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eDNA metabarcoding 
as a promising conservation 
tool to monitor fish diversity 
in Beijing water systems compared 
with ground cages
Mei Shen1, Nengwen Xiao1*, Ziyi Zhao2, Ningning Guo1, Zunlan Luo1, Guang Sun1 & 
Junsheng Li1

Fish diversity, an important indicator of the health of aquatic ecosystems, is declining sharply due 
to water pollution, overfishing, climate change, and species invasion. For protecting fish diversity, 
effective surveying and monitoring are prerequisites. In this study, eDNA (environmental DNA) 
metabarcoding and ground cages were used to survey the fish diversity of the Chaobai and Beiyun 
Rivers in Beijing. Based on the two methods, we identified 40 species, belonging to 35 genera, 18 
families, and six orders. The richness of fish identified by eDNA metabarcoding was significantly 
higher than that captured by ground cages in both rivers. The fish captured by the ground cage 
method were all recognized by eDNA metabarcoding, except Squalidus wolterstorffi and Saurogobio 
dabryi, which were captured only in ground cages. The correlation of relative abundance between 
the two methods was affected by the properties of the rivers, such as the flow rate. Fish caught by 
ground cage in the Beiyun River were identified by eDNA, but not in the Chaobai River. Our results also 
suggest that the Chaobai River has higher fish diversity than the Beiyun River and different community 
assemblage. In addition to differences in the natural properties of the focal rivers, the development 
of urbanization is also an important contributor to different community structures overserved. eDNA 
metabarcoding as a new survey tool has great application prospects, it provides certain theoretical 
data and methodological references for the protection and management of river fish diversity.

Fish species account for one-quarter of the world’s vertebrates, and their diversity is an important indicator of 
aquatic ecosystem health1. The 2020 Living Planet Index (LPI) shows that 3741 monitored populations have 
declined by an average of 84%, equivalent to a 4% decline per year since 1970. Freshwater fish biodiversity is 
declining much faster than that in oceans or forests2, owing to various factors such as water pollution, overfish-
ing, and species invasion3,4.

Environmental DNA (eDNA) is a mixture of DNA from different species, such as microorganisms, animals, 
and plants. It includes the intracellular DNA emitted by the organism, as well as the extracellular DNA released 
into the environment after cell death by lysis5–7. Environmental DNA technology is used to capture DNA from 
environmental samples, to preserve, extract, amplify, sequence, and classify it, and then determine the distribu-
tion of organisms in the sampled environment8. So far, eDNA has been used to monitor the status of endangered9 
and invasive10 species, and to assess the biomass11 and diversity1,12,13 of aquatic organisms, especially fish. How-
ever, in studies on fish diversity using the eDNA method, the water body is generally the ocean or a single river 
or lake14,15. Fewer studies have investigated fish diversity in multiple rivers16 by eDNA and compared the com-
munity structure of different rivers in combination with urban development.

Beijing is located in the north of China and is located across of five water systems, which belonging to the 
Haihe River System. There is rich fish diversity in Beijing, with more than 80 historical species17–19. A total of 93 
species were identified from a traditional survey of fish in and around Beijing20. However, many surveys were 
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long time ago, and the survey-methods, such as sticky nets, hand-scattered nets, and obtaining specimens from 
fishermen, are traditional with destructive18,19. Therefore, using cost-effective, repeatable, rapid, and no-invasive 
methods for monitoring and assessing fish diversity are crucial for the timely and effective management and 
conservation of fish in Beijing. The high-throughput sequencing (HTS) combined with eDNA—eDNA meta-
barcoding—is increasingly used as a powerful tool to monitor and assess fish diversity1,12,21,22.

Beijing is one of the fastest growing urban areas in China23. The urbanization rate of Beijing increased from 
54.9 to 86.6%, from 1978 to 2019. Urbanization inevitably affects fish habitats through a reduction in the water 
area, aggravated pollution and channel hardening24,25. Urbanization is an essential trigger of species extinction 
and homogenization26. Urbanization has been carried out unevenly in regional Beijing. According to Beijing 
Ecology and Environment Statement 2020 and Xiao27, the Beiyun River located in the central plain, has the highest 
urbanization rate, and the worst water quality of all of the rivers within Beijing. In contrast, the Chaobai River 
is located in the northern mountainous region, with a lower urbanization rate, and has the best water quality 
in Beijing.

To compare fish diversity and composition of eDNA metabarcoding with ground cages, fish diversity was 
surveyed in the Chaobai and Beiyun Rivers at different sites in Beijing. This article focused on three research 
objectives: (1) to present the results of two methods of surveying fish composition, diversity, and relative in two 
water systems; (2) to compare fish diversity collected by ground cages and eDNA metabarcoding, and analyze 
the correlations between the results of the two methods for exploring the feasibility of eDNA for surveying fish 
diversity in Beijing; (3) to compare the diversity and community structure of the two river systems and analyze 
the reasons about the result.

Methods
Sampling sites.  Five sites were surveyed in the Chao and Bai rivers, which belong to the Chaobai River. 
Addtional five sampling points were in the Beiyun, Wenyu, and Qinghe rivers, which are part of the Beiyun 
River. All water sampling was conducted in September 2020 (Fig. 1). The ground cage and eDNA metabarcoding 
methods were applied at each sampling point. All experiments were performed in accordance with Laboratory 
animal—Guideline for ethical review of animal welfare, ICS 65.020.30.

Water samples collection.  Surface water samples of 1 L were collected and mixed in a sterile, sealable 
brown plastic bottle and preserved at 4 °C for transporting to the laboratory. Three duplicate samples from one 
site were collected for eDNA analysis. Then, the samples were filtered through a 0.45 μm nylon filter membrane 
with a vacuum peristaltic pump. The glass funnel and filter head were thoroughly disinfected with 10% sodium 
hypochlorite before use. The filter membranes of each point were immediately placed into sterile 2 mL centrifu-
gal tubes and stored at − 20 °C for the experiments. At each site, filtration blanks were established by filtering 1 
L of distilled water in the same way to check for contamination during field collection.

Capturing fish by ground cage.  Ground cages were used as the traditional method to contrast with the 
eDNA metabarcoding. We followed the method of Xu28 with some modifications for considering various reasons 
and following the advice of fish experts, here is how we did it: three cages with a length of 2 m were placed at 
each site, and fish food was placed in the cages. The distance between the cages was about 3 m. The deployment 
time of the cages was 24 h to maximize the probability of detecting fish species. The water sample collection for 
eDNA, and fish acquisition by ground cages at each site were conducted simultaneously. This approach ensured 
that differences in fish assemblages determined between methods did not result from fish migration. After cap-
turing, the fish specimens were stored on ice and transported to the laboratory within 10 h. To avoid potential 
bias in species assessment, identification was performed in a timely manner, and abundance at each site was 
recorded.

DNA extraction and metabarcoding.  The eDNA extraction experiment was completed at the Molecu-
lar Biology Laboratory of the Chinese Academy of Environmental Sciences, where all equipment are routinely 
decontaminated with UV light. The vessel were cleaned with 10% sodium hypochlorite and consumable material 
for extraction were autoclaved. DNA from the filters was extracted by Qiagen DNeasy Tissue and Blood DNA 
extraction kit (Qiagen, Venlo, the Netherlands) following the manufacturer’s protocol with some modifications. 
The filter membrane obtained by 1 L water suction filtration was cut and placed in a 2 mL centrifuge tube. Then, 
720 μL of ATL tissue lysis buffer reagent and 80 μL of proteinase K were added to the tube and mixed by shaking. 
Incubation of this mixture was performed at 56 °C for 3 h. Next, the samples were divided into two groups, and 
an 800 μL mixture of 400 μL AL lysis buffer & 400 μL anhydrous alcohol was added. Then, 500 μL of AW1 wash 
buffer and 500 μL of AW2 wash buffer were added to each tube and the tubes were centrifuged. Finally, 50 μL of 
AE buffer was added to each elution column, which was placed in a 37 °C water bath for 10 min before centri-
fuging. Filtration blanks and negative controls were co-extracted alongside the samples and were subjected to 
the same protocol. DNA was detected using 1.0% agarose gel. No data or bands were observed for the filtration 
blanks or negative controls.

Metabarcoding was performed in duplicate on each DNA extract with the primers MiFish-F (5′-GTC​GGT​
AAA​ACT​CGT​GCC​AGC-3′) and MiFish-R (5′-CAT​AGT​GGG​GTA​TCTA ATC​CCA​GTTTG-3′)29, which target 
the 12S rDNA region (~ 180 bp) of the mitochondrial genome, to identify fish species. Three PCR replicates were 
performed for each sample, the negative control and filtrate blanks. A two-step PCR protocol was adopted in 
this study. To determine the volume of DNA that should be added to the PCR reaction, using a Qubit 3.0 DNA 
Assay Kit for precise quantification of genomic DNA prior to the first round of PCR. The PCR assay volume was 
30 μL and included 15 μL 2 × Hieff® Robust PCR Master Mix, 1 μL of the 10 μm forward and reverse primers, 
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and 10–20 g of DNA template; ddH2O was added to 30 μL. For all samples, the first-step PCR was performed as 
follows: 94 °C for 2 min, followed by 30 cycles of 98 °C for 5 s, 50 °C for 10 s, and 72 °C for 10 s, with a final exten-
sion at 72 °C for 5 min. In the second-step PCR, Illumina bridge PCR-compatible primers were introduced into 
the sterile PCR tube (200 μL) to prepare the same reaction system as in the first-step PCR. The reaction solution 
was gently blown or stirred by pipette and briefly centrifuged to the bottom of the tube. The PCR procedure was 
as follows: 95 °C for 3 min, followed by 5 cycles of 94 °C for 20 s, 55 °C for 20 s, and 72 °C for 30 s, with a final 
extension at 72 °C for 5 min. After the two-step PCR amplification, the PCR products were detected using 1.0% 
agarose gel. None of the filtration blanks or negative controls exhibited amplification.

High‑throughput sequencing and bioinformatics analysis.  The PCR products were utilized to con-
struct libraries, followed by high-throughput sequencing on an Illumina MiSeq® using a MiSeq Reagent Kit 
v3 (600-cycle) (Sangon Biotech (Shanghai) Co., Ltd.). Paired-end sequence data (PE reads) were obtained by 
utilizing PEAR (v 0.9.8) to combine with tags based on overlaps30. Then, the samples were identified and distin-
guished according to the barcode tag sequence. To obtain clean reads, the data were filtered by Fastp (v 0.21.0)31 
to eliminate adapter contamination and reads with low quality. USEARCH (v 11.0.667)32 was used to perform 
OTU (operational taxonomic unit) clustering of the optimized sequences of each sample according to 97% 
similarity, and chimeras were filtered out. All optimized sequences were mapped to each representative OTU 
sequence using USEARCH to obtain an OTU abundance table. Recently, ASV (Amplicon Sequence Variant) 

Figure 1.   Sampling areas in Chaobai River (  light grey) and Beiyun River (  dark grey), with a total of 10 
points. At each sampling point (▲), 3 L of water was used for eDNA while ground cages were used to capture 
fish. This map was created using Arcgis version 10.6 (https://​deskt​op.​arcgis.​com/) based on the Resource and 
Environment Science and Data Center (https://​www.​resdc.​cn/​Defau​lt.​aspx), edited by Mei Shen].

https://desktop.arcgis.com/
https://www.resdc.cn/Default.aspx


4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11113  | https://doi.org/10.1038/s41598-022-15488-w

www.nature.com/scientificreports/

methods have been developed in the field of microbiology, replacing OTU methods due to their more accurate 
estimation of biological sequences33. But this study still used “clustering” of OTU rather than “denoising” of ASV.

The taxonomic assignment of OTU sequences was mapped to the fish gene database downloaded from the 
Mitochondrial Genome Database of Fish (MitoFish)34 website (http://​mitof​ish.​aori.u-​tokyo.​ac.​jp/​downl​oad.​html) 
using the Blastn tool, all of Beijing’s historical species are included in the database that we searched. Sequences 
were designated as belonging to a species if there was > 99% sequence identity to the MitoFish database barcode 
across the entire length of the amplicon, if a sequence from at least one other species within the same genus 
was available for comparison (and < 99% identical), and if the distribution of the species matched the published 
records of Beijing20,35,36. An OTU was categorized into another OTU if a sequence could not be assigned to a 
species. If a sequence could be assigned to several species (< 99% matching rate) and the species belonged to the 
same genus, the taxonomic resolution was collapsed to the genus level. Finally, OTUs representing each taxon 
were matched using TaxonKit (v 0.8.0.)37.

The eDNA data were compared with the data obtained by ground cages for the species richness table, and 
species and sequence abundance data were standardized to the proportions of the total sample. The relative 
abundance of each taxonomic rank was calculated from the OTU count table and the species count table. The 
vegan package (https://​rdrr.​io/​cran/​vegan/​man/​vegan-​packa​ge.​html) of R (v4.1.0) (https://​www.r-​proje​ct.​org/ 
) was used to calculate the fish richness of each sample, and a t-test was used to determine whether there were 
significant differences between methods. The beta diversity of the two water systems was sorted by non-metric 
multidimensional scaling (NMDS) based on the Bray–Curtis to determine the differences in species distribution 
between the two water systems.

Results
Fish diversity.  Based on eDNA metabarcoding 50 fish OTUs, resulting in 38 fish species were identified 
from 30 sampling events (33 genera, 18 families, six orders), whereas from ground cages 19 species from a total 
of 711 individuals were identified (19 genera, six families, and two orders). Fish species obtained by the two 
methods comprised 40 species in 35 genera, 18 families, and six orders (Table 1). Compared with the ground 
cage results, higher numbers of species, genera, families, and orders were detected by eDNA metabarcoding. In 
total, 17 species were detected by both eDNA metabarcoding and ground cages, and 21 species were identified 
by eDNA metabarcoding alone. Squalidus wolterstorffi and Saurogobio dabryi were caught by ground cages 
exclusively (Fig. 2).

Six orders were detected by eDNA metabarcoding. Cypriniformes and Perciformes were the dominant orders, 
with a sequence abundance in the total sequence abundance of 75.73% and 20.10% respectively. Siluriformes was 
the most common order, accounting for 2.99% of all sequences. Beloniformes (0.75%), Salmoniformes (0.35%), 
and Synbranchiformes (0.07%) were rare orders. The dominant families in Cypriniformes were Cyprinidae 
(87.1%) and Cobitidae (12.90%) (Fig. 3a). The less abundant orders contained only 1–2 species, such as Oryzias 
latipes in Beloniformes, Hypomesus olidus and Oncorhynchus mykiss in Salmoniformes, and Monopterus albus in 
Synbranchiformes (Table 1). Only Cypriniformes (93.18%) and Perciformes (6.82%) were captured by the ground 
cage method. Cypriniformes was also composed of Cyprinidae (82.14%) and Cobitidae (17.86%) (Fig. 3b). 
Among them, the dominant species were Hemiculter leucisculus and Pseudorasbora parva in Cyprinidae and 
Paramisgurnus dabryanus in Cobitidae (Table 1).

Comparison and relationship between eDNA metabarcoding and ground cages.  At the genus 
level, the diversity obtained by eDNA metabarcoding (n = 33) was higher than that obtained by ground cages 
(n = 19). The genera with high relative abundance based on eDNA metabarcoding were Carassius (35.28%), 
followed by Micropercops (12.63%) (Fig. 4). The genera with high relative abundance captured by ground cages 
were Hemiculter (40.65%) and Pseudorasbora (27.28%) (Fig. 4).

The fish richness at each site detected by eDNA metabarcoding (average = 15.10 (SD = 7.19)) was significantly 
higher than that captured by ground (average = 4.60 (SD = 2.37); Welch two-sample t-test, T = 4.1603, df = 10.941, 
p < 0.05). The fish richness identified using eDNA metabarcoding in the Chaobai River (n = 34) and the Beiyun 
River (n = 18) was higher than that identified with ground cages (Fig. 5). The difference was significant of the 
Beiyun River (Welch two-sample t-test, t = 1.93, df = 4.00, p < 0.05; Fig. 5) but not significant with the Chaobai 
River (Welch two-sample t-test, t = 1.93, df = 4.00, p = 0.13).

The fish richness obtained by the two methods together at each site as a proportion of the fish richness cap-
tured by the ground cage method only is used to illustrate the capture efficiency of the eDNA metabarcoding, 
expressed as a percentage in the figure (Fig. 6). The abundance of fish identified by the eDNA metabarcoding is 
higher or equal to that of the traditional method. The fish obtained by both methods at all points in the Beiyun 
River accounted for 100% of the fish caught by the traditional method alone. However, the percentages of all 
sites in Chaobai River is less than 100% (Fig. 6). Although both the eDNA metabarcoding and the ground cage 
method captured one species at CB5, but the species is not the same species. Siniperca chuatsi was detected by 
eDNA metabarcoding, but the species was captured by ground cage is Hemiculter leucisculus.

Diversity of the Chaobai and Beiyun Rivers.  The fish richness was slightly higher in the Chaobai River 
(36 species: 34 based on eDNA metabarcoding, 18 based on ground cages) than in the Beiyun River (33 spe-
cies: 33 based on eDNA metabarcoding, 8 based on ground cages) (Table 1). For the species detected by eDNA, 
the most abundant in the Chaobai River was Zacco platypus (18.41%), followed by Carassius auratus (15.79%), 
Rhynchocypris lagowskii (14.53%), and Hypophthalmichthys nobilis (12.57%). Carassius auratus (44.02%) was the 
most abundant species detected in the Beiyun River, followed by Micropercops swinhonis (16.37%), Misgurnus 
anguillicaudatus (11.40%), and Pseudorasbora parva (11.32%) (Table 1).

http://mitofish.aori.u-tokyo.ac.jp/download.html
https://rdrr.io/cran/vegan/man/vegan-package.html
https://www.r-project.org/
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The distribution of the top 10 most abundant species in the two rivers shown that the most abundant species 
caught by ground cages in the Chaobai River was Hemiculter leucisculus (57.80%), followed by Paramisgurnus 
dabryanus (19.80%), Pseudorasbora parva (7.20%), and Abbottina rivularis (3.80%). The most abundant spe-
cies in the Beiyun River was Pseudorasbora parva (75.24%), followed by Rhodeus ocellatus (8.09%), Misgurnus 
anguillicaudatus (7.14%), and Odontobutis potamophila (3.81%) (Table 1).

Beta diversity showed a separation of the fish communities between the Chaobai and Beiyun Rivers by both 
the eDNA metabarcoding and ground cage method (Fig. 7). However, the distribution of samples in the Beiyun 
River was more concentrated, while samples in the Chaobai River were more scattered, and the distance between 
CB5 and the other sample points was very far.

Table 1.   Sequence numbers of fish detected by eDNA and caught by ground cages at 10 sites in Beijing.

Order Species

eDNA (sequence) Traditional (Number)

Chaobai Beiyun Total Chaobai Beiyun Total

Beloniformes Oryzias latipes 1073 3008 4081 0 0 0

Cypriniformes

Abbottina rivularis 924 2301 3225 19 6 25

Acheilognathus macropterus 46 874 920 4 2 6

Carassius auratus 26,614 165,549 192,163 0 0 0

Chanodichthys erythropterus 84 39 123 3 0 3

Cobitis melanoleuca 1726 0 1726 0 0 0

Cyprinus carpio 9189 3151 12,340 0 0 0

Gnathopogon strigatus 140 0 140 0 0 0

Hypophthalmichthys molitrix 640 0 640 0 0 0

Squalidus wolterstorffi 0 0 0 5 0 5

Hypophthalmichthys nobilis 21,193 357 21,550 0 0 0

Misgurnus anguillicaudatus 762 42,882 43,644 4 15 19

Cobitis granoci 1393 2415 3808 1 0 1

Saurogobio dabryi 0 0 0 4 0 0

Opsariichthys uncirostris 2440 39 2479 1 0 1

Paramisgurnus dabryanus 3399 643 4042 99 3 102

Pseudorasbora parva 5265 42,561 47,826 36 158 194

Rhodeus ocellatus 758 14,452 15,210 1 17 18

Rhynchocypris lagowskii 24,493 177 24,670 11 0 11

Sarcocheilichthys soldatovi 2890 393 3283 5 0 5

Ctenopharyngodon idella 299 332 631 0 0 0

Zacco platypus 31,034 1243 32,277 0 0 0

Hemiculter leucisculus 618 1145 1763 289 0 289

Perciformes

Micropterus salmoides 0 219 219 0 0 0

Rhinogobius cliffordpopei 0 176 176 0 0 0

Channa argus 4962 20,092 25,054 2 0 2

Lateolabrax maculatus 0 32 32 0 0 0

Macropodus chinensis 366 505 871 5 0 5

Micropercops swinhonis 7263 61,546 68,809 9 0 9

Odontobutis potamophila 90 5620 5710 0 8 0

Rhinogobius brunneus 1365 424 1789 3 1 4

Rhinogobius similis 3012 1037 4049 0 0 0

Siniperca chuatsi 770 204 2773 0 0 0

Salmoniformes
Hypomesus olidus 260 0 260 0 0 0

Oncorhynchus mykiss 1647 0 1647 0 0 0

Siluriformes

Ictalurus punctatus 0 85 85 0 0 0

Silurus asotus 6842 514 7356 0 0 0

Tachysurus fulvidraco 3552 3871 7423 0 0 0

Tachysurus ussuriensis 1393 32 1425 0 0 0

Synbranchiformes Monopterus albus 259 136 395 0 0 0
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Discussion
Fish are an important component of aquatic ecosystems and have a significant impact on the balance of an eco-
system. Fish can also be used as an indicator to evaluate the biological integrity of water bodies38. The application 
of nondestructive techniques to investigate fish diversity is becoming an inevitable trend. In some studies on 
fish diversity in Beijing20,36, the results showed a gradual decline of fish diversity due to the influence of human 
activities. In this study, we demonstrated proof that eDNA can be used for monitoring fish diversity in river, 

Figure 2.   Number of fish species identified by eDNA (eDNA metabarcoding) metabarcoding and ground cages 
(17 taxa were detected by both methods, 21 taxa were detected only by eDNA, and two taxa were detected only 
by ground cages).

Figure 3.   Relative abundance of fish at the order level detected by the two methods and relative abundance of 
occurrence at the family level corresponding to Cypriniformes.
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as the species richness detected by the eDNA metabarcoding was higher than captured traditional method, 
supporting other studies investigating riverine fishes16. We also showed that the fish community structure of 
Beiyun River that is highly urbanized is relatively homogeneous compared with Chaobai River that occurs in a 
montane environment.

Fish diversity.  The 40 fish species detected in this study (Table 1) were recorded in the historical survey 
conducted in Beijing20,36. Dominant groups belonged to Cypriniformes, Cyprinidae, and Cobiaceae (Fig. 3). Our 

Figure 4.   Relative abundance (%) of fish detected at each sampling point at the genus level by (a) eDNA 
metabarcoding and (b) ground cages.
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result is consistent with that of Zhang, who showed that the relative abundance of Cypriniformes, Perciformes, 
Cyprinidae and Cobitidae was 72.0%, 11.8%, 68.0% and 12.0%, respectively20. As such our study indicated that 
the dominant fish species in Beijing have not changed in the past decades.

There were 17 fish species obtained by both methods (Fig. 2). Among them, Pseudorasbora parva, Abbottina 
rivularis, Hemiculter leucisculus, Paramisgurnus dabryanus, Rhodeus ocellatus, Carassius auratus, Opsariichthys 
uncirostris, and Micropercops swinhonis are common species in eastern China and are the dominant species 
investigated in research20,39. Cobitis granoci and Rhynchocypris lagowskii have adapted to the cold climate in the 
north39. However, it is worth noting that Odontobutis potamophila is generally distributed in the middle and lower 
reaches of the Yangtze River40. This species was not recorded in the historical survey results of Beijing Fishes, 

Figure 5.   Richness detected at each site using eDNA metabarcoding (red) or ground cage fishing (blue). 
Differences between the methods were determined using t-tests (number of species followed a normal 
distribution); Chaobai River P > 0.05; Beiyun River P < 0.05.

Figure 6.   Species richness captured by both methods (the % is the proportion of the number of species 
obtained by both methods to species richness captured by ground cage alone).
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Amphibians and Reptiles (1994) until recently36,41. Such fish may have been introduced due to south-to-north 
water diversion or may have been released by citizens. Carassius auratus, Opsariichthys uncirostris, and other fish 
are economic species. However, there are some small non-economic fish species, such as Pseudorasbora parva, 
Abbottina rivularis, Macropodus chinensis, that play an important role in the ecosystem and are an important 
food source for some birds19.

Richness differences between Rivers.  The results of the two methods showed that the fish abundance 
in the Chaobai River was higher than that in the Beiyun River (Table 1), and this was also shown in the study 
conducted by Du36. Rapid urbanization leads to human activities increase, river pollution, and channel harden-
ing, which have all contributed to the decline in the quality of fish’s natural habitat20,24,42. The ecological health of 
the water is generally worse in the Beiyun River in the center of Beijing city43 compared with the Chaobai River 
with less human interference.

Obvious spatial differences in the fish community structure of the two rivers were also found. Apart from 
the interference of human activities, there is also the influence of natural factors such as water temperature 
and altitude44,45. Differences in habitats lead to differences in community structure46,47. The Beiyun River is 
dominated by Pseudorasbora parva, Misgurnus anguillicaudatus, and Carassius auratus, who are low-altitude 
pollution-tolerant species; while the Chaobai River is dominated by Zacco platypus, Rhynchocypris lagowskii, and 
Opsariichthys uncirostris, whose habitat is in high-altitude and low-temperature, this is consistent with the results 
of study Zhang and Du20,36. Moreover, the fish abundance of the samples in the Beiyun River was relatively uni-
form, and the difference in fish abundance among the samples in the Chaobai River was relatively large (Fig. 7). 
It may be that the sample sites of the Chaobai River span a larger distance and the spatial heterogeneity is more 
prominent, resulting in obvious differences in diversity between sampling points. Therefore, eDNA technology 
is able to distinguish the composition of fish communities in different habitats.

eDNA metabarcoding as a transformative tool for assessing fish diversity in rivers of Bei‑
jing.  Most of the traditional methods that have been used are harmful to fish, such as ultrasonic fish devices, 
hanging nets, and hand-cast nets19,36,39. Many studies21,48–50 have shown that eDNA metabarcoding for moni-
toring fish diversity is feasible and efficient, and the result of eDNA metabarcoding are superior to traditional 
methods1,12. In the present study, eDNA metabarcoding identified more fish species than ground cages (Table 1, 
Figs. 3, 4) in both of the water systems (Fig. 6). eDNA can not only detect conventional species but can also eas-
ily identify species with low abundance. For example, Hypomesus olidus, Chanodichthys erythropterus, and other 
fish species were detected by eDNA metabarcoding only. eDNA has been used for the detection of endangered 
and rare species51–53. Although eDNA failed to identify all fish species (such as Squalidus wolterstorffi and Sau-
rogobio dabryi in this study), it may be insufficient water samples were collected and without stratified sampling, 
although the database contains all of Beijing’s historical fish species. However, the high detection rate of eDNA 
makes it well positioned to become a mainstream monitoring method, and it also overcomes the limitations of 
traditional survey methods and reduces fish pressure and habitat destruction.

Figure 7.   Community variation based on Bray–Curtis dissimilar non-metric multiscale (NMDS) sorting: the 
left panel is based on the results of eDNA metabarcoding; the right panel is based on ground cage data.
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Many studies have compared results of eDNA with those from traditional methods and have suggested a cor-
relation between them54,55, but the specific relationship is not currently clear. Because different stages are affecting 
the state of eDNA, such as the origin of eDNA, degradation and decay of eDNA, transport of eDNA, and the 
microbiome datasets generated by HTS are compositional because the datasets have an arbitrary total imposed by 
the instrument56,57. The relationship between absolute abundance in the environment and the relative abundance 
after sequencing is not predictable. PCR cycle number and primer amplification efficiency also effects the results 
of diversity metrics in sequencing studies56–58. In our study, we analysis of metabarcoding datasets assume that 
sequencing data are equivalent to ecological data, of course, there are some limitations to this.

The fish caught by ground cage at each site in the Beiyun River were all detected by eDNA metabarcoding. But 
some fish were caught by ground cage but not detected by eDNA metabarcoding of sites in the Chaobai River. 
We can infer that this was determined by the characteristics of the river. Compared with lakes and reservoirs, 
rivers have temporal and spatial variability14,59. In addition, DNA can persist for several days in water60, so the 
species detected by eDNA metabarcoding may not originate from this habitat (the upper stream)22,61,62. The 
Chaobai is a mountainous river with high flow velocity. on the contrary, the Beiyun River locate in the urban 
with low velocity . The results detected by eDNA basically originated from the sampling points themselves and 
were highly correlated with result of traditional methods. Therefore, in the investigation of river fish diversity by 
eDNA metabarcoding, the characteristics of the river should also be considered, especially in the study of some 
river segments. Of course it cannot be excluded that the traditional method capture fewer fish in the Beiyun River.

Conclusions
eDNA metabarcoding is a developing trend in aquatic biodiversity investigation because of its wide recognition 
ability. This study used eDNA metabarcoding and ground cages to investigate fish diversity in two river systems 
in Beijing. A total of 40 fish species were surveyed at 10 sites, and eDNA metabarcoding identified 38 species. 
The results showed that compared with the ground cage method, eDNA metabarcoding recorded higher fish 
abundance. The correlation between the the result of eDNA and ground cage was different at each sites of the 
two water systems. These findings shown the feasibility of eDNA metabarcoding for the investigation of fish 
diversity in Beijing rivers and provide new reference data for the management and protection of Beijing river 
fish. The survey results also suggest that the diversity in mountain rivers is higher than that in lowland urban 
river. The fish community structures of the two rivers were also different. Although eDNA metabarcoding cannot 
identify the biological characteristics of organisms, it is an important tool for aquatic biodiversity monitoring.

Data availability
The datasets generated during the current study are available in the NCBI repository, Accession number is 
PRJNA842175.
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