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Abstract

Over the past 30 years, functional magnetic resonance imaging (fMRI) has emerged as a powerful 

tool to non-invasively study the activity and function of the human brain. But along with the 

potential of fMRI to shed light on neurological, psychiatric, and psychological processes, there 

are methodological challenges and criticisms. We herein provide an fMRI primer designed for a 

diverse audience, from the neuroimaging novice to the experienced user. Part 1: Overview: “What 

is fMRI and what can it tell us?”. Part 2: Basic fMRI principles: MR physics, the BOLD signal, 

and components of a typical scan session. Part 3: Basic fMRI experimental design: why timing 

is critical, and common sources of noise in the signal. Part 4: Basic fMRI analysis methods: 

software, the three stages of data analysis (preprocessing, individual, and group level), and a 

survey of advanced topics and methods including connectivity, machine learning, and assessing 

statistical significance. Part 5: Criticism, crises, and opportunities related to power of studies, 

computing requirements, logistical and interpretational challenges, and methodological debate 

(assessing causality, circular correlations, and open science best practices). We trust that the 

novice will gain an understanding of the appropriate uses and limitations of fMRI, and for the 

experienced user, a concise update on current issues and methodological advances.
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Part 1: The Big Picture

Since it first became possible to conduct functional magnetic resonance imaging (fMRI) 

scans on humans more than 30 years ago [1–3], the popularity of neuroimaging has grown 

steadily. Most researchers have probably seen colorful maps of the brain in journal articles. 

The aim of this article is to fill in knowledge gaps for everyone from neuroimaging novices, 

to experienced users wanting to refresh on fundamentals.

Here, we hope to provide a diverse audience a friendly introduction to fMRI, and a table of 

common fMRI terminology (Tables 1 & 2). We address what fMRI is, briefly how it works, 

important methodological considerations, and caveats. We highlight recent advances in the 

field, as well as criticisms and limitations, to facilitate interpretation of the fMRI literature.

What is fMRI and What is it Good For?

There are multiple options for non-invasive neuroimaging. While this paper focuses on 

magnetic resonance imaging (MRI), other methods include electroencephalography (EEG), 

magnetoencephalography (MEG), positron emission tomography (PET), and functional 

near-infrared spectroscopy (fNIRS). EEG, MEG, and fNIRS are more affordable and 

portable options for neuroimaging, but they are currently limited in their ability to accurately 

image subcortical (deep) brain structures [4]. Structural methods include diffusion tensor 

imaging (DTI) tracks diffusion of water molecules to reveal white matter tracts in the brain, 

which can be used in the diagnosis of various neurological disorders [5]. Functional MRI 

(fMRI) is one of the more expensive options but offers the most comprehensive coverage of 

regional brain activity. Functional MRI involves collecting dynamic images of blood flow 

in the brain, which can be used to characterize activation of brain regions, or connectivity 

(i.e., temporal correlations) between regions [6]. Scanning approaches to measurement of 

activation include using arterial spin labeling (ASL), which quantifies blood perfusion 

in the brain, and measuring the blood oxygen level dependent (BOLD) signal, in which 

the degree of oxygen utilization is proportional to the level of neuronal activity, or (less 

commonly) a combination of the two. There are three primary modalities of data collection 

in fMRI: task-dependent, passive responses to stimuli, and resting state. Task-dependent 

fMRI involves having participants complete behavioral tasks in the scanner, ranging from 

simple motor tasks (e.g., finger tapping) to responding to complex social scenarios [7]. This 

approach measures task-specific changes in brain activation or connectivity [8.]. Stimuli can 

also be presented without requiring a cognitive or behavioral response. In this case, the 

natural, event-related responses in the brain (passive responses) are captured. Resting state 

fMRI involves having participants rest quietly in the scanner, and can be used as a “baseline” 

measure of brain function in the absence of a task [9].

A Brief History of fMRI

Magnetic resonance imaging (MRI) was developed before functional magnetic resonance 

imaging (fMRI), first being conducted in humans in 1977. Although both methods utilize 

the same instrumentation and principles of physics, it is important to distinguish MRI 

from fMRI. MRI uses a broad category of imaging approaches to visualize the structure 
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and function of the human body, whereas fMRI is a derivative of MRI involving the 

measurement of brain function specifically. Functional MRI was first performed in humans 

in the early 1990s [1–3,15]. The discovery that the paramagnetic properties of deoxygenated 

blood could be used to generate a proxy of brain activity via the BOLD signal was a 

major breakthrough for neuroimaging [2,15,16]. Early experiments involved mapping brain 

responses to stimuli e.g., flashing checkerboards, to activate the visual system [17] or 

finger tapping to induce motor-related activation [18]. Recent examples of studies have used 

computational models to characterize how brain regions become activated during genital 

stimulation and orgasm in men and women [22–25]. The number of fMRI papers published 

each year has grown steadily since its inception, with as many as 2,000 fMRI-related articles 

being published each month [26], as evidence that, despite its inherent limitations, fMRI has 

gained wide acceptance and can provide valuable insights into brain function,

fMRI Studies in Sexual Medicine

A google scholar search of “sexual response and fMRI” yields over 50,000 results. The 

following is a brief summary of the main themes of this literature. Functional MRI has 

been applied to a variety of phenomena related to sexuality, using multiple strategies. 

By recording spontaneous non-task-related (i.e.“resting state”) brain activity, fMRI has 

been used to analyze correlation with premenstrual syndrome, phases of the menstrual 

cycle (luteal vs follicular) and menopausal transition; also, erectile dysfunction, premature 

ejaculation, diverse sexualities (sexual orientation, sexual preferences, gender identity), 

prostatitis and pelvic pain syndrome. Alternatively, event-related fMRI of brain activity has 

been used in the following ways: to analyze brain regions that respond to genital stimulation 

(by self or by partner) in men and women during arousal and orgasm; to investigate the 

effect of erotogenic visual stimulation on brain activity related to gender, gender dysphoria, 

androgen insensitivity syndrome, sexual orientation (gay, straight, bisexual), gender identity 

(cis/trans), and paraphilias; effects of hormones (e.g., contraceptive, kisspeptin), side 

effects on sexual function of medication (e.g., amisulpride, reboxetine) and recreational 

substances (e.g., methamphetamine); to record physiological responses (e.g., erection, 

lubrication) and/or affective responses (e.g., sexual desire, hypoactive sexual desire disorder, 

subjective arousal, post-orgasmic resolution phase) to erotogenic stimulation; and to assess 

brain activity correlates of sexual disorders (e.g., pedophilia, compulsive sexual behavior, 

premature ejaculation, and vulvodynia). Refer to Table 4 for representative examples of the 

application of fMRI in each domain.

Part 2: How it Works

Basic MR Physics

Magnetic resonance imaging is widely used in clinical and research settings to generate 

three-dimensional images of the anatomy and function of the human body. The strength of 

the magnetic field of the scanner is measured in units of tesla (T). Most modern scanners 

are either 1.5T or 3T, with higher tesla machines being mostly reserved for research use 

(e.g., 7T, 10.5T). The basic premise of MRI is that different bodily tissues vary in their 

fat, water, and/or oxygen content, and these tissue types can be distinguished from each 

other by generating image contrast, e.g., contrast between grey and white matter in the brain 
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[15]. The details of how this is done are beyond the scope of this article; however, in brief, 

the method capitalizes on the inherent property of atomic nuclei to receive and transmit 

radio frequency (RF) energy and align themselves along a magnetic field [27]. Initially 

aligned through a strong magnetic field, an RF pulse delivered by the MRI machine perturbs 

the nuclei so that they momentarily change their orientation (alignment/synchronization). 

Sensors then measure the time it takes for the nuclei to return to equilibrium, i.e., relaxation; 

the original orientation (in structural imaging) or desynchronization (fMRI). This return 

to equilibrium releases energy that can be captured in various ways by manipulating two 

key parameters: the time to repetition (TR: time between RF pulses) and the time to echo 

(TE: the time between the RF pulse and the corresponding emission of RF energy in the 

responding nuclei). Varying these parameters leads to different types of image contrast. The 

primary types of image contrast are referred to as T1- and T2-weighted images, referring 

to different relaxation properties induced by varying the TR and TE parameters [15,28–30]. 

In T1-weighted images, a short TE and TR is used, producing an image in which the 

cerebrospinal fluid is dark. In T2-weighted images, longer TE and TR values produce an 

image in which the cerebrospinal fluid is bright white. The type of images used for fMRI 

are T2-weighted [31], which involve the long TE values and capture perturbations in the 

magnetic field that are produced from deoxygenated blood [2].

What is the BOLD Signal?

The BOLD signal is measurable because of the paramagnetic properties of deoxygenated 

blood [2,16,32]. An increase in neuronal activity generates a demand of those neurons 

for increased oxygen. This oxygen utilization creates a local deoxygenation of the blood 

[32]. The consequent local change in magnetic property of iron in the blood produces a 

measurable local perturbation in the magnetic field [16,32]. This process is referred to as the 

hemodynamic response, which peaks 4–6 seconds from the time of increased activity of the 

neurons.

Blood flow and neuronal activation relate to one another in a complex process called 

neurovascular coupling, [16,32]. The exact biological nature of the mechanisms that underlie 

neurovascular coupling have not been elucidated despite being the basis of the BOLD signal, 

but may be related to the metabolic demands of neural activity [136]. Proposed cellular 

components of the mechanism include astrocytes [34,35], pericytes, and interneurons, as 

well as vascular endothelium [32,36], but the extent to which each component contributes to 

the BOLD signal remains unknown. Without fully understanding the cellular and molecular 

mechanisms, we remain limited in our ability to understand brain-behavior links at the 

cellular level in humans. The evidence that we do have comes from fMRI scans collected 

concurrently with invasive electrophysiological single-neuron recording in monkeys and 

rodents [35,37,38].

A common misconception about fMRI is that relative increases and decreases in BOLD 

response correspond to excitatory or inhibitory neuronal dynamics. Activation identified 

using fMRI does not distinguish between activation of a group of excitatory neurons versus 

activation of a group of inhibitory neurons. What appears to “increase” or “decrease” is 

relative to what is being used as the baseline condition (e.g. rest, active control, etc.). For 
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example, if a participant’s mind wanders during a rest period, areas that increase activation 

during daydreaming may appear to show a reduction in activation after the switch to task 

performance. While it is tempting to interpret such “deactivations” as inhibition, it can 

also be explained by blood flow demands to that region reflecting passive disengagement. 

Activation in one brain region can represent an inhibitory process; decreases in activation 

observed in a region could occur in a group of inhibitory neurons, so that the disinhibition 

results in activation of the neurons to which they project.

At a higher level, there are consistent relationships among human behavior, patterns of 

activation in groups of neurons, and the BOLD signal, thus making meaningful links 

between movement, perception or cognition and the BOLD signal [12]. There are some 

considerations about these correlations. First, individual neurons within an active group 

release different excitatory and inhibitory neurotransmitters, thereby producing a net effect. 

The net effect may actively increase or decrease a function to the same degree. Thus, the 

overall direction of BOLD activity should be interpreted with caution. Second, vasculature 

in the brain is affected by factors such as aging and disease [39,40]. The variability among 

participants introduced into fMRI data from non-neural sources (e.g., vasculature integrity, 

overall health, diet) remains perhaps the biggest challenge in functional brain imaging - but 

some statistical solutions have been proposed, as well as using multiple types of imaging 

methods on each participant, such as by capitalizing on properties of multi-echo scans, in 

which a combination of TE parameters is used as a means of reducing fMRI signal “noise” 

[41,42].

Part 3: fMRI Experimental Design: Basics

The measurement underlying fMRI is made possible by the observation that deoxygenated 

blood can be discerned from oxygenated blood in localized regions of the brain, producing 

an image contrast [2,16,32]. Thus, the BOLD signal is a proxy for neuronal dynamics. 

Since this measurement is indirect (as opposed to direct invasive single-neuron recording), 

the signal is susceptible to contamination from non-physiological factors, or physiological 

factors not of interest to the question at hand (see Common Confounds section). It is also 

a slow signal (relative to the millisecond precision of neuronal action potential activity, 

EEG or MEG), with the stimulus-induced signal peaking 4–6s after stimulus onset and 

not returning back to baseline for as long as 12–20 seconds [40; Figure 1]. Consequently, 

experiments must be designed carefully to accommodate the temporal dynamics of the 

signal.

The focal location of changes in the BOLD signal is measured in cubic elements called 

voxels (3D pixels) that are time-bound [Table 1]. Each voxel holds brain space of a specified 

volume, such as three cubic millimeters. An active region of the brain is often composed of 

hundreds of voxels [33].

Why Timing is Critical

Experimental design is also of particular importance in fMRI given the intensive labor and 

high financial costs involved. Timing is critical because an improperly timed protocol can 
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result in uninterpretable results. Each of the three main types of fMRI (resting state fMRI 

(rsfmRI), task-based fMRI, and passive response) can be a part of the same research design.

Resting state fMRI refers to having the participant lie quietly in the scanner, eyes open 

or closed, while spontaneous BOLD fluctuations are measured [44]. Often participants are 

asked to fixate their gaze on a crosshair pictured on a screen in order to standardize the 

stimulus input across participants. The advantage of resting state fMRI is that it requires 

little from the participant except to lie still, and is therefore well suited for clinical 

populations, children, and others who may be unable to provide behavioral responses in 

the scanner.

In task-based fMRI, participants perform a behavioral task during the scan. The earliest and 

simplest fMRI tasks involved having the participant tap their finger to activate the motor 

cortex, or view flashing checkerboards to stimulate the visual system. Current task-based 

fMRI has become more sophisticated, involving tasks that might test attention abilities, 

responses to movie or song clips, or sensory self-stimulation of different bodily and genital 

regions to map the brain pathways that underlie these responses [23,25].

For task-based fMRI, the main research design options are event-related and block design 

[Figure 3]. Event-related (ER) design refers to presenting stimuli with a variable inter-trial 

interval of sufficiently long duration to allow BOLD signal for multiple conditions to be 

separately extracted and analyzed. This avoids BOLD signals arising from one condition 

overlapping onto other conditions [8; Figure 3]. Event-related designs are appropriate for 

tasks that involve inherent unpredictability, such as both correct and incorrect participant 

responses. In such cases, event-related designs inevitably decrease the signal-to-noise ratio, 

and therefore require more total trials and a longer scan; however, they enable analysis of 

individual trial responses that cannot be predicted in advance.

Block designs use repeated trials of the same type toward achieving a “steady state” of 

BOLD activation (e.g., viewing a series of 10 images for 3 seconds each; see Figure 3). 

Block designs aggregate signal across multiple trials, which leads to higher signal-to-noise 

ratios [52]. While block designs have higher predictability, they are not appropriate for all 

research questions.

Hybrid approaches have also been applied, such as mixed block and event trial structures, 

or having some trials with standardized, naturalistic stimuli such as photographs or movies 

[46,53]. The presentation of naturalistic stimuli allows investigators to record the response 

of the brain to stimuli in the absence of behavioral or cognitive tasks or instructions (i.e., 

passive response). It is also important to incorporate adequate rest periods between trials 

both to allow the BOLD signal to return to baseline before transitioning from one task 

condition to the next and to give participants a break so that cognitive fatigue is reduced. 

Some researchers consider the brain network reconfigurations between task and rest to be 

important and should not be ignored [54,55].
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Common Sources of Noise in the fMRI Signal

The BOLD signal is an indirect measure of brain activity with no established “truth” 

regarding what the signal should look like in a given area for a given person [54]. It is 

therefore particularly important to identify and control for known sources of noise. Noise 

refers to aspects of the signal that are not true brain activity, but instead factors that cause 

distortions in estimation of the physiological BOLD signal. Signal-to-noise ratio (SNR) is 

a way to quantify data quality and can be calculated in a variety of ways [52]. The most 

common artifacts that reduce SNR are produced by motion [56], loss of signal near bony 

areas such as the sinuses and ears [57], and cardiac and respiratory activity [42] - but even 

factors such as MRI scanner design characteristics can impact fMRI measurement stability 

[58].

Head motion during scanning is a pernicious issue that has inspired a number of creative 

solutions. Motion of even just half a millimeter is enough to inflate statistical estimates 

[56,59]. Imagine how in a photograph taken of a moving person, it might be hard to identify 

where the eyes and mouth are if there is blurring of the face. On a brain image, motion can 

similarly lead to “smearing” of signal that can look indistinguishable from true activation. 

Small amounts of truly random motion from participants shifting in the scanner can usually 

be dealt with; however, task-linked motion (such as nodding every time a participant pushes 

a joystick forward), or frequent and excessive motion, will likely confound results [13] and 

such subjects’ data may need to be removed from analysis. Many techniques, statistical 

and otherwise, have been developed to mitigate motion effects, including: regressing out 6 

or more estimates of brain displacement [42,56], visualizing spikes in BOLD values that 

correspond to spikes in motion and removing those values, i.e., “scrubbing” [60], behavioral 

training programs that teach participants motion boundaries [59], and custom head restraints 

that physically restrict motion [22; see https://caseforge.com/, UC Berkeley, CA).

Signal loss near the nasal sinuses and ear canal occurs because the scanner’s magnetic field 

becomes distorted when passing through these empty cavities that are surrounded by bone 

[57]. This results in signal “dropout” in which an area of the brain that is visible on an 

anatomical scan appears “missing” in the functional scan. Similar dropout can be seen if 

participants have metal dental work.

These dropouts can clearly be seen in one of the common functional imaging scans (an 

echo planar imaging EPI scan) in which a single shot of RF allows a complete image to 

be captured [61]. These dropout regions unfortunately cannot be recovered; however, signal 

loss can be mitigated by optimizing scan parameters, such as with a spiral scan, which 

captures the readout of signal both going into the brain and leaving the brain [57,61,62]. It 

is also beneficial to use a more sensitive head coil [63]. A 32-channel head coil, compared 

to an 8-channel head coil, has been found to be more sensitive and more homogeneous 

throughout data collection for brain volume, white matter connectivity, and functional 

connectivity in posterior areas [63]. The degree of dropout can also be estimated using 

standard quality-control measures. When extracting activation from brain regions prone 

to signal dropout, it is important to exclude zero-value voxels when estimating average 

time series of a region. Best practices dictate defining a priori how signal dropout will be 

addressed, such as by customizing analysis parameters to accommodate the unique dropout 
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patterns for each participant [21]. Researchers interested in the function of regions prone to 

dropout, such as the medial prefrontal cortex and temporal cortices, should pay particular 

attention to this issue.

Additionally, cardiac, vascular, and respiratory signals contribute to fluctuations in BOLD 

signal [42]. Respiratory rhythms can lock with task onsets in a stereotyped way that leads 

to greater blood oxygenation during inhalation [64]. Vascular structural changes with age 

also impact the BOLD signal [39,65]. Confounds are a particular challenge for resting state 

scans [66] in which there is no behavioral measure to use to anchor analysis of BOLD 

hemodynamics. This has led to a variety of sophisticated methods such as independent 

component analysis [66], and tools designed for the rsfMRI user [Table 3]. Some researchers 

propose collecting longer durations of resting state data [67] and using methods to increase 

the signal-to-noise ratio [68,69]. Another hybrid approach is passive viewing of neutral 

photographs or movies to promote more consistency among participants [46,53] based on 

phase-locking of eye gaze and associated respiration and heart rate. Enhanced imaging 

sequences such as multi-band and multi-echo can also improve data quality, as explained 

above [48,49,51].

Part 4: A Brief Review of Analysis Methods

There are a variety of excellent resources that address how to perform fMRI analysis [see 

Supplemental Material]. The present paper will focus on broader aspects of the purpose of 

each stage of analysis, and the main considerations for evaluating parameters and analysis 

approaches. The data analysis plan should be chosen before data are collected, and it 

is imperative to choose the appropriate type of analysis, and the appropriate sequence 

of analysis steps (i.e., pipeline), to avoid mismodeling [70]. Mismodeling occurs when 

researchers choose the inappropriate type of analysis or parameters for their data, build a 

predictive model based on such analysis, and then make claims based on the model. Any 

conclusions drawn from a mismodel should be viewed with skepticism. All details of data 

collection and analysis should be reported in a manuscript, enabling other investigators to 

verify the method, and replicate the analysis [71].

Which Software(s)?

A major challenge for neuroimagers is the vast array of analysis packages, each with its own 

set of researcher degrees of freedom in terms of which parameters to select. It is vexing 

that using different software can lead to minor, and even major differences in findings [72]. 

These challenges underscore the importance of transparency of reporting [73,74], data and 

code sharing [72,75,76], and prespecified analysis plans [75].

The three most popular data analysis suites are FMRIB’s Software Library or FSL [77–

79], Statistical Parametric Mapping [SPM; 80], and Analysis of Functional NeuroImaging 

[AFNI; 81]. Many of these programs are also partially or wholly integrated into statistical 

computing environments such as R [82] which uses the fslr package [83], AFNI’s 3dLME 

tool [84], or MATLAB [85] in the case of SPM [72,80].
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Typically, researchers become expert in the package used by whoever trained them. 

However, increasingly, workflow managers such as NiPype [86] and fMRIPrep [87] 

string together the most optimal functions across multiple packages. Depending on the 

researcher’s specific question (88), application of a workflow manager may be the optimal 

analytic method. A workflow manager is any system of automated processes that allows 

more time and resources to be spared during data collection and analysis. Traditionally, 

much of the research process was done manually, which is very time consuming. We 

recommend that novice neuroimagers start by finding the workflow used in previous, 

recently published studies most similar to theirs, and consulting with a collaborator who 

has relevant methodological expertise for their opinion (often scanning centers have such a 

person on staff). Choosing the wrong analysis parameters can lead to false positives [76], 

reduced sensitivity to actual effects [89], or replicability issues. Careful attention must be 

paid to the choice of software and settings [72].

Preprocessing

Preprocessing refers to the steps taken to prepare the “raw” unprocessed BOLD data 

for single-subject and eventually group analysis. Table 2 outlines the typical steps 

of preprocessing and their purpose. A full explanation of the “why” and “how” of 

preprocessing is beyond the scope of this paper [but see 88]. In sum, there are a series 

of techniques designed to improve statistical estimation given the known noisiness of the 

BOLD signal. Changing these initial parameters can potentially have major consequences 

in subsequent analyses, particularly for resting state connectivity [42,90,91]. While leaving 

them to software defaults is likely acceptable in many cases, they are important and often 

overlooked considerations. For example, incomplete brain “extraction” (i.e., leaving parts 

of the skull in the images) can lead to poor registration between the subject’s brain and 

a generic, standard template brain, which might then lead to erroneous estimation of the 

location of the BOLD signal in the brain.

It is therefore critical to visually inspect data after each phase of preprocessing, and the 

most current pipelines include data reports with many visualizations intended for this 

purpose [86,87,92]. When evaluating an fMRI publication, it is helpful to check that the 

appropriate preprocessing steps have been carried out and that the parameters used are in 

the typical range (or well justified if they deviate from defaults). In some cases, it should 

also be demonstrated that results are robust to minor preprocessing changes (particularly for 

rsfMRI). This can be shown by producing replicable results even with the use of slightly 

different pipelines.

Anatomical scans are typically used to aid in “registration” or “normalization” of fMRI 

images. The blurry, low resolution functional images are matched to the sharper anatomical 

images via a warping procedure, and this warped image is then matched to a generic, 

standard template (e.g., the “Talairach brain atlas”, which is based on the average of a large 

sample of brains) to enable combining images in a common space across individuals [93].
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First Level/Individual Subject Analysis

Just as in the case of behavioral or survey data, individual BOLD activations need to 

be summarized before they can be included in analyses aimed at understanding group, 

task, or experimental condition-based differences. The two most common ways to analyze 

brain activation are as changes in magnitude of the BOLD response or the connectivity 

strength [94]. Magnitude of the BOLD response across the whole brain, or a selected 

region of the brain, can be compared for one experimental condition relative to another 

for each participant, to see which regions of the brain show more or less BOLD activity 

when engaged in a particular behavior. Connectivity analysis involves extracting time series 

from brain regions and computing a measure of the relationship among them, such as a 

correlation coefficient or partial correlation. The relationships can also be built as models 

with dynamic causal modeling [DCM; 20,95] or Bayesian graph analysis [96,97]. Dynamic 

causal models describe the correlated dynamics between two brain regions, and how the 

relationship is modulated by experimental manipulation or other brain activity [20]. These 

models are based on a predetermined distribution of data from past empirical evidence, so 

this method requires expertise [20]. Bayesian network models are graphical representations 

of probabilistic associations between active voxels [96]. The values from first-level analysis 

are then typically summarized statistically into a set of values per person, and further testing 

is carried out at the group level.

Group Models

Parametric Approaches—Group level comparisons that aggregate across participants 

have been the primary method in neuroimaging for comparing experimental conditions, 

groups, or both. The most ubiquitous approach is the general linear model [GLM; 98], which 

is implemented in all the major software packages (FSL, SPM, AFNI, etc.). This approach 

is parametric, which means that the distribution of the data is known and is based on a 

fixed set of parameters. It is also univariate, meaning single variable, i.e., level of BOLD 

activity. This method quantifies the linear relationship between each voxel’s activation and a 

design matrix indicating which conditions occurred at specific points in the time-course. It is 

considered a linear model because it is represented by the following equation: Y=Xβ+ϵ, in 

which each individual in the group has their own unique slope and Y-intercept [98]. Briefly, 

voxels that increase or decrease their activation when engaged in a task, relative to a baseline 

condition or rest, are identified using statistical testing. These clusters of activation contain a 

range of activation values, which are then subjected to a thresholding procedure to determine 

statistical significance when multiple comparisons are accounted for to control the rate of 

false positives [33,99].

A number of issues have been raised with parametric analysis approaches. These models 

involve assumptions about data distributions that do not actually hold true in many, if not 

most, cases of group fMRI data. This may lead to inflated error rates that are closer to 

30–40% versus the 5% error expected when a result has a p value of less than 0.05.

Nonparametric approaches—To address these limitations, nonparametric approaches 

have been adapted for use with fMRI. Nonparametric means that the data distribution 

is treated as unknown and the parameters are not fixed. These methods include using 
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alternative forms of correlation such as the Spearman ranked correlation, Wilcoxon ranked 

correlation, or permutation testing. Permutation testing refers to calculating a test statistic 

by quantifying all possible combinations of the data points. This process builds a sampling 

distribution of the expected null hypothesis which can then be used to infer statistical 

significance. This approach can be computationally demanding for fMRI data, although 

tools exist to make it easier (see Table 3).

Bayesian Approaches—Frequentist statistics test an hypothesis without incorporating 

any probability of whether that hypothesis is correct. Bayesian statistics, on the other hand, 

incorporate probabilities in the form of prior information or priors. These priors can be 

known in advance, or estimated from the data using sampling procedures in a similar 

manner as permutation testing. Bayesian approaches can increase power, such as in the 

case of hierarchical Bayesian analysis, in which information about the distribution of the 

group is used to constrain estimates at the individual level, a process called “shrinkage” for 

how it “shrinks” the distribution by pulling in outliers. Examples of these approaches for 

neuroimaging data include the IMaGES algorithm [97,102].

Advanced modeling approaches—More sophisticated methods have recently become 

available that make it easier to analyze repeated measures or nested designs, such as 

longitudinal studies with multiple visits, or treatment studies that have responder and 

non-responder groups. For example, the 3dLME function in AFNI uses the linear mixed 

effects [lme4, 100] package in R to take in first-level statistical maps of either activation or 

connectivity. The user can then make predictions about group differences while taking into 

account individual variations. This provides additional flexibility, especially for longitudinal 

designs, clinical trials with pre-post measurements, intervention studies, and other more 

complex study designs.

Connectivity analysis is based on the assumption that if the levels of BOLD activity 

in two different brain regions are correlated in time, then those two brain regions are 

functionally connected in some way. Whereas the general linear model assesses changes 

in BOLD magnitude, connectivity analysis quantifies relationships between time series in 

sets of regions. A full discussion of the range of methods, interpretations, and pitfalls of 

connectivity analysis is beyond the scope of this paper [but see 97,101–104]. Connectivity 

analysis involves different assumptions, and reveals information that differs from GLM. 

Most approaches summarize these temporal dynamics using a summary measure for each 

participant (e.g., correlation of BOLD activity levels between region A and region B over X 

time points). These summaries are then aggregated at the group level for standard statistical 

testing (e.g., paired t-test or multi-level model).

Additional methods include multi-variate pattern analysis (MVPA), which identifies 

nonlinear patterns of activation in brain regions in response to a stimulus [108,109]. 

“Representational similarity analysis” measures the relative similarity/dissimilarity of the 

multivariate pattern evoked by different stimuli [53]. Another method is independent 

component analysis (ICA), which separates each piece of the BOLD signal into spatial-

temporal pieces for analysis [110]. Other methods involve extracting a summary measure, 

such as the average connectivity in a network, or a change in parameter estimates, and 
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subject them to further testing using approaches such as machine learning classification to 

delineate group memberships [108], or canonical correlation to link between groups of brain 

variables and sets of other measures, such as behavior or self-report [111].

Assessing Statistical Significance

The accurate assessment of statistical significance of fMRI findings is perhaps the most 

debated issue in neuroimaging analysis. The multiple comparison problem states that given 

the tens of thousands of voxels in the brain, statistically testing each one as if it is 

independent of any other, does not accurately capture both the temporal and the spatial 

relationships among voxels, especially adjacent voxels. This also introduces chance into the 

analysis, in which case some voxels are false positives instead of true activations. Pitfalls of 

doing this incorrectly were exemplified with the now-infamous “dead salmon experiment” 

[113], in which researchers performed an fMRI analysis on the brain of a dead salmon 

and identified significantly activated voxels when using a relaxed criterion of statistical 

significance [45,114].

The false discovery rate (FDR) is a method of conceptualizing the rate of type I errors in 

null hypothesis testing when conducting multiple comparisons [115,116]. Each of the major 

software packages offers slightly different options to correct for multiple comparisons. The 

most conservative method is voxel-wise FDR, which treats each voxel as independent and 

penalizes for the full number of tests conducted. However, this method risks a high rate of 

false negatives because it ignores the spatial relationship among adjacent voxels [115, Figure 

3].

Cluster thresholding, on the other hand, takes into account these spatial relationships 

by not treating voxels as independent but instead identifying “clusters.” In order to 

determine cluster threshold, criteria must be set for the clusters, and then the statistical 

program calculates the likelihood that adjacent voxels belong to a cluster. This is done by 

incorporating the z-value of the voxels; higher z-values correspond to greater activation. 

The threshold is designed to “cut off” voxels below a certain z-value and only include for 

analysis those that are above the value. Once those candidate voxels have been identified, 

then the cluster probability is calculated - the likelihood that a cluster of that size and 

magnitude occurred due to chance.[72].

The challenge of cluster thresholding is that there is typically a tradeoff between power and 

accuracy. Methods for selecting the appropriate cluster size and z-score are highly debated, 

and there is as yet no consensus on the appropriate set of criteria. However, generally 

a cluster threshold of z=3.29 is considered acceptably stringent. Allowing more results 

(voxels) to be included by using a less stringent threshold may avoid false negatives at the 

expense of accepting false positives [33,115]. Especially in precision medicine applications, 

there are issues with replicability and generalizability when thresholding values are not 

standardized. At worst this can facilitate “p hacking” of results (repeated testing until 

significance is achieved without correcting for multiple testing). The scientific consequences 

of a false positive from p-hacking are generally considered greater because it is likely to 

influence other researchers more than a false negative. False negatives, on the other hand, 

are harder to publish (other than in a registered report) and this can lead to bias in published 
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effects aka the “file drawer effect” Note also that many sexual medicine studies are pilot 

studies in understudied or rare populations and topics, and such studies should be clearly 

differentiated from fully-powered studies.

A recent approach that strikes an acceptable balance between power and precision is 

threshold-free cluster enhancement [TFCE; 117]. Rather than prescribing a minimum Z-

score, this method estimates which sets of voxels are clusters by looking at both strength of 

signal in a voxel as well as the signal in other adjacent voxels. This leads to an enhancement 

of signal but preserves the location of the true local maxima. The TFCE method relies on 

permutation testing, which is a statistical test to determine the distribution of the observed 

data under the null hypothesis. Within that distribution lies the maximum TFCE score 

across voxels. Then, this is compared to the TFCE image to assess significance of a TFCE 

statistical map. The 95th percentile in the permuted null distribution can then be used to 

threshold the TFCE image to give inference at the p<0.05 (corrected) level [117].

Probabilistic TFCE [117] further improves on this method by eliminating the need to 

conduct permutation testing (which is time consuming and computationally demanding). 

Instead, it incorporates the probability that a voxel with a given value X is significant, 

given its proximity to other voxels with values close to X. Clusters that are larger, more 

contiguous, and consistent in their values are therefore given higher confidence whereas 

those that are spatially non-contiguous and high in variability are assigned lower confidence. 

This increases the power to detect true effects, without requiring the overly punitive FDR 

or the degrees of freedom of setting criteria for cluster thresholding. However, like most 

cluster-thresholding techniques, small important brain regions (e.g., in the hypothalamus), 

or distributed networks of activation, may be overlooked in favor of larger (e.g., cortical) 

regions.

Part 5: Criticisms, Crises, and Opportunities

Because there are a number of challenges specific to fMRI, there have been numerous 

calls for methodological improvements and best practices [118]. The best methods to 

identify robust, reproducible, and valid results is perhaps the most debated issue in 

neuroimaging analysis (second only to “what is the BOLD signal?”). Problems with earlier 

studies included insufficient control of false positives [115], significant differences between 

software packages and code bugs [72], along with different preprocessing pipelines and 

regression techniques [74,91]. Even using scanners from different vendors [58] creates a 

lack of generalizability and replicable findings [76]. Additionally, physiological confounds 

[42], low power [45], and overfitting of models to data [119] have led some researchers 

to question the usefulness and viability of fMRI [115]. Overfitting occurs when a selected 

model is too stringent based on the original dataset it was built from. This limits its accuracy 

and use with future datasets [119]. However, most of these doubts stem from research that 

lacks merit and standardization, which is a fixable problem for the field.

Underpowered Studies

Statistical “power” refers to the ability to detect a true effect. Low power most commonly 

results from small sample sizes. Recent progress has been made with large-scale scanning 
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initiatives that overcome low power by scanning hundreds of participants such as in the 

Human Connectome Project [120]. Power can also be affected by statistical package 

parameters and superficial data collection, which may limit “orthogonalization” [121]. 

Orthogonalization means that all research variables are separated mathematically, and 

function independently of each other. It is imperative to account for all aspects of variables 

and data, starting with research design and ending with the statistical package suite. 

Additional means to increase power include choosing the appropriate number of stimuli 

based on the number of participants [122], behavioral prescreening [123], and proper 

operationalization of variables [124]. Note that the high cost of neuroimaging can make 

achieving appropriate power challenging; when properly powered studies are not possible, 

research should be clearly labelled as pilot, exploratory, or preliminary findings. It is also 

recommended to compute a power analysis based on your research design. This can be 

simulated with the tidyverse package [125] in R.

Computing Resources Needed to Efficiently Process Data

A well-powered laptop can typically handle a standard analysis workflow on a modest 

size data set, such as 8-minute scans for <25 participants; however, if running a more 

computationally intensive workflow, better resources are required. For larger sample sizes, 

it is recommended that a dedicated multi-core computer be used -- either a standalone 

workstation or a cluster computing system, available at most major universities [126]. This 

allows parallelization of analyses - meaning that the workflow is broken into smaller discrete 

jobs which run at the same time on different computing cores. Some programs, like FSL, 

will automatically parallelize jobs; for others this may require indicating the parameter in the 

workflow design.

Logistical Limitations

Another challenge is that running a well-powered fMRI study is expensive in terms of 

scan costs, training, time, and staff labor. There are also limitations to the types of tasks 

that can be done by participants in the scanner, given the need to keep the head still, the 

requirement that additional physiological or behavioral equipment must be MRI compatible 

(not containing ferrous metal elements), and the confined nature of the scanner. Some 

participants, such as those who have a pacemaker, or implanted iron-containing metal 

(e.g., shrapnel, spinal fusion devices) or even some tattoos, cannot safely be scanned 

because the magnet will interfere with device function or heat up the metal. This limits 

the generalizability of results to full populations.

Interpretational Challenges

The results of fMRI should be interpreted with a clear understanding of the constraints 

of the method. The lay public find maps of “brain blobs” highly convincing, and indeed 

they suggest that we can easily measure biological underpinnings of complex processes. 

However, there are important fallacies of interpretation and misuses of methods that have 

been identified in the literature [114].

An example of a logical fallacy is reverse inference. Reverse inference is an error of 

interpretation, in which a brain region that increases its activation in response to stimulus 
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X is described as “performing” that function [127]. As we now know, many functions of 

the brain are orchestrated by networks, and some functions cannot be attributed to single 

regions. To take a simple example, imagine a study in which you show a person in the 

scanner a photo of a peanut butter and jelly sandwich and a photo of jelly, and average their 

response to each. If you took the “jelly” response and subtracted it from the “peanut butter 

and jelly sandwich” response, you would be left with the “peanut butter sandwich” region of 

the brain. Reverse inference says “yes”; however, this may not be the full story -- the regions 

that appear to be “selective” for peanut butter sandwich might actually code features such as 

the color, memories of the taste, fear if one has a peanut allergy, etc.

Past studies have made similar, oversimplified inferences of brain functions based on flawed 

data collection [127]. This introduced doubt into the field, but also allowed investigators to 

reflect on and raise research standards. Linking brain activation to specific behavior patterns 

or internal experiences requires sophisticated experimental design. All conditions must be 

kept constant, except the key variable being manipulated. Allen et al. [25] provide a sound 

example of using the subtraction method to distinguish rectum stimulation from prostate 

stimulation-induced activations in the sensory cortex of men. The stimulating probe was first 

pressed against just the rectal wall, then more forcefully against the rectal wall to stimulate 

the prostate also. The sensory cortical response to the former was subtracted from the latter, 

revealing a unique response to the prostate stimulation. If robust research principles are 

used, we can make stronger claims about brain function and the human experience.

The Causality Question

A thorny issue in connectivity analysis is the question of causal inference [102,104]. Since 

most studies of causality infer relationships based on sequential response (cause precedes 

effect) it logically follows that it might be possible to estimate such relationships from 

temporal dynamics in fMRI. However, this has proven to be a complex and controversial 

undertaking, due largely to the signal-to-noise issues inherent in neuroimaging as well 

as conceptual and statistical concerns [104]. Causal modeling typically requires a priori 
hypotheses about brain regions that may be active in the scanner. It is not always possible to 

know which brain networks will be relevant, and lack of precision in this process can defeat 

the premise of hypothesis testing [128]. However, brain network analysis can also provide 

useful information. The information should be viewed as inferential and not definitive 

[129]. There are important steps to take when assessing presumptive causal evidence [106]. 

Causal modeling graphs in conjunction with other methods may provide stronger evidence. 

The basic approach is to analyze a response evoked by a stimulus. One such method is 

“transcranial magnetic stimulation (TMS)”, which temporarily perturbs regions of the brain 

to evoke a region-specific response [130]. Another method is applying a sensory stimulus 

and mapping the responsive brain regions [131]. These methods provide direct evidence of 

brain function similar to single-neuron or EEG evoked responses, especially when combined 

with results from additional imaging methods [130,132,133].

Circular Correlations

Some high correlations have been labeled as circular, unscientific and biased. This occurs 

when non-independent region of interest (ROI) analyses are used. For example, after 
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conducting and thresholding a whole-brain analysis, the researcher picks the most active 

area, extracts its signal and correlates it with an individual difference measure, and claims a 

high correlation between a signal in Region X and that individual difference. This method 

leads to bias because the two analyses are not independent -- the selection process (whole 

brain analysis) biases the subsequent ROI analysis (aka cherry picking). In an influential 

paper, Vul et al. [134] argued that true correlations 0.8 and above are rare, despite many 

papers claiming to have found such high correlations. The majority of publications also did 

not share their data and code openly, and were reluctant to freely share the information with 

Vul et al. According to Poldrack and Mumford [99], it is possible to find high correlations, 

but researchers must use sound principles to make such claims.

The solution to this is to use independent ROIs for analysis - predefined brain regions 

based on anatomical, meta-analytic, or other methods before any analyses are conducted. 

Behavioral data and fMRI data also depend on the reliability of measures, the use 

of multiple comparison corrections (to avoid the “dead salmon error”), and appropriate 

modeling choices [99]. Open science best practices, such as preregistration of hypotheses 

and methods before data collection and sharing of data and code, can also contribute to 

the replicability of findings. If these principles are implemented, the chances of circular 

correlations being published will be greatly reduced.

Circular analysis, also termed, “double dipping”, refers to choices made in analysis that are 

contingent on results of a previous analysis, and therefore biased. Button [75] found that 

42% of randomly sampled articles (n=134) from five journals re-used previously published 

data to make new claims. This is problematic because if the original data collection was 

biased, the impact “voodoo” gets recycled from one analysis to the next. This highlights the 

importance of proper hypothesis testing and replication of findings across laboratories.

Potential Solutions to Methodological Limitations

Some researchers propose an open-science approach, in which data, protocols, and code are 

shared to promote transparency, rigor, and reproducibility. This can also help researchers 

to standardize research practices [73, 74], and to choose appropriate experimental designs 

for research questions. Sharing code repositories, analysis pipelines [72], significant and 

nonsignificant results [76], and all raw data [75] could improve research quality. As a 

preventative step, preregistering hypotheses and predefining analysis plans ensures that 

researchers do not engage in excessive post hoc hypothesis testing or “p-hacking” [75].

Methodological improvements are continually evolving to meet the needs of researchers, 

including faster, quieter and more precise imaging strategies (i.e., “sequences”) 

[30,61,49,51,135]. The fMRI of the future will likely be more efficient and with higher 

average signal-to-noise ratios than what is currently available.

Summary

Functional MRI is a tool with clinical as well as research potential, but it is also a nascent, 

technically complex method whose basic premise rests on a number of scientific unknowns. 

It is important to be an informed consumer of the fMRI literature. If one is conducting 

Mills-Finnerty et al. Page 16

J Sex Med. Author manuscript; available in PMC 2023 July 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



neuroimaging experiments, a healthy skepticism is warranted, along with keeping up with 

constant technological advances (and challenges). A list of resources for performing fMRI 

analysis while cognizant of its pitfalls can be found in the Supplemental Methods. We hope 

that this paper has reduced some of the mystery of how colorful brain maps are generated 

and highlighted both the pros and cons of the method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The Hemodynamic Response Function (HRF). This figure depicts a model of the average 

blood oxygenation level (red) and deoxygenation level (blue) in a hypothetical region of 

the brain. Although the features of the signal are generally agreed upon – the initial dip, 

followed by a delayed peak, and then a dip back below baseline – the specific parameters are 

known to vary among individuals (e.g., older vs younger adults) and between brain regions 

(e.g., those with different levels of vascularity). This type of HRF form should be considered 

a model that approximates the form of the “true” HRF.
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Figure 2. 
a. Block Design schematic. A hypothetical average BOLD response is shown for three 

blocks of stimulus presentation, which consist of ten trials of three different tasks presented 

over a 30s time period, followed by 30s of rest. For each period of stimulus presentation, the 

summed HRF exhibits an initial dip, peak, then plateaus during the majority of the stimulus 

presentation period, finally dipping below baseline, and eventually stabilizing back at zero 

before the next block.2b. Event-related design. Three types of stimuli are presented in an 

interspersed manner with varying temporal delay. If the events are adequately spaced, HRF 

modeling can be applied to estimate effects of individual trials or stimulus types. ‘
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Figure 3. 
Hypothetical examples of overly permissive thresholding, appropriate thresholding, and 

overly stringent thresholding.
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Table 1.

Magnetic Resonance Imaging Terms

Term/Acronym Meaning

Artifact An irregularity in the magnetic field caused by head movement, bony cavities, or the presence of metal, which leads 
to loss of integrity of signal.

Atlas A brain template used to define regions and/or networks, e.g., the MNI Atlas, Talairach Atlas, Yeo Atlas.

Block fMRI Consecutive blocks of task stimuli presented in series (e.g., for 30s), interspersed with rest periods.

BOLD Blood Oxygenation Level Dependent signal; measures magnitude of activation using contrast between oxygenated 
and deoxygenated blood.

Cluster A contiguous part of a statistical brain map after some method of significance testing (e.g., “we identified a 
significant cluster in the left insula”).

Connectivity Estimates of the dynamic temporal relationship between brain cells, areas, regions or networks.

Event-related Task-based design, individual task trials interspersed with variable inter-trial interval

FWE/FDR Family wise error/false discovery rate: multiple testing considerations to correct for the ~50,000 voxels in a brain.

GLM General linear model - most common statistical approach for fMRI data, implemented in all major packages (FSL, 
AFNI, SPM).

HRF Hemodynamic response function - the shape and lag used to model the BOLD response.

ITI Inter-trial interval - the delay between successive task trials.

Mask To extract signal from a discrete region or network for analysis, a mask is created, which is a 3D map of which 
voxels should be included in analysis.

Network An interacting, topologically organized set of brain regions.

RF pulse Radiofrequency pulse - the perturbational signal emitted by the scanner.

ROI Region of interest; a predefined brain region used for analysis of discrete, usually anatomically-defined brain 
regions.

rsfMRI Resting state fMRI - participant rests in the scanner with eyes open or closed.

SNR Signal-to-noise ratio, an index of data quality; e.g., “there is low SNR in that region due to an artifact near the orbital 
sinus”.

Slice A full acquisition in one plane; e.g., “36 sagittal slices”.

tesla Unit of measurement for magnet strength; abbreviated “T” (e.g., a 3T scanner).

Time series 
autocorrelation

Degree of similarity in activation between two regions while accounting for the time lapse between them.

TE Time to echo - the time between administration of the magnetic pulse and the corresponding echo from the perturbed 
atomic nuclei in the brain.

TR Time to repetition - the time between magnetic pulses (typically ~2s).

Volume A single complete acquisition (whole brain/part of the brain) (e.g., “336 volumes”).

Voxel A 3D pixel (e.g., “the region contained 200 voxels”).
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Table 2.

Data Analysis Principles

Preprocessing Step Purpose Best Practices/Guidelines

Brain extraction Remove skull from image Visually check skull removal for all images (affects 
registration)

Global signal regression Normalize BOLD values to participant mean Much debate over whether this helps or hurts 
measurement

High pass filtering Removes low-frequency “BOLD drift“ artifacts Typical value is 100–120 seconds

Linear detrending Corrects for how BOLD signal “drifts” upwards over 
time

Use linear trend correction

Motion correction Estimate and regress out effects of inadvertent head 
motion

Roll, pitch and yaw displacements; can add their 
temporal derivatives also

Physiological denoising Record cardiac, respiratory, and other physiological 
signals during the scan, and then filter out the 
corresponding noise from fMRI data

Essential for rsFMRI, helpful for task fMRI

Prewhitening Remove time series autocorrelation to make estimation 
more valid and efficient

Useful in most cases, but not when trials <50 or TR 
>30s

Reconstruction Convert “raw” data into a 4D (i.e., including changes 
over time) brain image

Varies by scanner/software

Registration/
normalization

Warp individual participant brain to a generic standard 
template

Check fits carefully - many issues originate here!

Slice timing correction Corrects for differences in acquisition of slices Only applicable for certain acquisitions; check with 
MR physicist

Spatial smoothing Improve estimation by blurring nearby signals together 5–8mm is standard; 10–12 may be justified; 15+ is 
generally not advised
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Table 3.

List of tools for rsfMRI and task fMRI data analysis.

Tool Name and Purpose Link

Analysis of Functional Neuroimaging (AFNI) https://afni.nimh.nih.gov/

FMRIB Software Library (FSL) https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

Statistical Parametric Mapping (SPM) https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

fMRIPrep - Data Preprocessing https://fmriprep.org/en/stable/index.html

MRIQC - Image Quality Metrics https://mriqc.readthedocs.io/en/stable/index.html

Brain Connectivity Toolbox https://sites.google.com/site/bctnet/

fMRI Power http://neuropowertools.org/

Statistical Non-Parametric Mapping https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/
software/snpm

Non-parametric analysis in FSL https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/UserGuide

Parallel/nonparametric analysis tool https://www.nitrc.org/projects/broccoli/

Independent Multi-sample Greedy Equivalence Search 
(connectivity tool)

https://rdrr.io/cran/IMaGES/

JuSpace - rsfMRI + PET https://github.com/juryxy/JuSpace

ReStNeuMap - Resting State for Neurosurgery https://github.com/CIMeC-MRI-Lab/ReStNeuMap

ENIGMA - Connectivity https://www.nitrc.org/projects/enigma-fmri/

Simtb - fMRI Simulation Toolbox https://trendscenter.org/software/simtb/

BrainIAK - Analysis Kit https://brainiak.org/docs/
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Table 4.

Central nervous system correlates of human sexuality and representative recent citations.

Healthy sexual 
function

Diverse sexualities Physiological aspects of sexuality Sexual pathology and dysfunction

Sexual desire [161] Sex differences [160, 155, 52] Menstrual cycle [136, 141] Pelvic pain syndromes [154, 167, 137]

Arousal [185, 144, 
169]

Gender Identity (cis/trans, 
gender dysphoria) [149, 179, 
177]

Pharmacology (e.g., medications, 
recreational drugs, side effects) [158, 
180]

Pedophilia [166, 143]

Orgasm [182, 159] Sexual orientation 
(heterosexual, homosexual, 
Bisexual) [149, 160, 179]

Urologic [181, 174] Maladaptive behavior (e.g. risky sexual 
behavior, compulsive sexual behavior, 
excessive masturbation, pornography 
addiction) [150, 156, 170]

Sexual satisfaction 
[186, 183]

Sexual preferences (BDSM, 
kink)

Mapping genital sensory projections 
to the brain [23, 25, 131, 140, 144, 
146]

Disorders of the nervous system (e.g. 
spinal cord injury) [24, 157, 182]

Hormonal factors [163, 177, 172, 
147]

Erectile dysfunction Premature ejaculation 
[171, 184, 168]
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