Skip to main content
. 2022 Jun 17;9:854287. doi: 10.3389/fcvm.2022.854287

Table 1.

Comparison of the prediction performance of the optimal model of each algorithm.

Model AUC Youden
Index
Optimal
threshold
Sensitivity
(%)
Specificity
(%)
PPV (%) NPV (%) Proportion of
high-risk
population (%)
Brier score Homser-
Lemeshow
χ2
P-Value
Lasso-AdaBoost 0.798 (0.782,
0.813)
0.472 0.11 73.09 74.10 23.5 96.2 30.4 0.078 (0.070, 0.086) 13.81 0.09
FLR-L1-LR 0.817 (0.801,
0.832)
0.524 0.11 73.49 78.86 27.4 96.5 26.7 0.076 (0.069, 0.084) 11.51 0.17
FLR-RF 0.804 (0.788,
0.820)
0.506 0.08 79.52 71.09 23.0 97.0 33.1 0.077 (0.070, 0.086) 11.59 0.17
FLR-SVM 0.814 (0.798,
0.829)
0.511 0.11 73.90 77.16 26.0 96.5 38.4 0.076 (0.069, 0.084) 16.10 0.04

AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; Lasso-AdaBoost, AdaBoost with Lasso regression; FLR-L1-LR, L1 regularized Logistic regression with forward Partial Likelihood Estimation; FLR-RF, random forest with forward Partial Likelihood Estimation; FLR-SVM, support vector machine with forward Partial Likelihood Estimation.