC2–driven 

AHR [101]. At the same time, TLR9 mediates airway inflammation by activating NLRP3 

inflammasome and increasing oxidative stress [102]. Interestingly, severe asthmatics have 

been found to have decreased expression of TLR5 and TLR7 [103], suggesting that severe 

asthmatics may suffer from insufficient TLR signaling during bacterial or viral infections, 

leading to asthma exacerbation.

Given the role of TLRs in allergic asthma, determining whether air pollutants modulate 

TLR signaling in a way that increases allergic asthma burden is of great interest. Data from 

both in vivo and in vitro laboratory studies have shown that air pollution alone (O3 and/or 

PM) can induce TLR2– and TLR4–dependent cytokine production [104-106] and AHR 

[107-112]. Although it is unclear how these pollutants can induce pulmonary inflammation 

and/or dysfunction, it is thought that this could be driven by the DAMPs generated in the 

airspace following exposure or because of the PAMPs; the exposures can carry into the lung. 

For example, PM2.5 has been found to contain lipotoeic acid (LTA) and lipopolysaccharide 
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(LPS, or endotoxin), and when compared to LPS alone, PM2.5 and LPS co-exposure resulted 

in an enhanced TLR2/TLR4/MyD88–driven allergic airway inflammation and eosinophilia 

[113, 114•, 115]. Thus, the interplay between air pollution and TLR–induced asthma is 

an evolving field, and as functional and nonfunctional TLR variants and their downstream 

signaling networks are further described, there will be greater insight into how these PRRs 

contribute to air pollution-induced asthma exacerbation.

NOD-Like Receptors

Unlike the transmembrane TLRs, NLRs are cytosolic innate immune receptors that sense 

intracellular microbial products. The five NLR subfamilies are NLRA, NLRC, NLRC, 

NLRP, and NLRX. The most studied NLRs include nucleotide-binding oligomerization 

domain-containing protein 1 (NOD1) and NOD2 in the NLRC subfamily, and NOD–, 

LRR–, and pyrin domain-containing protein 3 (NLRP3) in the NLRP subfamily [116]. Many 

of these NLRs have been implicated in the onset and/or progression of asthma, with much 

of the research focused on the role of NLRP3–driven activation of the inflammasome in 

asthma [78, 117-124]. For instance, increased sputum NLRP3 expression correlates with 

neutrophilic inflammation and asthma severity [125]. However, other NLRs are beginning to 

be recognized for their contributions in the onset and/or exacerbation of allergic asthma. For 

example, NOD1 gene variants [126, 127] and dysregulated expression of NOD1 isoforms 

[128] have been shown to alter asthma pathogenesis. Additionally, NOD2 ligands can lead 

to TH2 activation and increase asthmatic inflammation [129-131], although the exact role of 

this NLR in the immune response driving allergic asthma is still debated [132].

Recent studies have noted that the exacerbation of asthmatic responses by air pollutants may 

be through NLR–driven mechanisms. NLRP3 is known to be activated by environmental 

oxidants, including O3 [133, 134] and PM [135-137]. It has been proposed that NLRs are 

activated by these air pollutants via reactive oxygen species (ROS)–induced mitochondrial 

dysfunction [133, 138] and extracellular release of intracellular DAMPs such as the nuclear 

high mobility group box 1 (HMGB1) protein [139, 140]. Additionally, PM exposure was 

found to activate the sterol regulatory element-binding protein 1 (SREBP1)/Pirin (PIR) axis 

via Sirtuin1 (SIRT1) inhibition [141], which in turn activates the NLRP3 inflammasome, 

leading to acute and chronic lung inflammation. This NLRP3 activation has also been noted 

with other ambient particle exposures such as DEP, leading to airway inflammation and 

mucus secretion [142, 143]. Taken together, these data show that air pollution initiation 

of NLR–based signaling may be a novel and emerging area in the study of asthma 

pathogenesis.

Mechanisms by which Air Pollutants Influence Asthma Pathogenesis and 

Exacerbation

It is clear that air pollutants, either alone or in conjunction with allergens, alter innate 

and adaptive immune responses as discussed above. However, the biological processes 

of how pollutants induce these immune changes have yet to be fully established. Three 

candidate mechanisms have been recently uncovered that strongly suggest that air pollution 

modulates immune cell functions via (1) interaction with genetic risk, (2) epigenetic changes 

Tuazon et al. Page 8

Curr Allergy Asthma Rep. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in immune cells that alter gene expression, and (3) altered composition and function of the 

lung and gut microbiome (Fig. 1c). Below, we briefly describe the current understanding of 

these novel mechanisms by which air pollution alters the immune response, thus increasing 

susceptibility and/or severity of asthma.

Air Pollution and Genetic Risk Predisposing to Asthma Development

Despite the environmental impacts on respiratory disease pathogenesis, asthma remains a 

notably heterogenous disease with substantial genetic contributions [144]. Thus, identifying 

the genes and genetic variants involved in asthma is of great interest for comprehensive 

prevention and management of this disease. Several studies have identified several genes 

contributing to an individuals’ genetic risk for the development and severity of asthma, 

including IL-13, TNF, ADAM33, IL-4RA, DPP10, PHF11, NPSR1, HLA-G, CYFIP2, 
IRAK3, COL6A5, OPN3/CHML, and TBXA2R [144]. More recently, genome-wide 

association studies (GWAS) have been used to identify disease associated with over 500,000 

single nucleotide polymorphisms (SNPs), or specific gene variants across populations that 

lead to increased or decreased risk [145]. For example, SNPs in NLRs including NOD1 have 

been shown to either protect against or induce asthma [126, 127]. Additionally, NLRP3 and 

Caspase 1 (CASP1) polymorphisms have been associated with either increased or decreased 

asthma risk in a population of Brazilian children [146•]. Beyond PRRs, other studies have 

identified asthma-associated SNPs in ILC2 gene regulatory elements that could increase 

disease risk [147•], though the contributions of specific SNPs must be further defined. 

SNPs that are protective against asthma have also been identified in TH17 cell functioning 

pathways [148]. Together, genetic variation and SNPs highly influence susceptibility to or 

exacerbation of asthma.

Currently, there are emerging studies that have defined a direct interaction between air 

pollution and genetic risk for developing asthma [149]. Recent studies have reported 

that SNPs in certain PRRs interact with air pollution to induce asthma [150, 151]. In 

mice exposed to O3, specific polymorphisms in the TLR4 and TLR5 altered asthma 

pathogenesis [152, 153••]. Gain-of-function SNPs in NLRP1 have been found to activate 

its inflammasome following air pollution exposure, leading to high IgE levels and asthma 

exacerbation [154]. Additionally, a recent genome-wide interaction study (GWIS) analyzing 

the impact of NO2 air pollution on childhood asthma identified SNPs in the novel loci 

B4GALT5 and in SNPs previously associated with lung disease, ADCY2 and DLG2 [155]. 

Even though these data are still being generated, thus far it seems that air pollution plays 

a pervasive role in asthma pathogenesis in those with increased genetic risk. Additional 

GWAS studies will provide an unbiased approach for understanding which individuals and 

populations have a higher genetic risk for asthma, as well as reveal how air pollution 

contributes to this genetic risk.

Air Pollution and Epigenetic Changes Inducing Asthma

Beyond the mere presence or absence of asthma-related genes in an individual, asthma 

induction and severity are also influenced by dynamically regulated gene expression, 

referred to as epigenetics [156]. These epigenetic processes include chromatin remodeling, 

biochemical changes to DNA and histones—such as methylation (typically leading 
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to reduced DNA accessibility) and acetylation (typically leading to increased DNA 

accessibility)—and RNA interference, among others. Ultimately, these changes result 

in altered gene transcription, transcriptional responsiveness to stimuli, or translational 

availability of gene transcripts [157]. Further still, some of these epigenetic changes and 

their resulting traits seem to demonstrate transgenerational inheritance [158-160], adding to 

the complexity of epigenetic contributions in health and disease.

The data connecting specific epigenetic changes to asthma are plentiful [161-164], to 

the extent that they give rise to an emerging paradigm that asthma is an “epigenetic 

disease” of the immune system. For example, several studies link DNA methylation of 

immunosuppressive TREG genes to the exacerbation of asthma [165, 166]. Meanwhile, 

altered methylation in loci linked to IL-4, IL-13, IL-5RA, ZPBP2, RUNX3, TIGIT, and 

ALOX15 has also been associated with asthma [167-171]. Histone modifications also play 

a significant role in asthma-related gene expression, as the permissive modifications histone 

H3 lysine K4 (H3K4) trimethylation and histone hyperacetylation have been connected to 

increased T cell activation and airway remodeling [172-174]. A large number of noncoding 

microRNAs (miRNAs), which block or alter mRNA translation, have also been heavily 

implicated in asthmatic phenotypes and responses to therapy [175-178]. In addition, an 

interesting human study of the Isle of Wight birth cohort shows that specific DNA 

methylation changes associated with asthma persist from F0 to either F2 or F3 generations 

of asthma patients [179, 180].

There is now a large body of work demonstrating epigenetic changes that occur in 

response to environmental pollutants that are associated with asthma pathogenesis [181••, 

182-184]. From these studies, we now know that PM, O3, and other air pollutants can 

contribute to airway inflammation via epigenetic enzyme perturbation (namely the ten-

eleven translocation (TET) 1–3 and DNA methyltransferase 3 (DNMT3) A-B enzymes) 

[185], DNA methylation [52, 166, 186-190], histone modifications [191], and miRNA 

regulation [192-195]. It is possible that some of these components impair the expression 

of epigenetically acting enzymes responsible for maintaining or altering the epigenetic 

landscape [196, 197]. With exposure to air pollution, many of these epigenetic changes 

have been noted in DCs [198, 199], PRRs [200, 201], ILCs [147•, 202], and various T cell 

subsets [52, 173, 186, 203-205, 206••, 207]. Notably, there is an increasing body of literature 

connecting urban lifestyle [208] or specific pollutant exposures, such as DEP, concentrated 

urban air particles (CAP) [205, 209-217, 218••], and black carbon particles [219, 220], 

to aberrant epigenetic signatures seen in asthma. In fact, DEP and CAP can transmit an 

asthma risk phenotype to F2 and F3 generations, an effect which seems to be linked to 

epigenome-wide methylation aberrations [199].

Whether these epigenetic changes seen in humans and mice directly cause asthma is 

yet to be determined. Future causality studies may confirm a paradigm of “asthma as 

an epigenetic disease,” which would shift our understanding of asthma from the current 

“inflammatory disease of the airways” consensus definition. As novel tools emerge for 

targeted manipulation of the epigenome, which have only recently been developed within 

the last decade [221-234], this promises new avenues toward understanding how air 

pollution increases risk for asthma development.
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Air Pollution and Microbiome Changes Inducing Asthma

In addition to genetic and epigenetic changes increasing risk for asthma, recent studies have 

highlighted that the commensal bacteria (termed the “microbiome”) in the lung and gut 

can influence asthma incidence and severity. Given the widespread colonization of these 

commensal microorganisms within the human body, the microbiome interacts with and 

alters the metabolic and effector functions of nearby and distant cells [235]. Collectively, 

the microbiome of the lung and gut is composed of bacteria, archaea, viruses, and fungi, 

which have been shown to play critical roles in the training and development of the host’s 

innate and adaptive immunity [236]. However, changes in the microbiome, whether through 

antibiotic use, diet change, or other environmental perturbations, can lead to immune 

responses that drive diseases such as food allergy, inflammatory bowel disease, rheumatoid 

arthritis, metabolic diseases, neurodegeneration, and asthma [237-242].

The association of an altered microbiome in the lung and asthma was initially reported 

by Hilty et al. [243], which has since been confirmed by multiple additional studies of 

the respiratory microbiome in humans [244-253] and mice [254, 255]. In a healthy adult 

human lung, the main phyla present are Bacteroidetes, Firmicutes, Actinobacteria, and 

Fusobacteria [246, 256], while the healthy gut normally contains thousands of microbiota 

species, especially from the Bacteroidetes, Firmicutes, Actinomycetes, and Verrucomicrobia 
phyla [257, 258]. Both laboratory and clinical studies of the lung and gut microbiome 

have shown that there are increases in the Proteobacteria phyla in asthma [243, 246, 

253, 259-261], accompanied by decreases in beneficial Firmicutes and Bacteroidetes [247, 

256, 262•]. In addition to reduced microbiome diversity, there also seems to be increased 

levels of the pathogenic Haemophilus and Moraxella bacteria in neutrophilic asthmatics 

compared to eosinophilic asthmatics [263•, 264]. Mechanistically, this altered microbiome 

contributes to asthma development in part through its impact on several innate and adaptive 

immune responses, including TLR signaling [265••, 266], NLRP3 signaling [118, 267•], 

and T cell responses [265••, 268, 269]. However, given the heterogeneity of asthma, the 

contributions of an altered lung and/or gut microbiome to an asthmatic phenotype are still 

widely unknown.

Recently, air pollution has also been shown to affect the composition and function of the 

microbiome [270]. A few studies have demonstrated that air pollution decreases airway 

microbiome diversity, which was associated with decreased lung function [271••, 272-274]. 

However, reports conflict on whether air pollution increases [272, 274-276] or decreases 

[277-279] microbiome alpha diversity. Furthermore, it has yet to be described if a specific 

taxa are enriched or depleted after air pollution exposure, nor is there a consistent pattern 

or predictability associated with these changes [39, 272, 274-276, 278-280]. Still, it is likely 

that the altered gut and lung microbiome following air pollution modulates asthma risk. 

Polluted air often contains pathogenic bacteria and thus may influence airway inflammation 

via direct introduction of harmful microbiota into the respiratory tract [66]. It has also been 

observed that air pollutants’ alteration of microbial components is associated with changes 

in asthma risk [281]. For example, altered microbiome composition changes the levels 

of tolerogenic short-chain fatty acids (SCFAs) produced by commensal bacteria; loss of 

these SCFAs, which normally reduce allergen sensitivity, airway inflammation, and asthma 
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risk in infants [252, 282, 283] and mice [284-287], can lead to peripheral immune cell 

dysregulation [288] and increased risk of developing allergic asthma [289]. Beyond SCFAs, 

microbial LPS attached to air pollutants can further stimulate TLRs and activate downstream 

ROS and PAH–sensing pathways [3, 256]. However, this relationship is not simple. Higher 

levels of endotoxin in dust extract from homes of the Amish, a population known to 

be exposed to high microbial levels on their traditional farms and to have low asthma 

prevalence, have been shown to correlate with protection against innate and adaptive airway 

inflammation in children [290••] and in murine experimental asthma models [291]. The 

hygiene hypothesis and its proposed updates attempt to explain how exposure to some types 

of microbes in early life assists in immune system development [292]. Beyond microbial 

components themselves, new data are emerging showing the role of commensal bacteria in 

immune cell homeostasis and the subsequent perturbation of effector function following PM 

exposure [293•]. Taken together, these data provide a foundation for further investigations of 

how air pollution induces asthma by altering the microbiome.

The role of the microbiome in human disease remains an ever-expanding field requiring 

intensive biomedical characterization. Only a small number of studies on the direct effects 

of air pollution on the microbiome have been published in the last decade with a great 

deal of variability in their geographic populations, tissue sampling, and pollution-measuring 

methodologies. Thus, examining the effects of specific air pollution components in well-

controlled animal studies will help to define their effects. Because the microbiome may 

potentially metabolize inhaled pollutants and modulate downstream immune responses 

[294], it would also be critical to thoroughly define the host homeostatic functions that the 

microbiome perform, including epigenetic alterations. With the integration of metagenomics 

and personalized medicine into clinical diagnosis and treatment becoming increasingly more 

mainstream, gut and lung microbiome diversity may be used to predict risk of allergic 

asthma. Finally, as the contribution of the microbiome to asthma is more precisely defined, it 

may be likely that prebiotics, probiotics, or targeted antibiotics could be designed for asthma 

prevention and treatment to offset damage from air pollution.

Conclusion

Given the established association between air pollutant exposure and asthma development 

and exacerbation, we have compiled the latest knowledge on the genetic, epigenetic, and 

microbiome-driven immune mechanisms by which asthma is worsened. The available 

literature has focused on TLRs and NLRs in the context of air pollution and asthma, 

though future work should explore the roles that the RLR and CLR PRRs play in asthma 

pathogenesis in the presence of air pollution. Given the collective contributions of different 

T cell subsets, increased research on the impact of air pollution on the functional plasticity 

of T cells and their subsequent effect on asthma phenotype and severity is also warranted. 

Further improvements in accessibility to epigenetic tools and microbiome diversity screens 

for physicians may ultimately help to predict who is at greatest risk for allergic and 

asthmatic disease.
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Fig. 1. 
Effects of air pollution on novel immune-mediated mechanisms of asthma pathogenesis. 

a Pollutants that induce or exacerbate asthma by altering immune-mediated responses. b 
Air pollution induced non-TH2 immune responses, leading to increased susceptibility to 

or severity of asthma. c Mechanisms of pollutant-driven asthma pathogenesis, including 

genetic risk, epigenetic alterations, and changes in the lung/gut microbiome. Created with 

BioRender.com

Tuazon et al. Page 29

Curr Allergy Asthma Rep. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://BioRender.com

	Abstract
	Introduction
	Air Pollution Modulates Asthma Through the Classical TH2 Immune Response
	Novel Roles of Non-TH2 T Cell Subsets in Asthma
	TH17 Cells
	TFH Cells
	TREG Cells
	γδT Cells

	Innate Lymphoid Cells
	Pattern Recognition Receptors in Asthma
	Toll-Like Receptors
	NOD-Like Receptors

	Mechanisms by which Air Pollutants Influence Asthma Pathogenesis and Exacerbation
	Air Pollution and Genetic Risk Predisposing to Asthma Development
	Air Pollution and Epigenetic Changes Inducing Asthma
	Air Pollution and Microbiome Changes Inducing Asthma

	Conclusion
	References
	Fig. 1

